DOI: https://doi.org/10.26089/NumMet.v23r208

Два численных метода решения линейного интегро-дифференциального уравнения Фредгольма со слабо сингулярным ядром

Авторы

  • Бутейна Таир
  • Сами Сегни
  • Хамза Гибби
  • Мурад Гият

Ключевые слова:

сингулярные интегральные уравнения
интегро-дифференциальное уравнение
уравнения Фредгольма

Аннотация

Мы сравниваем поведение ошибок двух методов, используемых для нахождения численного решения линейного интегро-дифференциального уравнения Фредгольма со слабо сингулярным ядром в банаховом пространстве \(C^1[a,b]\). Мы строим приближенное решение на основе модифицированного кубического метода коллокации b-сплайнов. Рассматривается также другая оценка точного решения, построенная с применением численного процесса интегрирования по произведению и квадратурам. Два предложенных метода приводят к решению линейной алгебраической системы. Доказана устойчивость и сходимость кубической b-сплайновой оллокации. Мы тестируем эти методы на конкретном примере и сравниваем численные результаты с точным решением для того чтобы продемонстрировать эффективность и простоту модифицированного метода коллокации.


Загрузки

Опубликован

2022-06-06

Выпуск

Раздел

Методы и алгоритмы вычислительной математики и их приложения

Авторы

Бутейна Таир

Университет 08 Мая 1945
факультет математики, лаборатория прикладной математики и моделирования
Гельма, Алжир
• ведущий научный сотрудник

Сами Сегни

Университет 08 Мая 1945
факультет математики, лаборатория прикладной математики и моделирования
Гельма, Алжир
• ведущий научный сотрудник

Хамза Гибби

Университет 08 Мая 1945
факультет математики, лаборатория прикладной математики и моделирования
Гельма, Алжир
• профессор, ведущий научный сотрудник

Мурад Гият

Университет 08 Мая 1945
факультет математики, лаборатория прикладной математики и моделирования
Гельма, Алжир
• ведущий научный сотрудник


Библиографические ссылки

  1. D. Adnan Maturi, “The Adomian Decomposition Method for Solving Heat Transfer Lighthill Singular Integral Equation Using Maple,” Int. J. GEOMATE 22 (89), 16-23 (2022).
    https://geomatejournal.com/geomate/article/view/3140 . Cited May 10, 2022.
  2. I. V. Alexandrova, A. A. Ivanov, and D. V. Alexandrov, “Analytical Solution of Integro-Differential Equations Describing the Process of Intense Boiling of a Superheated Liquid,” Math. Methods. Appl. Sci. 13 (2021).
    doi 10.1002/mma.7560.
  3. P. Agarwal, U. Baltaeva, and Y. Alikulov, “Solvability of the Boundary-Value Problem for a Linear Loaded Integro-Differential Equation in an Infinite Three-Dimensional Domain,” Chaos Solit. Fractals
  4. A. A. Minakov and C. Schick, “Integro-Differential Equation for the Non-Equilibrium Thermal Response of Glass-Forming Materials: Analytical Solutions,” Symmetry. 13 (2021).
    doi 10.3390/sym13020256.
  5. L. Zhang, L. Xu, and T. Yin, “An Accurate Hyper-Singular Boundary Integral Equation Method for Dynamic Poroelasticity in Two Dimensions,” (2020).
    https://arxiv.org/pdf/2008.07115.pdf . Cited May 10, 2022.
  6. B. Gürbüz, “A Numerical Scheme for the Solution of NeutralIntegro-Differential Equations Including Variable Delay,” Math. Sci. 16, 13-21 (2022).
    doi 10.1007/s40096-021-00388-3.
  7. H. Mesgarani and P. Parmour, “Application of Numerical Solution of Linear Fredholm Integral Equation of the First Kind for Image Restoration,” Math. Sci. (2022).
    doi 10.1007/s40096-022-00456-2.
  8. M. Ghiat and H. Guebbai, “Analytical and Numerical Study for an Integro-Differential Nonlinear Volterra Equation with Weakly Singular Kernel,” Comput. Appl. Math. 37 (4), 4661-4974 (2018).
    doi 10.1007/s40314-018-0597-3.
  9. M. Ghiat, H. Guebbai, M. Kurulay, and S. Segni, “On the Weakly Singular Integro-Differential Nonlinear Volterra Equation Depending in Acceleration Term,” Comput. Appl. Math. 39 (2020).
    doi 10.1007/s40314-020-01235-2.
  10. S. Segni, M. Ghiat, and H. Guebbai, “New Approximation Method for Volterra Nonlinear Integro-Differential Equation,” Asian-Eur. J. Math. 12 (2019).
    doi 10.1142/S1793557119500165.
  11. S. Touati, M.-Z. Aissaoui, S. Lemita, and H. Guebbai, “Investigation Approach for a Nonlinear Singular Fredholm Integro-Differential Equation,” Bol. Soc. Paran. Mat. 40 (2022).
    doi 10.5269/bspm.46898.
  12. H. Guebbai and L. Grammont, “A New Degenerate Kernel Method for a Weakly Singular Integral Equation,” Appl. Math. Comput. 230, 414-427 (2014).
    doi 10.1016/j.amc.2013.12.102.
  13. S. Touati, S. Lemita, M. Ghiat, and M.-Z. Aissaoui, “Solving a Nonlinear Volterra-Fredholm Integro-Differential Equation with Weakly Singular Kernels,” Fasc. Math. 62 (1), 155-168 (2019).
    http://fasciculi-mathematici.put.poznan.pl/. Cited May 10, 2022.
  14. A. Jafarian, R. Rezaei, and A. K. Golmankhaneh, “On Solving Fractional Higher-Order Equations via Artificial Neural Networks,” Iran. J. Sci. Technol. Trans. A: Sci. (2022).
    doi 10.1007/s40995-021-01254-6.
  15. M. Bohner, O. Tunç, and C. Tunç, “Qualitative Analysis of Caputo Fractional Integro-Differential Equations with Constant Delays,” Comp. Appl. Math. 40 (2021).
    doi 10.1007/s40314-021-01595-3.
  16. S. Noeiaghdam, S. Micula, and J. J. Nieto, “A Novel Technique to Control the Accuracy of a Nonlinear Fractional Order Model of COVID-19: Application of the CESTAC Method and the CADNA Library,” Mathematics 9 (2021).
    doi 10.3390/math9121321.
  17. K. Atkinson and W. Han, Theoretical Numerical Analysis: A Functional Analysis Framework (Springer, New York, 2001).
  18. P. Assari, “Solving Weakly Singular Integral Equations Utilizing the Meshless Local Discrete Collocation Technique,” Alex. Eng. J. 57 (4), 2497-2507 (2018).
    doi 10.1016/j.aej.2017.09.015.
  19. A. Mennouni, “A Projection Method for Solving Cauchy Singular Integro-Differential Equations,” Appl. Math. Lett. 25 (6), 986-989 (2012).
    https://doi.org/10.1016/j.aml.2011.11.012 . Cited May 10, 2022.
  20. H. Guebbai, “Regularization and Fourier Series for Fredholm Integral Equations of the Second Kind with a Weakly Singular Kernel,” Numer. Funct. Anal. Optim. 39 (2018).
    doi 10.1080/01630563.2017.1364753.
  21. B. Tair, H. Guebbai, S. Segni, and M. Ghiat, “Solving Linear Fredholm Integro-Differential Equation by Nystöm Method,” J. Appl. Math. Comput. Mech. 20 (3), 53-64 (2021).
    doi 10.17512/jamcm.2021.3.05.
  22. B. Tair, H. Guebbai, S. Segni, and M. Ghiat, “An Approximation Solution of Linear Fredholm Integro-Differential Equation Using Collocation and Kantorovich Methods,” J. Appl. Math. Comput. (2021).
    doi 10.1007/s12190-021-01654-2.
  23. M. K. Kadalbajoo and P. Arora, “B-Spline Collocation Method for the Singular-Perturbation Problem Using Artificial Viscosity,” Comput. Math. Appl. 57 (4), 650-663 (2009).
    doi 10.1016/j.camwa.2008.09.008.
  24. R. Firouzdor, A. Heidarnejad Khoob, and Z. Mollaramezani, “Numerical Solution of Functional Integral Equations by Using B-Splines,” J. Linear Topol. Algebra 1 (1), 45-53 (2012).
    https://oaji.net/articles/2014/1011-1405094276.pdf . Cited May 10, 2022.
  25. M. Gholamian, J. Saberi-Nadjafi, and A. R. Soheili, “Cubic B-Splines Collocation Method for Solving a Partial Integro-Differential Equation with a Weakly Singular Kernel,” Comput. Methods Differ. Equ. 7 (3), 497-510 (2019).
    https://www.sid.ir/en/journal/ViewPaper.aspx?id=695385 . Cited May 10, 2022.
  26. J. Rashidinia, E. Babolian, and Z. Mahmood, “Spline Collocation for Fredholm Integral Equations,” Math. Sci. 5 (2), 147-158 (2011).
    https://www.sid.ir/en/journal/ViewPaper.aspx?id=250639 . Cited May 10, 2022.
  27. R. A. Adams and J. J. F. Fournier, Sobolev Spaces (Academic Press, Amsterdam, 2003).
  28. A. Bashan, N. M. Yagmurlu, Y. Ucar, and A. Esen, “An Effective Approach to Numerical Solutions for the Schrödinger Equation Via Modified Cubic B-Spline Differential Quadrature Method,” Chaos Solit. Fractals 100, 45-56 (2017).
    doi 10.1016/j.chaos.2017.04.038.
  29. N. Ebrahimi and J. Rashidinia, “Spline Collocation for Fredholm and Volterra Integro-Differential Equations,” Int. J. Math. Model. Comput. 4 (3), 289-298 (2014).
    https://www.sid.ir/en/journal/ViewPaper.aspx?id=412805 . Cited May 10, 2022.
  30. Kh. Maleknejad and Y. Rostami, “B-Spline Method for Solving Fredholm Integral Equations of the First Kind,” Int. J. Ind. Math. 11 (1), 63-70 (2019).
    https://www.sid.ir/en/journal/ViewPaper.aspx?id=715404 . Cited May 10, 2022.
  31. G. Birkhoff and C. de Boor, “Error Bounds for Spline Interpolation,” J. Math. Mech. 13 (5), 827-835 (1964).
    http://www.jstor.org/stable/24901235 . Cited May 10, 2022.
  32. J. H. Ahlberg, E. N. Nilson, and J. L. Walsh, The Theory of Splines and Their Applications (Academic Press, New York, 1967).
  33. E. V. Shikin and I. P. Alexander, Handbook on Splines for the User (CRC Press, Boca Raton, 1995).
  34. W. J. Kammerer and G. W. Reddien, “Local Convergence of Smooth Cubic Spline Interpolates,” SIAM J. Numer. Anal. 9 (4), 687-694 (1972).
    doi 10.1137/0709057.
  35. P. M. Prenter, Splines and Variational Methods (Wiley, New York, 1989).
  36. T. R. Lucas, “Error Bounds for Interpolating Cubic Splines under Various End Conditions,” SIAM J. Numer. Anal. 11 (3), 569-584 (1974).
    doi 10.1137/0711049.
  37. Yu. S. Volkov, “Convergence Analysis of an Interpolation Process for the Derivatives of a Complete Spline,” J. Math. Sci. 187 (1), 101-114 (2012).
    doi 10.1007/s10958-012-1053-3.
  38. G. D. Andria, G. D. Byrne, and C. A. Hall, “Convergence of Cubic Spline Interpolants of Functions Possessing Discontinuities,” J. Approx. Theory 8 (2), 150-159 (1973).
    doi 10.1016/0021-9045(73)90024-5.
  39. K. E. Atkinson, “On the Order of Convergence of Natural Cubic Spline Interpolation,” SIAM J. Numer. Anal, 5 (1), 89-101 (1968).
    doi 10.1137/0705007.
  40. Yu. S. Volkov, “Obtaining a Banded System of Equations in Complete Spline Interpolation Problem Via B-Spline Basis,” Cent. Eur. J. Math. 10 (1), 352-356 (2012).
    doi 10.2478/s11533-011-0104-1.
  41. L. L. Schumaker, Spline Functions: Basic Theory (Wiley, New York, 1981).
  42. M. Ahues, A. Largillier, and B. V. Limaye, Spectral Computations for Bounded Operators (CRC Press, Boca Raton, 2001).
  43. S. M. Zemyan, The Classical Theory of Integral Equations (Birkhäuser/Springer, New York, 2012).