Численный метод решения нелокальных краевых задач для многомерного уравнения параболического типа
Авторы
-
З. В. Бештокова
Ключевые слова:
нелокальные краевые задачи
априорная оценка
уравнение параболического типа
разностные схемы
устойчивость и сходимость разностных схем
Аннотация
Работа посвящена нелокальным краевым задачам для многомерного уравнения параболического типа с переменными коэффициентами. Методом энергетических неравенств получены априорные оценки в дифференциальной и разностной трактовках для решений нелокальных краевых задач. Из полученных оценок следуют единственность и устойчивость решения каждой из рассмотренных задач по правой части и начальным данным, а также сходимость решения разностной задачи к решению исходной дифференциальной задачи в \(L_2\)-норме со скоростью \(O(|h|+\tau)\). Для каждой из рассмотренных задач построен алгоритм численного решения, роведены численные расчеты тестовых примеров.
Раздел
Методы и алгоритмы вычислительной математики и их приложения
Библиографические ссылки
- A. A. Samarskii and P. N. Vabishchevich, Numerical Methods for Solving Convection-Diffusion Problems (Editorial, Moscow, 2004) [in Russian].
- A. M. Nakhushev, Equations of Mathematical Biology (Vysshaya Shkola, Moscow, 1995) [in Russian].
- T. Carleman, “Sur la Théorie des Équations Intégrales et ses Applications,” in Actes Verh. Internat. Math. Kongr., Zürich, Switzerland, September 5-12, 1932 (Orel Füssli, Zürich, 1933), Vol. 1, pp. 138-151.
- J. R. Canon, “The Solution of the Heat Equation Subject to the Specification of Energy,” Quart. Appl. Math. 21 (2), 155-160 (1963).
doi 10.1090/qam/160437.
- L. I. Kamynin, “ A Boundary Value Problem in the Theory of Heat Conduction with a Nonclassical Boundary Condition,” Zh. Vychisl. Mat. Mat. Fiz. 4 (6), 1006-1024 (1964). [USSR Comput. Math. Math. Phys. 4 (6), 33-59 (1964)].
doi 10.1016/0041-5553(64)90080-1.
- A. F. Chudnovsky, “Some Corrections in the Formulation and Solution of Problems of Heat and Moisture Transfer in Soil,” Proc. Agrophysical Inst. Issue 23, 41-54 (1969).
- V. A. Steklov, Fundamental Problems in Mathematical Physics (Nauka, Moscow, 1983) [in Russian].
- A. A. Samarskii, “Some Problems in the Theory of Differential Equations,” Differ. Uravn. 16 (11), 1925-1935 (1980).
http://mi.mathnet.ru/de4116 . Cited May 30, 2022.
- A. I. Kozhanov, “On a Nonlocal Boundary Value Problem with Variable Coefficients for the Heat Equation and the Aller Equation,” Differ. Uravn. 40 (6), 763-774 (2004)[Differ. Equ. 40 (6), 815-826 (2004)].
http://mi.mathnet.ru/de11086 . Cited May 30, 2022.
- A. I. Kozhanov and L. S. Pulkina, “On the Solvability of Boundary Value Problems with a Nonlocal Boundary Condition of Integral Form for Multidimensional Hyperbolic Equations,” Differ. Uravn. 42 (9), 1166-1179 (2006)[Differ. Equ., 42 (9), 1233-1246 (2006).]
http://mi.mathnet.ru/de11554 . Cited May 30, 2022.
- L. S. Pulkina, “Solvability in L_2 of a Nonlocal Problem with Integral Conditions for a Hyperbolic Equation,” Differ. Uravn. 36 (2), 279-280 (2000)[Differ. Equ. 36 (2), 316-318 (2000)].
http://mi.mathnet.ru/de10101 . Cited May 30, 2022.
- O. Yu. Danilkina, “On One Nonlocal Problem for the Heat Equation with an Integral Condition,” Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki. 1 (14), 5-9 (2007).
- R. K. Tagiev and V. M. Gabibov, “Difference Approximation and Regularization of the Optimal Control Problem for a Parabolic Equation with an Integral Condition,” Vestn. Tomsk. Gos. Univ. Mat. Mekh. No 50, 30-44 (2017).
http://mi.mathnet.ru/vtgu616 . Cited May 30, 2022.
- E. A. Kritskaya and V. V. Smagin, “On the Weak Solvability of a Parabolic Variational Problem with an Integral Condition,” Vestn. Voronezh. State Univ. Ser. Phys. Math. No 1, 222-225 (2008).
http://www.vestnik.vsu.ru/pdf/physmath/2008/01/kritzkaya.pdf . Cited May 30, 2022.
- L. S. Pul’kina and A. E. Savenkova, “A Problem with a Nonlocal, with Respect to Time, Condition for Multidimensional Hyperbolic Equations,” Izv. Vyssh. Uchebn. Zaved., Mat., No. 10, 41-52 (2016) [Russ. Math. 60 (10), 33-43 (2016)].
doi 10.3103/S1066369X16100066.
- N. S. Popov, “On the Solvability of Boundary Value Problems for Multidimensional Parabolic Equations of Fourth Order with Nonlocal Boundary Condition of Integral Form,” Math. Notes of NEFU 23 (1), 79-86 (2016).
http://www.mathnet.ru/links/eb7d3c7cb0c7de0a204012cbff688616/svfu17.pdf . Cited May 30, 2022.
- A. K. Urinov and Sh. T. Nishonova, “A Problem with Integral Conditions for an Elliptic-Parabolic Equation,” Mat. Zametki 102 (1), 81-95 (2017) [Math. Notes 102 (1), 68-80 (2017)].
doi 10.4213/mzm10674.
- D. H. Q. Nam, D. Baleanu, N. H. Luc, and N. H. Can, “On a Kirchhoff Diffusion Equation with Integral Condition,” Adv. Differ. Equ. 2020, No 1 (2020).
doi 10.1186/s13662-020-03077-y.
- V. B. Dmitriev, “Boundary Value Problem with a Nonlocal Boundary Condition of Integral Form for a Multidimensional Equation of IV Order,” Vestnik SamU. Estestvenno-Nauchnaya Ser. 27 (1), 15-28 (2021).
doi 10.18287/2541-7525-2021-27-1-15-28.
- O. A. Ladyzhenskaya, Boundary Value Problems of Mathematical Physics (Nauka, Moscow, 1973; Springer, New York, 1985).
- A. A. Samarskii, Theory of Difference Schemes (Nauka, Moscow, 1983; Marcel Dekker, New York, 2001).
- V. B. Andreev, “On the Convergence of Difference Schemes Approximating the Second and Third Boundary Value Problems for Elliptic Equations,” Zh. Vychisl. Mat. Mat. Fiz. 8 (6), 1218-1231 (1968).[USSR Comput. Math. Math. Phys. 8 (6), 44-62 (1968)].
doi 10.1016/0041-5553(68)90092-X.
- A. A. Samarsky and A. V. Gulin, Stability of Difference Schemes (Nauka, Moscow, 1973) [in Russian].
- D. K. Faddeev and V. N. Faddeeva, Computational Methods of Linear Algebra (Fizmatgiz, Moscow, 1960; Freeman, San Francisco, 1963).
- A. A. Abramov and V. B. Andreev, “On the Application of the Method of Successive Substitution to the Determination of Periodic Solutions of Differential and Difference Equations,”
http://mi.mathnet.ru/zvmmf7856].Zh. Vychisl. Mat. Mat. Fiz. 3 (2), 377-381 (1963).[USSR Comput. Math. Math. Phys. 3 (2), 498-504 (1963)].
doi 10.1016/0041-5553(63)90034-X.
- A. A. Samarskii and E. S. Nikolaev, Numerical Methods for Grid Equations (Nauka, Moscow, 1978; Birkhäuser, Basel, 1989).
- A. F. Voevodin and S. M. Shugrin, Numerical Methods for One-Dimensional Systems (Nauka, Novosibirsk, 1981) [in Russian].