Построение трехмерной модели движения агрегирующих частиц
Авторы
-
Р. Р. Загидуллин
Ключевые слова:
агрегация
пространственная неоднородность
OpenFOAM
Аннотация
Рассматриваются технические аспекты, связанные с моделированием процессов агрегации в неоднородной среде в условиях неустоявшихся скоростей. Для учета агрегации в модель добавлены операторы Смолуховского. Пространственная неоднородность моделируется операторами переноса и диффузии. Поле скоростей получено с помощью фреймворка для моделирования гидродинамических систем OpenFOAM.
Раздел
Методы и алгоритмы вычислительной математики и их приложения
Библиографические ссылки
- V. A. Galkin, Smoluchowski Equation (Fizmatlit, Moscow, 2001) [in Russian].
- S. A. Matveev, D. A. Zheltkov, E. E. Tyrtyshnikov, and A. P. Smirnov, “Tensor Train Versus Monte Carlo for the Multicomponent Smoluchowski Coagulation Equation,” J. Comput. Phys. 316, 164-179 (2016).
doi 10.1016/j.jcp.2016.04.025
- D. A. Stefonishin, S. A. Matveev, A. P. Smirnov, and E. E. Tyrtyshnikov, “Tensor Decompositions for Solving the Equations of Mathematical Models of Aggregation with Multiple Collisions of Particles,” Numerical Methods and Programming (Vychislitel’nye Metody i Programmirovanie) 19 (4), 390-404 (2018).
doi 10.26089/NumMet.v19r435
- S. A. Matveev, E. E. Tyrtyshnikov, A. P. Smirnov, and N. V. Brilliantov, “A Fast Numerical Method for Solving the Smoluchowski-Type Kinetic Equations of Aggregation and Fragmentation Processes,” Numerical Methods and Programming (Vychislitel’nye Metody i Programmirovanie) 15 (1). 1-8 (2014).
- S. A. Matveev, “A Parallel Implementation of a Fast Method for Solving the Smoluchowski-Type Kinetic Equations of Aggregation and Fragmentation Processes,” Numerical Methods and Programming (Vychislitel’nye Metody i Programmirovanie) 16 (3), 360-368 (2015).
doi 10.26089/NumMet.v16r335
- R. R. Zagidullin, A. P. Smirnov, S. A. Matveev, and E. E. Tyrtyshnikov, “An Efficient Numerical Method for a Mathematical Model of a Transport of Coagulating Particles,” Vestn. Mosk. Univ., Ser. 15: Vychisl. Mat. Kibern. 41, No. 4, 28-34 (2017)[Moscow Univ. Comput. Math. Cybern. 41 (4), 179-186 (2017)].
doi 10.3103/S0278641917040082
- A. E. Aloyan, V. O. Arutyunyan, A. A. Lushnikov, and V. A. Zagaynov, “Transport of Coagulating Aerosol in the Atmosphere,” J. Aerosol Sci. 28 (1), 67-85 (1997).
doi 10.1016/S0021-8502(96)00043-2
- G. Falkovich, A. Fouxon, and M. G. Stepanov, “Acceleration of Rain Initiation by Cloud Turbulence,” Nature 419, 151-154 (2002).
doi 10.1038/nature00983
- G. Falkovich, M. G. Stepanov, and M. Vucelja, “Rain Initiation Time in Turbulent Warm Clouds,” J. Appl. Meteorol. Climatol. 45 (4), 591-599 (2006).
doi 10.1175/JAM2364.1
- V. J. Anderson and H. N. W. Lekkerkerker, “Insights into Phase Transition Kinetics from Colloid Science,” Nature 416, 811-815 (2002).
doi 10.1038/416811a
- R. W. Samsel and A. S. Perelson, “Kinetics of Rouleau Formation. I. A Mass Action Approach with Geometric Features,” Biophys. J. 37 (2), 493-514 (1982).
doi 10.1016/S0006-3495(82)84696-1
- M. Anand, K. B. Rajagopal, and K. R. Rajagopal, “A Model for the Formation and Lysis of Blood Clots,” Pathophysiol. Haemost. Thromb. 34 (2), 109-120 (2005).
doi 10.1159/000089931
- C. Stein, T. Dannemann Purnat, N. Fietje, et al., WHO European Health Report 2018 (World Health Organization, Geneva, 2018), Vol. 164.
- J. E. Bennett, H. Tamura-Wicks, R. M. Parks, et al., “Particulate Matter Air Pollution and National and County Life Expectancy Loss in the USA: A Spatiotemporal Analysis,” PLoS Med. 16 (7), Article Number e1002856 (2019).
doi 10.1371/journal.pmed.1002856
- K. Semeniuk and A. Dastoor, “Current State of Atmospheric Aerosol Thermodynamics and Mass Transfer Modeling: A Review,” Atmosphere 11 (2), Article Number 156 (2020).
doi 10.3390/atmos11020156
- J. Garratt, The Atmospheric Boundary Layer (Cambridge Univ. Press, Cambridge, 1992).
- Y. Han, M. Stoellinger, and J. Naughton, “Large Eddy Simulation for Atmospheric Boundary Layer Flow over Flat and Complex Terrains,” J. Phys.: Conf. Ser. 753 (3), Article Id. 032044 (2016).
doi 10.1088/1742-6596/753/3/032044
- R. Stoll, J. A. Gibbs, S. T. Salesky, et al., “Large-Eddy Simulation of the Atmospheric Boundary Layer,” Boundary-Layer Meteorol. 177 (2-3), 541-581 (2020).
doi 10.1007/s10546-020-00556-3
- M. Diebold, C. Higgins, J. Fang, et al., “Flow over Hills: A Large-Eddy Simulation of the Bolund Case,” Boundary-Layer Meteorol. 148 (1), 177-194 (2013).
doi 10.1007/s10546-013-9807-0
- R. Zagidullin, A. P. Smirnov, S. Matveev, et al., “Aggregation in Non-Uniform Systems with Advection and Localized Source,” J. Phys. A: Math. Theor. 55 (26), Article Id. 265001 (2022).
doi 10.1088/1751-8121/ac711a
- L. Gallen, A. Felden, E. Riber, and B. Cuenot, “Lagrangian Tracking of Soot Particles in LES of Gas Turbines,” Proc. Combust. Inst. 37 (4), 5429-5436 (2019).
doi 10.1016/j.proci.2018.06.013
- OpenFOAM.
https://www.openfoam.com . Cited November 3, 2023.
- S. A. Matveev, A. P. Smirnov, and E. E. Tyrtyshnikov, “A Fast Numerical Method for the Cauchy Problem for the Smoluchowski Equation,” J. Comput. Phys. 282, 23-32 (2015).
doi 10.1016/j.jcp.2014.11.003
- The Computational Geometry Algorithms Library (CGAL).
https://www.cgal.org . Cited November 3, 2023.
- R. Zagidullin, A. Smirnov, S. Matveev, and E. Tyrtyshnikov, “Supercomputer Modelling of Spatially-Heterogeneous Coagulation Using MPI and CUDA,” in Communications in Computer and Information Science (Springer, Cham, 2019), Vol. 1129, 403-414.
doi 10.1007/978-3-030-36592-9_33
- R. R. Zagidullin, “Solving the Transport-Coagulation Problem in a Two-Dimensional Spatial Region,” Prikl. Mat. Inform. No. 62, 27-33 (2019) [Comput. Math. Model. 31 (1), 19-24 (2020)].
doi 10.1007/s10598-020-09473-z
- M. S. Darwish and F. Moukalled, “TVD Schemes for Unstructured Grids,” Int. J. Heat Mass Transf. 46 (4), 599-611 (2003).
doi 10.1016/S0017-9310(02)00330-7
- F. Denner and B. G. M. van Wachem, “TVD Differencing on Three-Dimensional Unstructured Meshes with Monotonicity-Preserving Correction of Mesh Skewness,” J. Comput. Phys. 298, 466-479 (2015).
doi 10.1016/j.jcp.2015.06.008
- C. Le Touze, A. Murrone, and H. Guillard, “Multislope MUSCL Method for General Unstructured Meshes,” J. Comput. Phys. 284, 389-418 (2015).
doi 10.1016/j.jcp.2014.12.032