Многосеточные методы с косо-Эрмитовыми сглаживателями для задач конвекции-диффузии с преобладающей конвекцией
Авторы
-
Т. С. Мартынова
-
Г. В. Муратова
-
И. Н. Шабас
-
В. В. Бавин
Ключевые слова:
уравнение конвекции–диффузии
многосеточные методы
сглаживающая процедура
модифицированное эрмитово и косоэрмитово расщепление матрицы
локальный Фурье-анализ
сходимость
Аннотация
Уравнение конвекции–диффузии с преобладающей конвекцией рассматривается на равномерной сетке центрально-разностной схемы. Многосеточный метод используется длярешения сильно несимметричных систем линейных алгебраических уравнений с положительно определенными матрицами коэффициентов. Двухшаговые косоэрмитовы итерационные методы впервые используются в качестве сглаживающей процедуры. Демонстрируется, что надлежащий выбор сглаживателей позволяет улучшить сходимость многосеточного метода. Локальный фурье-анализ и численные эксперименты приводят к выводу об устойчивости сглаживателей по отношению к изменению числа Пекле.
Раздел
Методы и алгоритмы вычислительной математики и их приложения
Библиографические ссылки
- G. Birkhoff, E. C. Gartland Jr., and R. E. Lynch, “Difference Methods for Solving Convection-Diffusion Equations,” Comput. Math. Appl. 19 (11), 147-160 (1990).
doi 10.1016/0898-1221(90)90158-G.
- P. N. Vabishchevich and A. A. Samarskii, “Finite Difference Schemes for Convection-Diffusion Problems on Irregular Meshes,” Comput. Math. Math. Phys. 40 (5), 692-704 (2000).
- J. Zhang, “Preconditioned Iterative Methods and Finite Difference Schemes for Convection-Diffusion,” Appl. Math. Comput. 109 (1), 11-30 (2000).
doi 10.1016/S0096-3003(99)00013-2.
- T. Ma, L. Zhang, F. Cao, and Y. Ge, “A Special Multigrid Strategy on Non-Uniform Grids for Solving 3D Convection-Diffusion Problems with Boundary/Interior Layers,” Symmetry, 13 (7), (2021).
doi 10.3390/sym13071123.
- V. V. Voevodin and Yu. A. Kuznetsov, Matrices and Computations (Nauka, Moscow, 1984) [in Russian].
- L. A. Krukier, “Implicit Difference Schemes and an Iteration Method for Their Solution for a Class of Systems of Quasilinear Equations,” Sov. Math. 23 (7), 43-51 (1979).
- L. A. Krukier, “Convergence Acceleration of Triangular Iterative Methods Based on the Skew-Symmetric Part of the Matrix,” Appl. Numer. Math., 30 (2-3), 281-290 (1999).
doi 10.1016/S0168-9274(98)00116-0.
- Z.-Z. Bai, L. A. Krukier, and T. S. Martynova, “Two-Step Iterative Methods for Solving the Stationary Convection-Diffusion Equation with a Small Parameter at the Highest Derivative on a Uniform Grid,” Comput. Math. Math. Phys. 46 (2), 282-293 (2006).
doi 10.1134/S0965542506020102.
- L. A. Krukier, T. S. Martynova, and Z.-Z. Bai, “Product-Type Skew-Hermitian Triangular Splitting Iteration Methods for Strongly Non-Hermitian Positive Definite Linear Systems,” J. Comput. Appl. Math. 232 (1), 3-16, (2009).
doi 10.1016/j.cam.2008.10.033.
- G. Muratova and E. Andreeva, “Multigrid Method for Fluid Dynamics Problems,” J. Comput. Math. 32 (3), 233-247 (2014).
doi 10.4208/JCM.1403-CR11.
- R. P. Fedorenko, “A Relaxation Method for Solving Elliptic Difference Equations,” USSR Comput. Math. Math. Phys. 1 (4), 1092-1096 (1962).
doi 10.1016/0041-5553(62)90031-9.
- A. Brandt, “Multi-Level Adaptive Solutions to Boundary-Value Problems,” Math. Comput. 31, 333-390 (1977).
doi 10.1090/S0025-5718-1977-0431719-X
- U. Trottenberg, C. W. Oosterlee, and A. Schüller, Multigrid (Academic Press, London, 2001).
- P. Wesseling and C. W. Oosterlee, “Geometric Multigrid with Applications to Computational Fluid Dynamics,” J. Comput. Appl. Math. 128 (1-2), 311-334 (2001).
doi 10.1016/S0377-0427(00)00517-3.
- V. T. Zhukov, N. D. Novikova, and O. B. Feodoritova, “Multigrid Method for Elliptic Equations with Anisotropic Discontinuous Coefficients,” Comput. Math. Math. Phys. 55 (7), 1150-1163 (2015).
doi 10.1134/S0965542515070131.
- Y. Pan and P.-O. Persson, “Agglomeration-Based Geometric Multigrid Solvers for Compact Discontinuous Galerkin Discretizations on Unstructured Meshes,” J. Comput. Phys. 449 (2021).
doi 10.1016/j.jcp.2021.110775.
- S. Dargaville, A. G. Buchan, R. P. Smedley-Stevenson, et al., “A Comparison of Element Agglomeration Algorithms for Unstructured Geometric Multigrid,” J. Comput. Appl. Math. 390 (2021).
doi 10.1016/j.cam.2020.113379.
- W. Briggs, V. E. Henson, and S. F. McCormick, A Multigrid Tutorial (SIAM Press, Philadelphia, 2000).
- K. Stüben, “Algebraic Multigrid (AMG): Experiences and Comparisons,” Appl. Math. Comput. 13 (3-4), 419-451 (1983).
doi 10.1016/0096-3003(83)90023-1.
- R. D. Falgout, “An Introduction to Algebraic Multigrid,” Comput. Sci. Eng. 8 (6), 24-33 (2006).
doi 10.1109/MCSE.2006.105.
- S. I. Martynenko, “Numerical Methods for Black Box Software,” Vychisl. Metody Program. 20, 147-169 (2019).
doi 10.26089/NumMet.v20r215.
- U. M. Yang, “Parallel Algebraic Multigrid Methods -- High Performance Preconditioners,” in Lecture Notes in Computational Science and Engineering (Springer, Heidelberg, 2006), Vol. 51, pp. 209-236.
doi 10.1007/3-540-31619-1_6.
- H. Sterck, U. M. Yang, and J. J. Heys, “Reducing Complexity in Parallel Algebraic Multigrid Preconditioners,” SIAM J. Matrix Anal. Appl. 27 (4), 1019-1039 (2006).
doi 10.1137/040615729.
- G. Muratova, T. Martynova, E. Andreeva, et al., “Numerical Solution of the Navier-Stokes Equations Using Multigrid Methods with HSS-Based and STS-Based Smoothers,” Symmetry 12 (2020).
doi 10.3390/sym12020233.
- Sh. Li and Zh. Huang, “Convergence Analysis of HSS-Multigrid Methods for Second-Order Nonselfadjoint Elliptic Problems,” BIT Numer. Math. 53 (4), 987-1012 (2013).
doi 10.1007/S10543-013-0433-5.
- S. Hamilton, M. Benzi, and E. Haber, “New Multigrid Smoothers for the Oseen Problems,” Numer. Linear Algebra Appl. 17 (2-3), 557-576 (2010).
doi 10.1002/nla.707.
- Y. He and S. P. MacLachlan, “Local Fourier Analysis of Block-Structured Multigrid Relaxation Schemes for the Stokes Equations,” Numer. Linear Algebra Appl. 25 (3), 1-28, (2018).
doi 10.1002/nla.2147.
- M. S. Darwish, T. Saad, and Z. Hamdan, “A High Scalability Parallel Algebraic Multigrid Solver,” in Proc. European Conf. on Computational Fluid Dynamics (ECCOMAS CFD 2006), Egmond aan Zee, Netherlands, September 5-8, 2006
doi 10.1007/978-3-540-92779-2_34.
- L. Wang and Z.-Z. Bai, “Skew-Hermitian Triangular Splitting Iteration Methods for Non-Hermitian Positive Definite Linear Systems of Strong Skew-Hermitian Parts,” BIT Numer. Math. 44, 363-386 (2004).
doi 10.1023/B: BITN.0000039428.54019.15.
- Y. Saad, Iterative Methods for Sparse Linear Systems (SIAM Press, Philadelphia, 2003).
- M. A. Botchev and L. A. Krukier, “Iteration Solution of Strongly Nonsymmetric Systems of Linear Algebraic Equations,” Comput. Math. Math. Phys. 37 (11), 1241-1251 (1997).
- L. A. Krukier, “Iterative Solution of Nonsymmetric Linear Equation Systems with Dominant Skew-Symmetric Part,” in Proc. Int. Summer School on Iterative Methods and Matrix Computation, Rostov-on-Don, Russia, June 2-9, 2002 (Rostov State Univ., Rostov-on-Don, 2002), pp. 205-259.
- J. H. Bramble, J. E. Pasciak, and J. C. Xu, “The Analysis of Multigrid Algorithms for Nonsymmetric and Indefinite Elliptic Problems,” Math. Comput. 51, 389-414 (1988).
doi 10.1090/S0025-5718-1988-0930228-6.
- Z.-H. Cao, “Convergence of Multigrid Methods for Nonsymmetric, Indefinite Problems,” Appl. Math. Comput. 28 (4), 269-288 (1988).
doi 10.1016/0096-3003(88)90076-8.
- J. Mandel, “Multigrid Convergence for Nonsymmetric, Indefinite Variational Problems and One Smoothing Step,” Appl. Math. Comput. 19 (1-4), 201-216 (1986).
doi 10.1016/0096-3003(86)90104-9.