Мультипольный алгоритм численного решения дробно-дифференциального обобщения уравнения Гельмгольца
Авторы
-
Н.С. Белевцов
Ключевые слова:
дробно-дифференциальное обобщение уравнения Гельмгольца
дробная степень оператора Лапласа
фундаментальное решение
мультипольное разложение
метод мультиполей
численный алгоритм
Аннотация
Рассматривается задача построения эффективного численного алгоритма решения дробно-дифференциального обобщения неоднородного уравнения Гельмгольца с дробной степенью оператора Лапласа. Построено мультипольное разложение, основанное на факторизации фундаментального решения рассматриваемого уравнения. Предложен способ нахождения значений функций Фокса, входящих в представленное мультипольное разложение. Разработана модификация мультипольного алгоритма для решения рассматриваемого дробно-дифференциального обобщения уравнения Гельмгольца. Приведены результаты вычислительных экспериментов, демонстрирующие эффективность предложенных алгоритмов.
Раздел
Методы и алгоритмы вычислительной математики и их приложения
Библиографические ссылки
- S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications (Nauka Tekh., Minsk, 1987; Gordon and Breach, Yverdon, 1993).
- V. V. Uchaikin, Method of Fractional Derivatives (Artishok, Ul’yanovsk, 2008) [in Russian].
- R. Raghavan, “Fractional Diffusion: Performance of Fractured Wells,” J. Petrol. Sci. Eng. 92-93, 167-173 (2012).
- D. Stan, F. del Teso, and J. L. Vázquez, “Finite and Infinite Speed of Propagation for Porous Medium Equations with Nonlocal Pressure,” J. Differ. Equ. 260 (2), 1154-1199 (2016).
- C. Pozrikidis, The Fractional Laplacian (CRC Press, Boca Raton, 2016).
- A. V. Abramyan, V. A. Nogin, and S. G. Samko, “Fractional Powers of the Operator -|x|²Δ in Lp Spaces,” Differ. Uravn. 32 (2), 275-276 (1996) [Differ. Equ. 32 (2), 281-283 (1996)].
- B. Barrios, E. Colorado, A. De Pablo, and U. Sánchez, “On Some Critical Problems for the Fractional Laplacian Operator,” J. Differ. Equ. 252 (11), 6133-6162 (2012).
- H. Chen, P. Felmer, and A. Quaas, “Large Solutions to Elliptic Equations Involving Fractional Laplacian,” Annales de l’Institut Henri Poincaré (C), Analyse Non Linéaire 32 (6), 1199-1228 (2015).
doi 10.1016/j.anihpc.2014.08.00
- J. L. Vázquez, A. de Pablo, F. Quirós, and A. Rodriguez, “Classical Solutions and Higher Regularity for Nonlinear Fractional Diffusion Equations,” J. Eur. Math. Soc. 19 (7), 1949-1975 (2017).
- E. C. Aifantis, “Fractional Generalizations of Gradient Mechanics,” in Handbook of Fractional Calculus with Applications (De Gruyter, Berlin, 2019), Vol. 4, pp. 241-262.
- A. D. Polyanin, Linear Equations of Mathematical Physics (Fizmatlit, Moscow, 2001) [in Russian].
- L. Greengard and V. Rokhlin, “A Fast Algorithm for Particle Simulations,” J. Comput. Phys. 135 (2), 280-292 (1997).
- N. A. Gumerov and R. Duraiswami, Fast Multipole Methods for the Helmholtz Equation in Three Dimensions (Elsevier, Amsterdam, 2005).
- N. S. Belevtsov and S. Yu. Lukashchuk, “Multipole Expansion of the Fundamental Solution of a Fractional Degree of the Laplace Operator,” in Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz. (VINITI, Moscow, 2020), Vol. 176, pp. 26-33.
- N. S. Belevtsov and S. Yu. Lukashchuk, “A Parallel Numerical Algorithm for Solving Fractional Poisson Equation,” in Proc. Int. Conf. on Parallel Computational Technologies, Kaliningrad, Russia, April 2-April 4, 2019 (South Ural State Univ., Chelyabinsk, 2019), pp. 165-174.
- N. S. Belevtsov and S. Yu. Lukashchuk, “Factorization of the Fundamental Solution to Fractional Helmholtz Equation,” Lobachevskii J. Math. 42 (1), 57-62 (2021).
- A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and Series , Vol. 2: Special Functions (Nauka, Moscow, 1983; Gordon and Breach, New York, 1986).
- A. A. Kilbas and M. Saigo, H-transforms: Theory and Applications (CRC Press, Boca Raton, 2004).
- R. Gorenflo, J. Loutchko, and Y. Luchko, “Computation of the Mittag-Leffler Function Eα, β(z) and Its Derivative,” Fract. Calc. Appl. Anal. 5 (4), 491-518 (2002).
- Y. Luchko, “Algorithms for Evaluation of the Wright Function for the Real Arguments’ Values,” Fract. Calc. Appl. Anal. 11 (1), 57–-75 (2008).
- R. D. Mindlin and N. N. Eshel, “On First Strain-Gradient Theories in Linear Elasticity,” Int. J. Solids Struct. 4 (1), 109-124 (1968).
- C. Q. Ru and E. C. Aifantis, “A Simple Approach to Solve Boundary-Value Problems in Gradient Elasticity,” Acta Mech. 101 (1), 59-68 (1993).
- B. G. Korenev, Introduction to the Theory of Bessel Functions (Nauka, Moscow, 1971) [in Russian].