Явные схемы высоких порядков точности для задач молекулярной динамики
Авторы
-
Е.В. Ворожцов
-
С.П. Киселев
Ключевые слова:
молекулярная динамика
уравнения Гамильтона
симплектические разностные схемы
устойчивость
Аннотация
Рассмотрены явные симплектические разностные схемы Рунге–Кутты–Нистрема (RKN) с числом стадий от 1 до 5 для численного решения задач молекулярной динамики, описываемых системами с распадающимися гамильтонианами. Для числа стадий 2 и 3 параметры RKN-схем получены с помощью техники базисов Гребнера. Для числа стадий 4 и 5 новые схемы най дены с применением метода численной оптимизации Нелдера–Мида. В частности, для числа стадий 4 получены четыре новые схемы. Для числа стадий 5 получены три новые схемы в дополнение к четырем схемам, известным в литературе. Для каждого конкретного числа стадий найдена схема, являющаяся наилучшей с точки зрения минимума ведущего члена погрешности аппроксимации. Верификация схем осуществлена на задаче, имеющей точное решение. Показано, что симплектическая пятистадийная RKN-схема обеспечивает более точное сохранение баланса полной энергии системы частиц, чем схемы более низких порядков точности. Исследования устойчивости схем выполнены с помощью программного пакета Mathematica.
Раздел
Методы и алгоритмы вычислительной математики и их приложения
Библиографические ссылки
- S. P. Kiselev, E. V. Vorozhtsov, and V. M. Fomin, Foundations of Fluid Mechanics with Applications: Problem Solving Using Mathematica (Birkhäuser, Boston, 1999).}
- S. K. Godunov, S. P. Kiselev, I. M. Kulikov, and V. I. Mali, Modeling of Shockwave Processes in Elastic-plastic Materials at Different (Atomic, Meso and Thermodynamic) Structural Levels (Inst. Komp’yut. Issled., Moscow-Izhevsk, 2014) [in Russian].
- L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics , Vol. 1: Mechanics (Nauka, Moscow, 1973; Pergamon, Oxford, 1977).
- H. R. Lewis, D. C. Barnes, and K. J. Melendez, “The Liouville Theorem and Accurate Plasma Simulation,” J. Comput. Phys. 69 (2). 267-282 (1987).
- R. D. Ruth, “A Canonical Integration Technique,” IEEE Trans. Nucl. Sci. NS-30} (4), 2669-2671 (1983).
- M. Tuckerman and B. J. Berne, “Reversible Multiple Time Scale Molecular Dynamics,” J. Chem. Phys. 97 (3), 1990-2001 (1992).
- E. Forest and R. D. Ruth, “Fourth-Order Symplectic Integration,” Physica D 43 (1), 105-117 (1990).
- I. P. Omelyan, I. M. Mryglod, and R. Folk, “Optimized Verlet-like Algorithms for Molecular Dynamics Simulations,” Phys. Rev. E 65 (2002). doi 10.1103/PhysRevE.65.05670
- E. J. Nyström}, Über die numerische Integration von Differentialgleichungen (Acta Soc. Sci. Fenn., Helsingfors, 1925) [in German].
- L. Verlet, “Computer ’Experiments’ on Classical Fluids.I. Thermodynamical Properties of Lennard-Jones Molecules,” Phys. Rev. 159 (1), 98-103 (1967).
- Yu. B. Suris, “The Canonicity of Mappings Generated by Runge-Kutta Type Methods when Integrating the Systems ddot{x} =-partial U/partial x,” Zh. Vychisl. Mat. Mat. Fiz. 29 (2), 202-211 (1989)[USSR Comput. Math. Math. Phys. 29 (1), 138-144 (1989)].}
- V. N. Sofronov and V. E. Shemarulin, “Classification of Explicit Three-Stage Symplectic Difference Schemes for the Numerical Solution of Natural Hamiltonian Systems: A Comparative Study of the Accuracy of High-Order Schemes on Molecular Dynamics Problems,” Zh. Vychisl. Mat. Mat. Fiz. 56 (4), 551-571 (2016) [Comput. Math. Math. Phys. 56 (4), 541-560 (2016)].
- E. Hairer, S. P. Nørsett, and G. Wanner, Solving Ordinary Differential Equations I: Nonstiff Problems (Spinger, Berlin, 1993; Mir, Moscow, 1990).
- W. W. Adams and P. Loustaunau, An Introduction to Gröbner Bases. Graduate Studies in Mathematics. Vol. 3. (Amer. Math. Soc., Providence, 1996).
- J. A. Nelder and R. Mead, “A Simplex Method for Function Minimization,” Computer J. 7 (4), 308-313 (1965).
- D. I. Okunbor and R. D. Skeel, “Canonical Runge-Kutta-Nyström Methods of Orders Five and Six,” J. Comput. Appl. Math. 51 (3), 375-382 (1994).
- D. Okunbor and R. D. Skeel, “Explicit Canonical Methods for Hamiltonian Systems,” Math. Comput. 59 (200), 439-455 (1992).
- W. Schmidt and A. Jameson, “Euler Solvers as an Analysis Tool for Aircraft Aerodynamics,” in Advances in Computational Transonics (Pineridge Press, Swansea, 1985), pp. 371-404.
- V. G. Ganzha and E. V. Vorozhtsov, Computer-Aided Analysis of Difference Schemes for Partial Differential Equations (Wiley, New York, 2012).