Упрощение рациональных функций для редукции с использованием соотношений интегрирования по частям и не только
Авторы
-
К. С. Мокров
-
А. В. Смирнов
-
М. Цзэн
Ключевые слова:
Интегралы Фейнмана
интегрирование по частям
компьютерная алгебра
Аннотация
Мы представляем C++ библиотеку FUEL (Fractional Universal Evaluation Library), предназначенную для выполнения арифметики рациональных функций с гибким выбором сторонних систем компьютерной алгебры в качестве упростителей. FUEL является развитием интерфейса C++ для Fermat, который изначально был частью кода FIRE для редукции соотношений интегрирования по частям (IBP) для интегралов Фейнмана, а теперь стал отдельной библиотекой с доступом к упростителям, отличным от Fermat. Мы сравниваем производительность различных упростителей для отдельных задач тестирования, а также для редукции IBP с помощью FIRE. Достигнуто ускорение более чем в 10 раз для примера редукции, связанной с вычислением трехпетлевых формфакторов вне оболочки светового конуса в N = 4 суперсимметричной теории Янга-Миллса.
Раздел
Методы и алгоритмы вычислительной математики и их приложения
Библиографические ссылки
- K. G. Chetyrkin and F. V. Tkachov, “Integration by Parts: The Algorithm to Calculate β-Functions in 4 Loops,” Nucl. Phys. B 192 (1), 159-204 (1981).
doi 10.1016/0550-3213(81)90199-1
- S. Laporta, “High-Precision Calculation of Multiloop Feynman Integrals by Difference Equations,” Int. J. Mod. Phys. A 15 (32), 5087-5159 (2000).
doi 10.1142/S0217751X00002159
- J. Abbott, A. M. Bigatti, and L. Robbiano, CoCoA System: Computations in Commutative Algebra.
http://cocoa.dima.unige.it . Cited October 4, 2023.
- J. Abbott and A. M. Bigatti, CoCoALib: A C++ Library for Doing Computations in Commutative Algebra.
https://cocoa.dima.unige.it/cocoa/cocoalib/. Cited October 4, 2023.
- R. H. Lewis, Fermat: A Computer Algebra System for Polynomial and Matrix Computation.
http://home.bway.net/lewis/. Cited September 30, 2023.
- J. A. M. Vermaseren, The Main Directory for FORM.
https://www.nikhef.nl/ form/maindir/maindir.html . Cited September 30, 2023.
- GiNaC is Not a CAS.
https://ginac.de/. Cited September 30, 2023.
- D. R. Grayson and M. E. Stillman. Macaulay2Doc: Macaulay2 Documentation.
https://macaulay2.com/doc/Macaulay2/share/doc/Macaulay2/Macaulay2Doc/html/. Cited October 4, 2023.
- Maplesoft: The Essential Tool for Mathematics.
https://www.maplesoft.com/products/Maple/. Cited October 4, 2023.
- Maxima: A Computer Algebra System. Version 5.43.2.
https://maxima.sourceforge.io/. Cited September 30, 2023.
- C. Fieker, W. Hart, T. Hofmann, and F. Johansson, “Nemo/Hecke: Computer Algebra and Number Theory Packages for the Julia Programming Language,” in Proc. 2017 ACM Int. Symposium on Symbolic and Algebraic Computation, Kaiserslautern, Germany, July 23-28, 2017 (ACM Press, New York, 2017), pp. 157-164.
doi 10.1145/3087604.3087611
- PARI/GP Version 2.11.2, Univ. Bordeaux, 2022.
http://pari.math.u-bordeaux.fr/. Cited October 1, 2023.
- Symbolica.
https://symbolica.io/. Cited October 1, 2023.
- Wolfram Mathematica, Version 13.1.
https://www.wolfram.com/mathematica . Cited October 1, 2023.
- A. V. Smirnov and V. A. Smirnov, “FIRE4, LiteRed and Accompanying Tools to Solve Integration by Parts Relations,” Comput. Phys. Commun. 184 (12), 2820-2827 (2013).
doi 10.1016/j.cpc.2013.06.016
- A. V. Smirnov, “FIRE5: A C++ Implementation of Feynman Integral REduction,” Comput. Phys. Commun. 189, 182-191 (2015).
doi 10.1016/j.cpc.2014.11.024
- A. V. Smirnov and F. S. Chukharev, “FIRE6: Feynman Integral REduction with Modular Arithmetic,” Comput. Phys. Commun. 247, Article Number 106877 (2020).
doi 10.1016/j.cpc.2019.106877
- C. Anastasiou and A. Lazopoulos, “Automatic Integral Reduction for Higher Order Perturbative Calculations,” J. High Energy Phys. No. 7, Article Identifier 046 (2004).
doi 10.1088/1126-6708/2004/07/046
- A. von Manteuffel and C. Studerus, “Reduze 2 -- Distributed Feynman Integral Reduction,”
https://arxiv.org/abs/1201.4330 . Cited October 1, 2023.
- R. N. Lee, “LiteRed 1.4: A Powerful Tool for Reduction of Multiloop Integrals,” J. Phys. Conf. Ser. 523 (1), Article Identifier 012059 (2014).
doi 10.1088/1742-6596/523/1/012059
- P. Maierhöfer, J. Usovitsch, and P. Uwer, “Kira -- A Feynman Integral Reduction Program,” Comput. Phys. Commun. 230, 99-112 (2018).
doi 10.1016/j.cpc.2018.04.012
- P. Maierhöfer and J. Usovitsch, “Kira 1.2 Release Notes,”
https://arxiv.org/abs/1812.01491 . Cited October 1, 2023.
- J. Klappert, F. Lange, P. Maierhöfer, and J. Usovitsch, “Integral Reduction with Kira 2.0 and Finite Field Methods,” Comput. Phys. Commun. 266, Article Number 108024 (2021).
doi 10.1016/j.cpc.2021.108024
- J. M. Henn, A. V. Smirnov, V. A. Smirnov, and M. Steinhauser, “A Planar Four-Loop Form Factor and Cusp Anomalous Dimension in QCD,” J. High Energy Phys. No. 5, Article Identifier 066 (2016).
doi 10.1007/JHEP05(2016)066
- J. Henn, R. N. Lee, A. V. Smirnov, et al., “Four-Loop Photon Quark Form Factor and Cusp Anomalous Dimension in the Large-N_c Limit of QCD,” J. High Energy Phys. No. 3, Article Identifier 139 (2017).
doi 10.1007/JHEP03(2017)139
- R. N. Lee, A. V. Smirnov, V. A. Smirnov, and M. Steinhauser, “n_f² Contributions to Fermionic Four-Loop Form Factors,” Phys. Rev. D 96 (1), Article Identifier 014008 (2017).
doi 10.1103/PhysRevD.96.014008
- D. Bendle, J. Böhm, W. Decker, et al., “Integration-by-Parts Reductions of Feynman Integrals Using Singular and GPI-Space,” J. High Energy Phys. No. 2, Article Identifier 079 (2020).
doi 10.1007/JHEP02(2020)079
- R. N. Lee, “Group Structure of the Integration-by-Part Identities and Its Application to the Reduction of Multiloop Integrals,” J. High Energy Phys. No. 7, Article Identifier 031 (2008).
doi 10.1088/1126-6708/2008/07/031
- B. Ruijl, T. Ueda, and J. A. M. Vermaseren, “Forcer, a FORM Program for the Parametric Reduction of Four-Loop Massless Propagator Diagrams,” Comput. Phys. Commun. 253, Article Number 107198 (2020).
doi 10.1016/j.cpc.2020.107198
- A. V. Smirnov and V. A. Smirnov, “How to Choose Master Integrals,” Nucl. Phys. B 960, Article Number 115213 (2020).
doi 10.1016/j.nuclphysb.2020.115213
- J. Usovitsch, “Factorization of Denominators in Integration-by-Parts Reductions,”
http://arxiv.org/abs/2002.08173 . Cited October 1, 2023.
- X. Liu and Y.-Q. Ma, “Determining Arbitrary Feynman Integrals by Vacuum Integrals,” Phys. Rev. D 99 (7), Article Identifier 071501 (2019).
doi 10.1103/PhysRevD.99.071501
- X. Guan, X. Liu, and Y.-Q. Ma, “Complete Reduction of Integrals in Two-Loop Five-Light-Parton Scattering Amplitudes,” Chinese Phys. C 44 (9), Article Identifier 093106 (2020).
doi 10.1088/1674-1137/44/9/093106
- J. Gluza, K. Kajda, and D. A. Kosower, “Towards a Basis for Planar Two-Loop Integrals,” Phys. Rev. D 83 (4), Article Identifier 045012 (2011).
doi 10.1103/PhysRevD.83.045012
- R. M. Schabinger, “A New Algorithm for the Generation of Unitarity-Compatible Integration by Parts Relations,” J. High Energy Phys. No. 1, Article Identifier 077 (2012).
doi 10.1007/JHEP01(2012)077
- K. J. Larsen and Y. Zhang, “Integration-by-Parts Reductions from Unitarity Cuts and Algebraic Geometry,” Phys. Rev. D 93 (4), Article Identifier 041701 (2016).
doi 10.1103/PhysRevD.93.041701
- J. Böhm, A. Georgoudis, K. J. Larsen, et al., “Complete Integration-by-Parts Reductions of the Non-Planar Hexagon-Box via Module Intersections,” J. High Energy Phys. No. 9, Article Identifier 024 (2018).
doi 10.1007/JHEP09(2018)024
- H. Ita, “Two-Loop Integrand Decomposition into Master Integrals and Surface Terms,” Phys. Rev. D 94 (11), Article Identifier 116015 (2016).
doi 10.1103/PhysRevD.94.116015
- S. Abreu, F. Febres Cordero, H. Ita, et al., “Two-Loop Four-Gluon Amplitudes from Numerical Unitarity,” Phys. Rev. Lett. 119 (14), Article Identifier 142001 (2017).
doi 10.1103/PhysRevLett.119.142001
- S. Abreu, F. Febres Cordero, H. Ita, et al., “Planar Two-Loop Five-Gluon Amplitudes from Numerical Unitarity,” Phys. Rev. D 97 (11), Article Identifier 116014 (2018).
doi 10.1103/PhysRevD.97.116014
- A utility to accurately report the core memory usage for a program.
https://raw.githubusercontent.com/pixelb/ps_mem/master/ps_mem.py . Cited October 1, 2023.
- A. V. Belitsky, L. V. Bork, A. F. Pikelner, and V. A. Smirnov, “Exact Off Shell Sudakov Form Factor in mathcalN=4 Supersymmetric Yang-Mills Theory,” Phys. Rev. Lett. 130 (9), Article Identifier 091605 (2023).
doi 10.1103/PhysRevLett.130.091605
- A. V. Belitsky, L. V. Bork, and V. A. Smirnov, “Off-Shell Form Factor in mathcalN=4 sYM at Three Loops,”
https://arxiv.org/abs/2306.16859 . Cited October 1, 2023.
- M. Monagan and R. Pearce, “Fermat Benchmarks for Rational Expressionals in Maple,” ACM Commun. Comput. Algebra 50 (4), 188-190 (2016).
doi 10.1145/3055282.3055299
- Pynac -- symbolic computation with Python objects, Sage Math support library.
https://github.com/pynac/pynac . Cited October 1, 2023.
- P. Zimmermann, A. Casamayou, N. Cohen, et al., Computational Mathematics with SageMath (SIAM Press, Philadelphia, 2018).
- Y. Zhang, Lecture Notes on Multi-Loop Integral Reduction and Applied Algebraic Geometry.
https://arxiv.org/abs/1612.02249 . Cited October 1, 2023.
- M. Monagan and R. Pearce, “Poly: A New Polynomial Data Structure for Maple 17,” ACM Commun. Comput. Algebra 46 (3/4), 164-167 (2013).
doi 10.1145/2429135.2429173
- M. Monagan, “Speeding up Polynomial GCD, a Crucial Operation in Maple,” Maple Trans. 2 (1), Article Number 14457 (2022).
doi 10.5206/mt.v2i1.14452
- J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, “Julia: A Fresh Approach to Numerical Computing,” SIAM Rev. 59 (1), 65-98 (2017).
doi 10.1137/141000671
- W. B. Hart, “Flint Fast Library for Number Theory,” Computeralgebra-Rundbrief, No. 49, 15-17 (2011).
https://fachgruppe-computeralgebra.de/data/CA-Rundbrief/car49.pdf . Cited October 3, 2023.