О реализации параллельного алгоритма глобальной оптимизации с использованием набора инструментов Intel oneAPI
Авторы
-
К. А. Баркалов
-
И. Г. Лебедев
-
Я. В. Силенко
Ключевые слова:
глобальная оптимизация
многоэкстремальные функции
параллельные вычисления
редукция размерности
графические ускорители
Intel oneAPI
Аннотация
В статье рассматривается параллельный алгоритм решения задач глобальной оптимизации и обсуждается его реализация с использованием набора инструментов Intel oneAPI. Предполагается, что целевая функция задачи задана как “черный ящик” и удовлетворяет условию Липшица. Изложенный в статье параллельный алгоритм использует схему редукции размерности на основе кривых Пеано, которые непрерывно и однозначно отображают отрезок вещественной оси на гиперкуб. В качестве средства для реализации параллельного алгоритма использован инструментарий Intel oneAPI, который позволяет писать один код как для центрального процессора, так и для графических ускорителей. Приведены результаты вычислительных экспериментов, полученные при решении серии сложных задач многоэкстремальной оптимизации.
Раздел
Параллельные программные средства и технологии
Библиографические ссылки
- D. C. Kutov, A. V. Sulimov, and V. B. Sulimov, “Supercomputer Docking: Investigation of Low Energy Minima of Protein-Ligand Complexes,” Supercomput. Front. Innovs. 5 (3), 134-137 (2018).
doi 10.14529/jsfi180326.
- K. K. Abgaryan and M. A. Posypkin, “Optimization Methods as Applied to Parametric Identification of Interatomic Potentials,” Zh. Vychisl. Mat. Mat. Fiz. 54 (12), 1994-2001 (2014) [Comput. Math. Math. Phys. 54 (12), 1929-1935 (2014)].
doi 10.1134/S0965542514120021.
- Yu. G. Yevtushenko, S. A. Lurie, M. A. Posypkin, and Yu. O. Solyaev, “Application of Optimization Methods for Finding Equilibrium States of Two-Dimensional Crystals,” Zh. Vychisl. Mat. Mat. Fiz. 56 (12), 2032-2041 (2016) [Comput. Math. Math. Phys. 56 (12), 2001-2010 (2016)].
doi 10.1134/S0965542516120083.
- J. D. Pintér (Ed.), Global Optimization: Scientific and Engineering Case Studies (Springer, New York, 2006).
- I. Gubaydullin, L. Enikeeva, K. Barkalov, and I. Lebedev, “Parallel Global Search Algorithm for Optimization of the Kinetic Parameters of Chemical Reactions,” in Communications in Computer and Information Science (Springer, Cham, 2021), Vol. 1510, pp. 198-211.
doi 10.1007/978-3-030-92864-3_16
- Ya. D. Sergeev and D. E. Kvasov, Diagonal Methods of Global Optimization (Fizmatlit, Moscow, 2008) [in Russian].
- R. Paulavicius and J. Zilinskas, Simplicial Global Optimization (Springer, New York, 2014).
doi 10.1007/978-1-4614-9093-7.
- R. G. Strongin and Ya. D. Sergeyev, Global Optimization with Non-Convex Constraints: Sequential and Parallel Algorithms (Springer, Berlin, 2000).
- Ya. D. Sergeyev, R. G. Strongin, and D. Lera, Introduction to Global Optimization Exploiting Space-Filling Curves (Springer, New York, 2013).
doi 10.1007/978-1-4614-8042-6.
- R. G. Strongin, V. P. Gergel, V. A. Grishagin, and K. A. Barkalov, Parallel Computations in Global Optimization Problems (Mosk. Gos. Univ., Moscow, 2013) [in Russian].
- V. Sovrasov, “Comparison of Several Stochastic and Deterministic Derivative-Free Global Optimization Algorithms,” in Lecture Notes in Computer Science (Springer, Cham, 2019), Vol. 11548, pp. 70-81.
doi 10.1007/978-3-030-22629-9_6.
- A. V. Boreskov, A. A. Kharlamov, N. D. Markovsky, et al., Parallel Computing on the GPU. Architecture and Programming Model of CUDA (Mosk. Gos. Univ., Moscow, 2015) [in Russian].
- A. S. Tanenbaum and T. Austin, Structured Computer Organization (Pearson, New York, 2006; Piter, Saint Petersburg, 2014).
- D. A. Komolov, R. A. Myalk, A. A. Zobenko, and A. S. Filippov, Computer-Aided Design Systems from Altera MAX+Plus II and Quartus II (RadioSoft, Moscow, 2002) [in Russian].
- V. Gergel, K. Barkalov, and A. Sysoyev, “Globalizer: A Novel Supercomputer Software System for Solving Time-Consuming Global Optimization Problems,” Numer. Algebra Control Optim. 8 (1), 47-62 (2018).
doi 10.3934/naco.2018003.