О валидации решений задач линейного программирования на кластерных вычислительных системах
Авторы
-
Л. Б. Соколинский
-
И. М. Соколинская
Ключевые слова:
линейное программирование
валидатор решений
VaLiPro
параллельный алгоритм
кластерные вычислительные системы
параллельный BSF каркас
Аннотация
В статье представлен параллельный алгоритм валидации решений задач линейного программирования. Идея метода состоит в том, чтобы генерировать регулярный набор точек на гиперсфере малого радиуса, центрированной в точке тестируемого решения. Целевая функция вычисляется для каждой точки валидационного множества, принадлежащей допустимой области. Если все полученные значения меньше или равны значению целевой функции в точке, проверяемой как решение, то эта точка считается корректным решением. Параллельная реализация алгоритма VaLiPro выполнена на языке C++ с использованием параллельного BSF-каркаса, инкапсулирующего в проблемно-независимой части своего кода все аспекты, связанные с распараллеливанием программы на базе библиотеки MPI. Приводятся результаты масштабных вычислительных экспериментов на кластерной вычислительной системе, подтверждающие эффективность предложенного подхода.
Раздел
Параллельные программные средства и технологии
Библиографические ссылки
- H. V. Jagadish, J. Gehrke, A. Labrinidis, et al., “Big Data and Its Technical Challenges,” Commun. ACM 57 (7), 86-94 (2014). doi 10.1145/2611567.
- T. Hartung, “Making Big Sense from Big Data,” Frontiers in Big Data 1 (2018).
doi 10.3389/fdata.2018.00005
- I. M. Sokolinskaya and L. B. Sokolinsky, “On the Solution of Linear Programming Problem in the Era of Big Data,” in Proc. Int. Conf. on Parallel Computational Technologies, Kazan, Russia, April 3-7, 2017 (South Ural State Univ., Chelyabinsk, 2017), pp. 471-484.
- I. M. Sokolinskaya and L. B. Sokolinsky, “Study of the Scalability of the Apex Method for Solving Large-Scale Linear Programming Problems on Cluster Computing Systems,” in Proc. Int. Conf. on Russian Supercomputing Days, Moscow, Russia, September 21-22, 2020 (MAKS Press, Moscow, 2020), pp. 49-59.
- B. Mamalis and G. Pantziou, “Advances in the Parallelization of the Simplex Method,” in Lecture Notes in Computer Science (Springer, Cham, 2015), Vol. 9295, pp. 281-307.
doi 10.1007/978-3-319-24024-4_17
- Q. Huangfu and J. A. J. Hall, “Parallelizing the Dual Revised Simplex Method,” Math. Prog. Comp. 10 (1), 119-142 (2018). doi 10.1007/s12532-017-0130-5.
- P. Tar, B. Stagel, and I. Maros, “Parallel Search Paths for the Simplex Algorithm,” Cent. Eur. J. Oper. Res. 25 (4), 967-984 (2017).
doi 10.1007/s10100-016-0452-9
- L. Yang, T. Li, and J. Li, “Parallel Predictor-Corrector Interior-Point Algorithm of Structured Optimization Problems,” in Proc. 3rd Int. Conf. on Genetic and Evolutionary Computing, Gulin, China, October 14-17, 2009 (IEEE Press, New York, 2009), pp. 256-259.
doi 10.1109/WGEC.2009.68
- D. M. Gay, “Electronic Mail Distribution of Linear Programming Test Problems,” Mathematical Programming Society COAL Newsletter 13, 10-12 (1985).
- A. Charnes, W. M. Raike, J. D. Stutz, et al., “On Generation of Test Problems for Linear Programming Codes,” Commun. ACM 17 (10), 583-586 (1974). doi 10.1145/355620.361173.
- J. L. Arthur and J. O. Frendewey, “GENGUB: A Generator for Linear Programs with Generalized upper Bound Constraints,” Comput. Oper. Res. 20 (6), 565-573 (1993).
doi 10.1016/0305-0548(93)90112-V
- M. Dhiflaoui, S. Funke, C. Kwappik, et al., “Certifying and Repairing Solutions to Large LPs: How Good are LP-solvers?’’ in Proc. Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, Baltimore, USA, January 12—14, 2003 (SIAM Press, Philadelphia, 2003), pp. 255-256.
doi 10.5555/644108
- T. Koch, “The Final NETLIB-LP Results,” Oper. Res. Lett. 32 (2), 138-142 (2004).
doi 10.1016/S0167-6377(03)00094-4
- D. L. Applegate, W. Cook, S. Dash, et al., “Exact Solutions to Linear Programming Problems,” Oper. Res. Lett. 35 (6), 693-699 (2007).
doi 10.1016/j.orl.2006.12.010
- A. V. Panyukov and V. V. Gorbik, “Using Massively Parallel Computations for Absolutely Precise Solution of the Linear Programming Problems,” Avtom. Telemekh., No. 2, 73-88 (2012) [Autom. Rem. Contr. 73 (2), 276-290 (2012).
doi 10.1134/S0005117912020063]
- A. M. Gleixner, D. E. Steffy, and K. Wolter, “Iterative Refinement for Linear Programming,” INFORMS J. Comput. 28 (3), 449-464 (2016).
doi 10.1287/ijoc.2016.0692
- L. E. Blumenson, “A Derivation of n-Dimensional Spherical Coordinates,” Am. Math. Mon. 67 (1), 63-66 (1960).
doi 10.2307/2308932
- L. B. Sokolinsky, “BSF: A Parallel Computation Model for Scalability Estimation of Iterative Numerical Algorithms on Cluster Computing Systems,” J. Parallel Distrib. Comput. 149, 193-206 (2021). doi 10.1016/j.jpdc.2020.12.009.
- S. Sahni and G. Vairaktarakis, “The Master-Slave Paradigm in Parallel Computer and Industrial Settings,” J. Glob. Optim. 9 (3-4), 357-377 (1996).
doi 10.1007/BF00121679
- R. S. Bird, “Lectures on Constructive Functional Programming,” in Constructive Methods in Computing Science (Springer, Heidelberg, 1988), Vol. 55, pp. 151-217.
- L. B. Sokolinsky, Parallel Algorithmic Skeleton BSF , Certificate of RF Registration of Computer Program No. 2 020 661 344.Date of Registration: September 22, 2020.
- L. B. Sokolinsky, “BSF-Skeleton: A Template for Parallelization of Iterative Numerical Algorithms on Cluster Computing Systems,” MethodsX 8 (2019).
doi 10.1016/j.mex.2021.101437
- W. Gropp, “MPI 3 and Beyond: Why MPI is Successful and What Challenges It Faces,” in Lecture Notes in Computer Science (Springer, Heidelberg, 2012), Vol. 7490, pp. 1-9.doi 10.1007/978-3-642-33518-1_1.
- P. S. Kostenetskiy and A. Y. Safonov, “SUSU Supercomputer Resources,” in Proc. 10th Annual Int. Scientific Conf. on Parallel Computational Technologies (PCT 2016), Arkhangelsk, Russia, March 29-31, 2016 CEUR Workshop Proc. Vol. 1576, pp. 561-573 (2016).
http://ceur-ws.org/Vol-1576/119.pdf
- I. M. Sokolinskaya and L. B. Sokolinsky, “On Generator of Random Problems for Linear Programming on Cluster Computing Systems,” Vestn. Yuzhn. Ural. Gos. Univ. Ser. Vychisl. Mat. Inf. 10 (2), 38-52 (2021).
doi 10.14529/cmse210203