Сравнение вычислительной эффективности двух версий климатической модели океана с вертикальной сигма-системой координат
Авторы
-
Д. В. Благодатских
Ключевые слова:
моделирование климата
сигма-система координат
параллельное масштабирование
Аннотация
В данной работе представлены результаты модификации климатической модели океана Института вычислительной математики имени Г. И. Марчука РАН. Описаны основные изменения, произведенные в процедурах расчета диссипации горизонтальных компонент скорости, изопикнической диффузии, а также модификации схем интегрирования скаляров и компонент скорости по времени. На расчетах по протоколу CORE-II продемонстрировано, что внесенные изменения ведут к существенному улучшению вычислительной эффективности климатической модели океана.
Раздел
Методы и алгоритмы вычислительной математики и их приложения
Библиографические ссылки
- E. M. Volodin, V. Ya. Galin, A. S. Gritsun, et al., Mathematical Modeling of the Earth System (MAKS Press, Moscow, 2016) [in Russian].
- G. Flato, J. Marotzke, B. Abiodun, et al., Evaluation of Climate Models in Climate Change 2013 (Cambridge Univ. Press, Cambridge, 2014), pp. 741-866.
doi 10.1017/CBO9781107415324.020
- R. Knutti, D. Masson, and A. Gettelman, “Climate Model Genealogy: Generation CMIP5 and How We Got There,” Geophys. Res. Lett. 40 (6), 1194-1199 (2013).
doi 10.1002/grl.50256
- K. E. Taylor, R. J. Stouffer, and G. A. Meehl, “An Overview of CMIP5 and the Experiment Design,” Bull. Am. Meteorol. Soc. 93 (4), 485-498 (2012).
doi 10.1175/BAMS-D-11-00094.1
- V. Eyring, S. Bony, G. A. Meehl, et al., “Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) Experimental Design and Organization,” Geosci. Model Dev. 9 (5), 1937-1958 (2016).
doi 10.5194/gmd-9-1937-2016.
- Y.-H. Kim, S.-K. Min, X. Zhang, et al., “Evaluation of the CMIP6 Multi-Model Ensemble for Climate Extreme Indices,” Weather Clim. Extremes 29, Article Number 100269 (2020).
doi 10.1016/j.wace.2020.100269.
- H. Le Treut, R. Somerville, U. Cubasch, et al., Historical Overview of Climate Change Science in Climate Change 2007 (Cambridge Univ. Press, Cambridge, 2007), pp. 93-127.
- J. Jebeile and A. Barberousse, “Model Spread and Progress in Climate Modelling,” Euro. J. Phil. Sci. 11, Article Number 66 (2021).
doi 10.1007/s13194-021-00387-0.
- N. E. Chubarova, A. S. Pastukhova, E. Y. Zhdanova, et al., “Effects of Ozone and Clouds on Temporal Variability of Surface UV Radiation and UV Resources over Northern Eurasia Derived from Measurements and Modeling,” Atmosphere 11 (1), Article Number 59 (2020).
doi 10.3390/atmos11010059.
- M. Tarasevich, A. Sakhno, D. Blagodatskikh, et al., “Scalability of the INM RAS Earth System Model,” accepted in Russian Journal of Numerical Analysis and Mathematical Modelling (2023).
- J. L. Roberts, P. Heil, R. J. Murray, et al., “Pole Relocation for an Orthogonal Grid: An Analytic Method,” Ocean Model. 12 (1-2), 16-31 (2006).
doi 10.1016/j.ocemod.2005.03.004
- R. A. Locarnini, A. V. Mishonov, J. I. Antonov, et al., World Ocean Atlas 2009 , Vol. 1: Temperature (U.S. Department of Commerce, Washington, D.C., 2010)
https://www.ncei.noaa.gov/sites/default/files/2020-04/woa09_vol1_text.pdf . Cited November 23, 2023.
- R. C. Pacanowski and S. G. H. Philander, “Parametrization of Vertical Mixing in Numerical Models of Tropical Oceans,” J. Phys. Oceanogr. 11 (11), 1443–-1451 (1981).
doi 10.1175/1520-0485(1981)011<1443: POVMIN>2.0.CO;2.
- T. J. McDougall, “Neutral Surfaces,” J. Phys. Oceanogr. 17 (11), 1950-1964 (1987).
doi 10.1175/1520-0485(1987)017<1950: NS>2.0.CO;2
- T. J. McDougall, S. Groeskamp, and S. M. Griffies, “On Geometrical Aspects of Interior Ocean Mixing,” J. Phys. Oceanogr. 44 (8), 2164–-2175 (2014).
doi 10.1175/JPO-D-13-0270.1
- T. L. Delworth, A. Rosati, W. Anderson, et al., “Simulated Climate and Climate Change in the GFDL CM2.5 High-Resolution Coupled Climate Model,” J. Clim. 25 (8), 2755–-2781 (2012).
doi 10.1175/JCLI-D-11-00316.1.
- M. H. Redi, “Oceanic Isopycnal Mixing by Coordinate Rotation,” J. Phys. Oceanogr. 12 (10), 1154–-1158 (1982).
doi 10.1175/1520-0485(1982)012<1154: OIMBCR>2.0.CO;2
- S. M. Griffies, A. Gnanadesikan, R. C. Pacanowski, et al., “Isoneutral Diffusion in a z-Coordinate Ocean Model,” J. Phys. Oceanogr. 28 (5), 805–-830 (1998).
doi 10.1175/1520-0485(1998)028<0805: IDIAZC>2.0.CO;2.
- D. V. Blagodatskikh, N. G. Iakovlev, E. M. Volodin, and A. S. Gritsun, “Non-Local Discretization of the Isoneutral Diffusion Operator in a Terrain-Following Climate Ocean Model,” accepted in Russian Journal of Numerical Analysis and Mathematical Modelling (2023).
- E. C. Hunke and J. K. Dukowicz, “An Elastic-Viscous-Plastic Model for Sea Ice Dynamics,” J. Phys. Oceanogr. 27 (9), 1849–-1867 (1997).
doi 10.1175/1520-0485(1997)027<1849: AEVPMF>2.0.CO;2.
- A. J. Semtner, “A Model for the Thermodynamic Growth of Sea Ice in Numerical Investigations of Climate,” J. Phys. Oceanogr. 6 (3), 379–-389 (1976).
doi 10.1175/1520-0485(1976)006<0379: AMFTTG>2.0.CO;2
- S. Abhyankar, J. Brown, E. M. Constantinescu, et al., “PETSc/TS: A Modern Scalable ODE/DAE Solver Library,”
https://arxiv.org/abs/1806.01437 . Cited November 23, 2023.
- S. M. Griffies, A. Biastoch, C. Böning, et al., “Coordinated Ocean-Ice Reference Experiments (COREs),” Ocean Model. 26 (1-2), 1-46 (2009).
doi 10.1016/j.ocemod.2008.08.007
- M. Gurvan, R. Bourdall’e-Badie, J. Chanut, et al., NEMO Ocean Engine , Scientific Notes of Climate Modelling Center, Issue 27, ISSN 1288-1619 (Pierre-Simon Laplace Institute, Guyancourt, 2022).
https://zenodo.org/records/6334656 . Cited November 23, 2023.
doi 10.5281/zenodo.1464816