DOI: https://doi.org/10.26089/NumMet.v23r423

Балансно-характеристический метод для решения гиперболических систем уравнений на треугольных расчетных сетках

Авторы

  • В. М. Головизнин
  • Д. Ю. Горбачев
  • Н. А. Афанасьев

Ключевые слова:

балансно-характеристические методы
метод КАБАРЕ
вычислительная гидродинамика
мелкая вода
треугольные расчетные сетки

Аннотация

В данной статье рассматривается балансно-характеристический численный метод решения гиперболических систем уравнений на треугольных расчетных сетках. Описываются основные шаги алгоритма на примере решения двумерных уравнений мелкой воды. Метод верифицирован и проведено его сравнение с методами, разработанными другими авторами, на основных тестах для уравнений мелкой воды над ровным дном.


Загрузки

Опубликован

2022-12-12

Выпуск

Раздел

Методы и алгоритмы вычислительной математики и их приложения

Авторы

В. М. Головизнин

Д. Ю. Горбачев

Н. А. Афанасьев


Библиографические ссылки

  1. D. C. Kutov, A. V. Sulimov, and V. B. Sulimov, “Supercomputer Docking: Investigation of Low Energy Minima of Protein-Ligand Complexes,” Supercomput. Front. Innovs. 5 (3), 134-137 (2018).
    doi 10.14529/jsfi180326.
  2. K. K. Abgaryan and M. A. Posypkin, “Optimization Methods as Applied to Parametric Identification of Interatomic Potentials,” Zh. Vychisl. Mat. Mat. Fiz. 54 (12), 1994-2001 (2014) [Comput. Math. Math. Phys. 54 (12), 1929-1935 (2014)].
    doi 10.1134/S0965542514120021.
  3. Yu. G. Yevtushenko, S. A. Lurie, M. A. Posypkin, and Yu. O. Solyaev, “Application of Optimization Methods for Finding Equilibrium States of Two-Dimensional Crystals,” Zh. Vychisl. Mat. Mat. Fiz. 56 (12), 2032-2041 (2016) [Comput. Math. Math. Phys. 56 (12), 2001-2010 (2016)].
    doi 10.1134/S0965542516120083.
  4. J. D. Pintér (Ed.), Global Optimization: Scientific and Engineering Case Studies (Springer, New York, 2006).
  5. I. Gubaydullin, L. Enikeeva, K. Barkalov, and I. Lebedev, “Parallel Global Search Algorithm for Optimization of the Kinetic Parameters of Chemical Reactions,” in Communications in Computer and Information Science (Springer, Cham, 2021), Vol. 1510, pp. 198-211.
    doi 10.1007/978-3-030-92864-3_16
  6. Ya. D. Sergeev and D. E. Kvasov, Diagonal Methods of Global Optimization (Fizmatlit, Moscow, 2008) [in Russian].
  7. R. Paulavicius and J. Zilinskas, Simplicial Global Optimization (Springer, New York, 2014).
    doi 10.1007/978-1-4614-9093-7.
  8. R. G. Strongin and Ya. D. Sergeyev, Global Optimization with Non-Convex Constraints: Sequential and Parallel Algorithms (Springer, Berlin, 2000).
  9. Ya. D. Sergeyev, R. G. Strongin, and D. Lera, Introduction to Global Optimization Exploiting Space-Filling Curves (Springer, New York, 2013).
    doi 10.1007/978-1-4614-8042-6.
  10. R. G. Strongin, V. P. Gergel, V. A. Grishagin, and K. A. Barkalov, Parallel Computations in Global Optimization Problems (Mosk. Gos. Univ., Moscow, 2013) [in Russian].
  11. V. Sovrasov, “Comparison of Several Stochastic and Deterministic Derivative-Free Global Optimization Algorithms,” in Lecture Notes in Computer Science (Springer, Cham, 2019), Vol. 11548, pp. 70-81.
    doi 10.1007/978-3-030-22629-9_6.
  12. A. V. Boreskov, A. A. Kharlamov, N. D. Markovsky, et al., Parallel Computing on the GPU. Architecture and Programming Model of CUDA (Mosk. Gos. Univ., Moscow, 2015) [in Russian].
  13. A. S. Tanenbaum and T. Austin, Structured Computer Organization (Pearson, New York, 2006; Piter, Saint Petersburg, 2014).
  14. D. A. Komolov, R. A. Myalk, A. A. Zobenko, and A. S. Filippov, Computer-Aided Design Systems from Altera MAX+Plus II and Quartus II (RadioSoft, Moscow, 2002) [in Russian].
  15. V. Gergel, K. Barkalov, and A. Sysoyev, “Globalizer: A Novel Supercomputer Software System for Solving Time-Consuming Global Optimization Problems,” Numer. Algebra Control Optim. 8 (1), 47-62 (2018).
    doi 10.3934/naco.2018003.