Моделирование взаимодействия ударной волны с ограниченным неоднородным слоем газовзвеси гибридным методом крупных частиц
Авторы
-
Д. В. Садин
-
И.О. Голиков
-
В.А. Давидчук
Ключевые слова:
гибридный метод крупных частиц
неоднородный слой газовзвеси
ударная волна
релаксация
асимптотически точное решение
Аннотация
Исследуются задачи взаимодействия ударной волны с ограниченным слоем газовзвеси, внутри которого имеется неоднородность квадратного сечения пониженной или повышенной плотности. Для расчетов используется гибридный метод крупных частиц второго порядка аппроксимации по пространству и времени. Правильность численных разрывных решений, в частности скачков пористости, подтверждается сравнением с асимптотически точными профилями плотности смеси. Приведены аналитические зависимости ослабления ударной волны слоем газовзвеси. Изучены ударно-волновые структуры в двумерных областях и влияние на них релаксационных процессов.
Раздел
Методы и алгоритмы вычислительной математики и их приложения
Библиографические ссылки
- B. L. Rozhdestvenskii and N. N. Yanenko, Systems of Quasilinear Equations and Their Applications to Gas Dynamics (Nauka, Moscow, 1978; Amer. Math. Soc., Providence, 1982).
- G. A. Ruev, B. L. Rozhdestvenskii, V. M. Fomin, and N. N. Yanenko, “Conservation Laws for Systems of Equations for Two-Phase Media,” Dokl. Akad. Nauk SSSR 254 (2), 288-293 (1980) [Sov. Math. Dokl. 22 (2), 352-357 (1980)].
- L. Huilin, D. Gidaspow, J. Bouillard, and L. Wentie, “Hydrodynamic Simulation of Gas-Solid Flow in a Riser Using Kinetic Theory of Granular Flow,” Chem. Eng. J. 95 (1-3), 1-13 (2003).
- K. N. Volkov, V. N. Emelyanov, A. G. Karpenko, and I. V. Teterina, “Simulation of Unsteady Gas-Particle Flow Induced by the Shock-Wave Interaction with a Particle Layer,” Vychisl. Metody Programm. 21 (1), 96-114 (2020).
- R. Saurel and R. Abgrall, “A Multiphase Godunov Method for Compressible Multifluid and Multiphase Flows,” J. Comput. Phys. 150 (2), 425-467 (1999).
- R. Abgrall and R. Saurel, “Discrete Equations for Physical and Numerical Compressible Multiphase Mixtures,” J. Comput. Phys. 186 (2), 361-396 (2003).
- S. A. Tokareva and E. F. Toro, “HLLC-Type Riemann Solver for the Baer-Nunziato Equations of Compressible Two-Phase Flow,” J. Comput. Phys. 229 (10), 3573-3604 (2010).
- R. Jackson, “The Mechanics of Fluidized Beds. I: The Stability of the State of Uniform Fluidization,” Trans. Inst. Chem. Eng. 41, 13-21 (1963).
- G. Rudinger and A. Chang, “Analysis of Non-Steady Two-Phase Flow,” Phys. Fluid 7, 1747-1754 (1964).
- R. I. Nigmatulin, Fundamentals of the Mechanics of Heterogeneous Media (Nauka, Moscow, 1978) [in Russian].
- C. K. K. Lun, S. B. Savage, D. J. Jeffrey, and N. Chepurniy, “Kinetic Theories for Granular Flow: Inelastic Particles in Couette Flow and Slightly Inelastic Particles in a General Flowfield,” J. Fluid Mech. 140, 223-256 (1984).
- J. Ding and D. Gidaspow, “A Bubbling Fluidization Model Using Kinetic Theory of Granular Flow,” AIChE J. 36 (4), 523-538 (1990).
- A. Boemer, H. Qi, and U. Renz, “Eulerian Simulation of Bubble Formation at a Jet in a Two-Dimensional Fluidized Bed,” Int. J. Multiph. Flow 23 (5), 927-944 (1997).
- M. A. Gol’dshtik, “Elementary Theory of the Boiling Layer,” Zh. Prikl. Mekh. Tekh. Fiz., No. 6, 106-112 (1972) [J. Appl. Mech. Tech. Phys. 13 (6), 851-856 (1972)].
- D. V. Sadin, “Behavior of the Unsteady Jet of a Mixture of a Pressurized Gas and Dispersed Particles Discharged from a Circular Duct into the Atmosphere,” Zh. Prikl. Mekh. Tekh. Fiz., 40 (1), 151-157 (1999) [J. Appl. Mech. Tech. Phys. 40 (1), 130-135 (1999)].
- D. V. Sadin, S. D. Lyubarskii, and Yu. A. Gravchenko, “Features of an Underexpanded Pulsed Impact Gas-Dispersed Jet with a High Particle Concentration,” Zh. Tekh. Fiz. 87 (1), 22-26 (2017) [Tech. Phys. 62 (1), 18-23 (2017)].
- D. Gidaspow, Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions (Academic Press, New York, 1994).
- A. Goldshtein and M. Shapiro, “Mechanics of Collisional Motion of Granular Materials. Part 1. General Hydrodynamic Equations,” J. Fluid Mech. 282, 75-114 (1995).
- R. W. Lyczkowski, D. Gidaspow, C. W. Solbrig, and E. D. Hughes, “Characteristics and Stability Analyses of Transient One-Dimensional Two-Phase Flow Equations and Their Finite Difference Approximations,” Nucl. Sci. Eng. 66 (3), 378-396 (1978).
- L. A. Klebanov, A. E. Kroshilin, B. I. Nigmatulin, and R. I. Nigmatulin, “On the Hyperbolicity, Stability and Correctness of the Cauchy Problem for the System of Equations of Two-Speed Motion of Two-Phase Media,” Prikl. Mat. Mech. 46 (1), 83-95 (1982) [J. Appl. Math. Mech. 46 (1), 66-74 (1982)].
- D. A. Drew, “Mathematical Modelling of Two-Phase Flow,” Ann. Rev. Fluid Mech. 15, 261-291 (1983).
- V. S. Surov, “Hyperbolic Models in the Mechanics of Heterogeneous Media,” Zh. Vychisl. Mat. Mat. Fiz. 54 (1), 139-148 (2014) [Comput. Math. Math. Phys. 54 (1), 148-157 (2014)].
- M. Hantke, C. Matern, and G. Warnecke, “Numerical Solutions for a Weakly Hyperbolic Dispersed Two-Phase Flow Model,” in Theory, Numerics and Applications of Hyperbolic Problems I (Springer, Cham, 2018), Vol. 236, pp. 665-675.
- D. V. Sadin, “On the Convergence of a Certain Class of Difference Schemes for the Equations of Unsteady Gas Motion in a Disperse Medium,” Zh. Vychisl. Mat. Mat. Fiz. 38 (9), 1572-1577 (1998) [Comput. Math. Math. Phys. 38 (9), 1508–1513 (1998)].
- D. V. Sadin, “A Modified Large-Particle Method for Calculating Unsteady Gas Flows in a Porous Medium,” Zh. Vychisl. Mat. Mat. Fiz. 36 (10), 158-164 (1996) [Comput. Math. Math. Phys. 36 (10), 1453-1458 (1996)].
- D. V. Sadin, “A Method for Computing Heterogeneous Wave Flows with Intense Phase Interaction,” Zh. Vychisl. Mat. Mat. Fiz. 38 (6), 1033-1039 (1998) [Comput. Math. Math. Phys. 38 (6), 987-993 (1998)].
- L. Gascón and J. M. Corberán, “Construction of Second-Order TVD Schemes for Nonhomogeneous Hyperbolic Conservation Laws,” J. Comput. Phys. 172 (1), 261-297 (2001).
- Y. Xing and C.-W. Shu, “High-Order Well-Balanced Finite Difference WENO Schemes for a Class of Hyperbolic Systems with Source Terms,” J. Sci. Comput. 27 (1-3), 477-494 (2006).
- R. Saurel, O. Le Métayer, J. Massoni, and S. Gavrilyuk, “Shock Jump Relations for Multiphase Mixtures with Stiff Mechanical Relaxation,” Shock Waves 16 (3), 209-232 (2007).
- D. V. Sadin, “TVD Scheme for Stiff Problems of Wave Dynamics of Heterogeneous Media of Nonhyperbolic Nonconservative Type,” Zh. Vychisl. Mat. Mat. Fiz. 56 (12), 2098-2109 (2016) [Comput. Math. Math. Phys. 56 (12), 2068-2978 (2016)].
- D. V. Sadin, “On Stiff Systems of Partial Differential Equations for Motion of Heterogeneous Media,” Mat. Model. 14 (11), 43-53 (2002).
- D. V. Sadin, “Stiffness Problem in Modeling Wave Flows of Heterogeneous Media with a Three-Temperature Scheme of Interphase Heat and Mass Transfer,” Zh. Prikl. Mekh. Tekh. Fiz. 43 (2), 136-141 (2002) [J. Appl. Mech. Tech. Phys. 43 (2), 286-290 (2002)].
- V. M. Bojko, V. P. Kiselev, S. P. Kiselev, et al., “Interaction of a Shock Wave with a Cloud of Particles,” Fiz. Goreniya Vzryva 32 (2), 86-99 (1996) [Combust. Explos. Shock Waves 32 (2), 191-203 (1996)].
- S. L. Davis, T. B. Dittmann, G. B. Jacobs, and W. S. Don, “Dispersion of a Cloud of Particles by a Moving Shock: Effects of the Shape, Angle of Rotation, and Aspect Ratio,” Zh. Prikl. Mekh. Tekh. Fiz. 54 (6), 45-59 (2013) [J. Appl. Mech. Tech. Phys. 54 (6), 900-912 (2013)].
- D. A. Tukmakov, “Numerical Study of Intense Shock Waves in Dusty Media with a Homogeneous and Two-Component Carrier Phase,” Comput. Issled. Model. 12 (1), 141-154 (2020).
- D. V. Sadin and V. A. Davidchuk, “Interaction of a Plane Shock Wave with Regions of Varying Shape and Density in a Finely Divided Gas Suspension,” Inzh. Fiz. Zh. 93 (2), 489-498 (2020) [J. Eng. Phys. Thermophys. 93 (2), 474-483 (2020)].
- K. N. Volkov, V. N. Emelyanov, A. G. Karpenko, and I. V. Teterina, “Two-Dimensional Effects on the Interaction of a Shock Wave with a Cloud of Particles,” Vychisl. Metody Programm. 21, 207-224 (2020).
- R. I. Nigmatulin, Dynamics of Multiphase Media (Nauka, Moscow, 1987; Hemisphere, New York, 1990).
- D. V. Sadin, “A Modification of the Large-Particle Method to a Scheme Having the Second Order of Accuracy in Space and Time for Shockwave Flows in a Gas Suspension,” Vestn. Yuzhn. Ural. Gos. Univ. Ser. Mat. Model. Programm. 12 (2), 112-122 (2019).
- R. B. Christensen, Godunov Methods on a Staggered Mesh — An Improved Artificial Viscosity , Preprint UCRL-JC-105269 (Lawrence Livermore Nat. Lab., Livermore, 1990).
- C. Hirsch, Numerical Computation of Internal and External Flows. Vol. 2: Computational Methods for Inviscid and Viscous Flows (Wiley, New York, 1990).
- D. V. Sadin, Fundamentals of the Theory of Modeling Wave Heterogeneous Processes (Mozhaisky Military Space Academy, St. Petersburg, 2000) [in Russian].
- D. V. Sadin, “Stiff Problems of a Two-Phase Flow with a Complex Wave Structure,” Fiz.-Khim. Kinetika Gaz Din. 15 (4) (2014).
http://chemphys.edu.ru/issues/2014-15-4/articles/243/. Cited December 6, 2020.