DOI: https://doi.org/10.26089/NumMet.v23r311

Численное решение эллиптической задачи с несколькими интерфейсами

Авторы

  • В. П. Шапеев
  • Л. С. Брындин
  • В. А. Беляев

Ключевые слова:

эллиптическая задача с интерфейсами
разрыв коэффициента
разрыв решения
уравнение Пуассона
метод коллокации и наименьших квадратов
предобуславливание
распараллеливание с помощью OpenMP
подпространства Крылова
многосеточный комплекс

Аннотация

Разработан алгоритм высокоточного численного решения эллиптического уравнения второго порядка при наличии в области нескольких интерфейсов, в том числе пересекающихся и невыпуклых. Для аппроксимации задачи в окрестности интерфейсов используются нерегулярные ячейки (н-ячейки), отсекаемые ими от регулярных ячеек прямоугольной сетки, и законтурные части этих ячеек. Для построения приближенного решения предложено: 1) выписывать дополнительные условия согласования в н-ячейках на интерфейсах, увеличивая количество согласуемых ячеек вблизи интерфейсов; 2) уменьшать общую часть интерфейса, заключенную в соседних ячейках и используемую для записи условий. Для решения краевой задачи Дирихле реализован hp-вариант метода коллокации и наименьших квадратов (hp-МКНК) в сочетании с современными алгоритмами ускорения итерационного процесса: предобуславливание; распараллеливание с помощью OpenMP; ускорение, основанное на подпространствах Крылова; многосеточный алгоритм. При решении различных тестовых задач исследованы сходимость hp-МКНК и обусловленность возникающих переопределенных систем линейных алгебраических уравнений (СЛАУ). Проведено сравнение результатов, полученных МКНК, с результатами других авторов, использовавших метод MIB (англ. matched interface and boundary).


Загрузки

Опубликован

2022-07-15

Выпуск

Раздел

Методы и алгоритмы вычислительной математики и их приложения

Авторы

В. П. Шапеев

Институт теоретической и прикладной механики имени С.А. Христиановича СО РАН (ИТПМ СО РАН)
ул. Институтская, 4/1, 630090, Новосибирск
• главный научный сотрудник

Л. С. Брындин

Институт теоретической и прикладной механики имени С.А. Христиановича СО РАН (ИТПМ СО РАН)
ул. Институтская, 4/1, 630090, Новосибирск
• младший научный сотрудник

В. А. Беляев

Институт теоретической и прикладной механики имени С.А. Христиановича СО РАН (ИТПМ СО РАН)
ул. Институтская, 4/1, 630090, Новосибирск
• младший научный сотрудник


Библиографические ссылки

  1. O. A. Oleinik, “Equations of Elliptic and Parabolic Type with Discontinuous Coefficients,” Usp. Mat. Nauk 14 (5), 164-166 (1959).
    http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=rm&paperid=9165&option_lang=eng . Cited June 30, 2022.
  2. V. I. Isaev, A. N. Cherepanov, and V. P. Shapeev, “Numerical Study of Heat Modes of Laser Welding of Dissimilar Metals with an Intermediate Insert,” Int. J. Heat Mass Transf. 99, 711-720 (2016).
    doi 10.1016/j.ijheatmasstransfer.2016.04.019.
  3. Q. Feng, B. Han, and P. Minev, “Sixth Order Compact Finite Difference Schemes for Poisson Interface Problems with Singular Sources,” Comput. Math. Appl. 99, 2-25 (2021).
    doi 10.1016/j.camwa.2021.07.020.
  4. R. C. Harris, A. H. Boschitsch, and M. O. Fenley, “Numerical Difficulties Computing Electrostatic Potentials Near Interfaces with the Poisson-Boltzmann Equation,” J. Chem. Theory Comput. 13 (8), 3945-3951 (2017).
    doi 10.1021/acs.jctc.7b00487.
  5. A. A. Samarskii, The Theory of Difference Schemes (Nauka, Moscow, 1977; Marcel Dekker, New York, 2001).
  6. Y. A. Sabawi, Adaptive Discontinuous Galerkin Methods for Interface Problems , PhD Thesis (University of Leicester, Leicester, 2016).
  7. A. Cangiani, E. H. Georgoulis, and Y. A. Sabawi, “Adaptive Discontinuous Galerkin Methods for Elliptic Interface Problems,” Math. Comp. 87, 2675-2707 (2018).
    doi 10.1090/mcom/3322.
  8. L. Zhilin, “Fast Iterative Algorithm for Elliptic Interface Problems,” SIAM J. Numer. Anal. 35 (1), 230-254 (1998).
    doi 10.1137/S0036142995291329.
  9. C.-N. Tzou and S. N. Stechmann, “Simple Second-Order Finite Differences for Elliptic PDEs with Discontinuous Coefficients and Interfaces,” Commun. App. Math. Comp. Sci. 14 (2), 121-147 (2019).
    doi 10.2140/camcos.2019.14.121.
  10. D. Bochkov and F. Gibou, “Solving Elliptic Interface Problems with Jump Conditions on Cartesian Grids,” J. Comput. Phys. 407 (2020).
    doi 10.1016/j.jcp.2020.109269.
  11. K. Xia, M. Zhan, and G.-W. Wei, “MIB Method for Elliptic Equations with Multi-Material Interfaces,” J. Comput. Phys. 230 (12), 4588-4615 (2011).
    doi 10.1016/j.jcp.2011.02.037.
  12. Y. Chen, S. Hou, and X. Zhang, “A Bilinear Partially Penalized Immersed Finite Element Method for Elliptic Interface Problems with Multi-Domain and Triple-Junction Points,” Results Appl. Math. 8 (2020).
    doi 10.1016/j.rinam.2020.100100.
  13. V. P. Shapeev, V. A. Belyaev, and L. S. Bryndin, “High Accuracy Numerical Solution of Elliptic Equations with Discontinuous Coefficients,” Vestn. Yuzhn. Ural. Gos. Univ. Ser. Mat. Model. Programm. 14 (4), 88-101 (2021).
    doi 10.14529/mmp210407.
  14. V. A. Belyaev, “On the Effective Implementation and Capabilities of the Least-Squares Collocation Method for Solving Second-Order Elliptic Equations,” Vychisl. Metody Program. 22 (3), 211-229 (2021).
    doi 10.26089/NumMet.v22r313.
  15. B. P. Kolobov, Zh. L. Korobitsyna, A. V. Plyasunova, and A. G. Sleptsov, “A Collocation-Grid Method on Moving Grids for the Numerical Modelling of Boundary Layers,” Zh. Vychisl. Mat. Mat. Fiz. 30 (4), 521-534 (1990) [USSR Comput. Math. Math. Phys. 30 (2), 120-129 (1990)].
    doi 10.1016/0041-5553(90)90087-9.
    http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=zvmmf&pap
  16. V. A. Belyaev, L. S. Bryndin, S. K. Golushko, et al., “H-, P-, and HP-Versions of the Least-Squares Collocation Method for Solving Boundary Value Problems for Biharmonic Equation in Irregular Domains and Their Applications,” Zh. Vychisl. Mat. Mat. Fiz. 62 (4), 531-552 (2022) [Comput. Math. Math. Phys. 62 (4), 517-537 (2022).
    doi 10.1134/S0965542522040029].
  17. E. V. Vorozhtsov and V. P. Shapeev, “On the Efficiency of Combining Different Methods for Acceleration of Iterations at the Solution of PDEs by the Method of Collocations and Least Residuals,” Appl. Math. Comput. 363 (2019).
    doi 10.1016/j.amc.2019.124644.
  18. M. Ramšak and L. Škerget, “A Subdomain Boundary Element Method for High-Reynolds Laminar Flow Using Stream Function-Vorticity Formulation,” Int. J. Numer. Meth. Fluids 46 (8), 815-847 (2004).
    doi 10.1002/fld.776.
  19. J. M. Ortega, Introduction to Parallel and Vector Solution of Linear Systems (Plenum, New York, 1988; Mir, Moscow, 1991). doi10.1007/978-1-4899-2112-3.
  20. Y. Saad, Numerical Methods for Large Eigenvalue Problems (SIAM, Philadelphia, 2011).
    doi 10.1137/1.9781611970739.
  21. V. A. Belyaev, “Solving a Poisson Equation with Singularities by the Least-Squares Collocation Method,” Sib. Zh. Vychisl. Mat. 23 (3), 249-263 (2020).
    doi 10.15372/SJNM20200302 [Numer. Anal. Appl. 13 (3), 207-218 (2020).
    doi 10.1134/S1995423920030027].
  22. R. P. Fedorenko, Introduction to Computational Physics (Moscow Inst. Phys. Technol., Moscow, 1994) [in Russian].
  23. V. I. Isaev and V. P. Shapeev, “High-Accuracy Versions of the Collocations and Least Squares Method for the Numerical Solution of the Navier-Stokes Equations,” Zh. Vychisl. Mat. Mat. Fiz. 50 (10), 1758-1770 (2010) [Comput. Math. Math. Phys. 50 (10), 1670-1681 (2010).
    doi 10.1134/S0965542510100040].
  24. V. I. Isaev, V. P. Shapeev, and S. A. Eremin, “An Investigation of the Collocation and the Least Squares Method for Solution of Boundary Value Problems for the Navier-Stokes and Poisson Equations,” Vychisl. Tekhnol. 12 (3), 53-70 (2007).
    https://www.elibrary.ru/item.asp?id=12878946 . Cited June 30, 2022.
  25. V. P. Shapeev and A. V. Shapeev, “Solutions of the Elliptic Problems with Singularities Using Finite Difference Schemes with High Order of Approximation,” Vychisl. Tekhnol. 11 (special issue, part 2), 84-91 (2006).
    https://www.elibrary.ru/item.asp?id=15281780 . Cited June 30, 2022.
  26. V. A. Belyaev and V. P. Shapeev, “Solving the Dirichlet Problem for the Poisson Equation by the Least Squares Collocation Method with Given Discrete Boundary Domain,” Vychisl. Tekhnol. 23 (3), 15-30 (2018).
    https://elibrary.ru/item.asp?id=35095975 . Cited June 30, 2022.
  27. B. V. Semisalov, L. S. Bryndin, V. A. Belyaev, and A. G. Gorynin, “Numerical Analysis of Steady Polymer Fluid Flows and Its Verification,” in Proc. XXI All-Russian Conf. of Young Scientists on Mathematical Modeling and Information Technology, Novosibirsk, Russia, December 7-11, 2020 (Center Inform. Comput. Tekhnol., Novosibirsk, 2020), pp. 18-19.
    https://elibrary.ru/item.asp?id=44687787 . Cited June 30, 2022.
  28. H. Guo, Z. Zhang, and Q. Zou, “A C^0 Linear Finite Element Method for Biharmonic Problems,” J. Sci. Comput. 74, 1397-1422 (2018).
    doi 10.1007/s10915-017-0501-0.
  29. M. Ben-Artzi, I. Chorev, J.-P. Croisille, and D. Fishelov, “A Compact Difference Scheme for the Biharmonic Equation in Planar Irregular Domains,” SIAM J. Numer. Anal. 47 (4), 3087-3108 (2009).
    doi 10.1137/080718784.
  30. V. V. Belyaev and V. P. Shapeev, “The Collocation and Least Squares Method on Adaptive Grids in a Domain with a Curvilinear Boundary,” Vychisl. Tekhnol. 5 (4), 13-21 (2000).
    https://www.elibrary.ru/item.asp?id=13026317 . Cited June 30, 2022.
  31. V. P. Shapeev and E. V. Vorozhtsov, “CAS Application to the Construction of the Collocations and Least Residuals Method for the Solution of the Burgers and Korteweg-de Vries-Burgers Equations,” in Lecture Notes in Computer Science (Springer, Heidelberg, 2014), Vol. 8660, pp. 432-446.
    doi 10.1007/978-3-319-10515-4_31.