Дискретизация конвективных потоков в уравнениях Навье-Стокса на основе разностных схем высокой разрешающей способности

Авторы

  • К.Н. Волков

Ключевые слова:

конечно-разностные схемы
конвективный перенос
уравнения Навье-Стокса
динамика вязкой жидкости

Аннотация

Рассматриваются свойства конечно-разностных схем высокой разрешающей способности, предназначенных для дискретизации конвективных потоков в уравнениях Навье-Стокса, а также особенности их численной реализации. Разностные схемы формулируются на неравномерной сетке, а для исследования их свойств привлекается диаграмма нормализованных переменных. Проводится сравнение результатов моделирования течения вязкой несжимаемой жидкости в каверне с подвижной верхней стенкой, полученных при помощи различных разностных схем.


Загрузки

Опубликован

2004-09-13

Выпуск

Раздел

Раздел 1. Вычислительные методы и приложения

Автор

К.Н. Волков

Балтийский государственный технический университет «Военмех» имени Д.Ф. Устинова,
физико-механический факультет
1-я Красноармейская ул., 1, 190005, Санкт-Петербург


Библиографические ссылки

  1. Флетчер К. Вычислительные методы в динамике жидкостей. М.: Мир, 1991.
  2. Бондаренко Ю.А., Башуров В.В., Янилкин Ю.В. Математические модели и численные методы для решения задач нестационарной газовой динамики. Обзор зарубежной литературы. Препринт РФЯЦ ВНИИЭФ 88-2003. Москва, 2003.
  3. Zhu J. On the higher-order bounded discretization schemes for finite volume computations of incompressible flows // Computational Methods in Applied Mechanics and Engineering. 1992. 98. 345-360.
  4. Choi S.K., Nam H.Y., Cho M. A comparison of higher-order bounded convection schemes // Computational Methods in Applied Mechanics and Engineering. 1995. 121. 281-301.
  5. Gaskell P.H., Lau A.K. C. Curvature-compensated convective transport: SMART, a new boundedness-preserving transport algorithm // International Journal for Numerical Methods in Fluids. 1988. 8, N 6. 617-641.
  6. Leonard B.P. Simple high-resolution program for convection modeling of discontinuities // International Journal for Numerical Methods in Fluids. 1988. 8. 1291-1318.
  7. Alves M.A., Cruz P., Mendes A., Magalhaes F.D., Pinho F.T., Oliveira P.J. Adaptive multiresolution approach for solution of hyperbolic PDEs // Computational Methods in Applied Mechanics and Engineering. 2002. 191. 3909-3928.
  8. Alves M.A., Oliveira P.J., Pinho F.T. A convergent and universally bounded interpolation scheme for the treatment of advection // International Journal for Numerical Methods in Fluids. 2003. 41. 41-75.
  9. Leonard B.P. A stable and accurate convective modeling procedure based on quadratic interpolation // Computational Methods in Applied Mechanics and Engineering. 1979. 19. 59-98.
  10. Leonard B.P. Order of accuracy of QUICK and related convection-diffusion schemes // Applied Mathematical Modelling. 1995. 19. 640-653.
  11. Breuer M. Large eddy simulation of the subcritical flow past a circular cylinder: numerical and modeling aspects // International Journal for Numerical Methods in Fluids. 1998. 28. 1281-1302.
  12. Zhou G., Davidson L., Olsson E. Transonic inviscid/turbulent airfoil flow simulations using a pressure-based method with high order schemes // Lecture Notes in Physics. 1995. N 453. 372-377.
  13. Zhu J. Low-diffusive and oscillation-free convection scheme // Communications and Applied Numerical Methods. 1991. 7, N 3. 225-232.
  14. Zhu J., Rodi W. A low dispersion and bounded discretization schemes for finite volume computations of incompressible flows // Computational Methods for Applied Mechanics and Engineering. 1991. 92. 225-232.
  15. Gaskell P.H., Lau A.K. C. Curvature-compensated for problem involving fluid flow // Computational Methods in Applied Mechanical Engineering. 1979. 9. 153-164.
  16. Varonos A., Bergeles G. Development and assessment of a variable-order non-oscillatory scheme for convection term discretization // International Journal for Numerical Methods in Fluids. 1998. 26, N 1. 1-16.
  17. Song B., Liu G.B., Kam K.Y., Amano R.S. On a higher-order bounded discretization schemes // International Journal for Numerical Methods in Fluids. 2000. 32. 881-897.
  18. Управление обтеканием тел с вихревыми ячейками в приложении к летательным аппаратам интегральной компоновки (численное и физическое моделирование) / Под ред. А.В. Еримишина и С.А. Исаева. М., СПб, 2001.
  19. Gaskell P.H., Gurcan F., Savage M.D., Thompson H.M. Stokes flow in a double-lid-driven cavity with free surface side-walls //Proceedings of the Institute of Mechanics Engineering Science. Part C. 1998. 212, N 5. 387-403.
  20. Chorin A.J. Numerical solution of Navier-Stokes equations // Mathematical Computations. 1968. 22. 745-762.
  21. Белоцерковский О.М. Численное моделирование в механике сплошных сред. М.: Физматлит, 1994.
  22. Ghia U., Ghia K.N., Shin C.T. High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method // Journal of Computational Physics. 1982. 48, N 2. 387-411.
  23. Babu V., Korpela S.A. Numerical solution of the incompressible three-dimensional Navier-Stokes equations // Computers and Fluids. 1994. 23, N 5. 675-691.
  24. Sheu T.W. H., Tsai S.F. Flow topology in a steady three-dimensional lid-driven cavity // Computers and Fluids. 2002. 31. 911-934.