DOI: https://doi.org/10.26089/NumMet.v21r433

О применении конечно-разностной аппроксимации Паде псевдодифференциального параболического уравнения в задаче тропосферного распространения радиоволн

Авторы

  • М. С. Лытаев

Ключевые слова:

уравнение Гельмгольца
параболическое уравнение
распространение радиоволн
аппроксимация Паде

Аннотация

Рассматривается задача численного моделирования распространения электромагнитных волн в неоднородной тропосфере на основе широкоугольных обобщений метода параболического уравнения. Используется конечно-разностная аппроксимация Паде оператора распространения. Существенно, что в предлагаемом подходе указанная аппроксимация осуществляется одновременно по продольной и поперечной координатам. При этом допускается моделирование произвольного коэффициента преломления тропосферы. Метод не накладывает ограничений на максимальный угол распространения. Для различных условий распространения радиоволн проведено сравнение с методом расщепления Фурье и методом геометрической теории дифракции. Показаны преимущества предлагаемого подхода.

Загрузки

Опубликован

2020-12-03

Выпуск

Раздел

Методы и алгоритмы вычислительной математики и их приложения

Автор

М. С. Лытаев

Санкт-Петербургский Федеральный исследовательский центр Российской академии наук (СПб ФИЦ РАН),
14-я линия В.О., 39, 199178, Санкт-Петербург
• младший научный сотрудник


Библиографические ссылки

  1. V. A. Fock, Electromagnetic Diffraction and Propagation Problems (Pergamon Press, Oxford, 1965; Sov. Radio, Moscow, 1970).
  2. M. Levy, Parabolic Equation Methods for Electromagnetic Wave Propagation (The Institution of Electrical Engineers, London, 2000).
  3. G. Apaydin and L. Sevgi, Radio Wave Propagation and Parabolic Equation Modeling (Wiley, Hoboken, 2017).
  4. V.A. Permyakov, M.S. Mikhailov, and E.S. Malevich, “Analysis of Propagation of Electromagnetic Waves in Difficult Conditions by the Parabolic Equation Method,” IEEE Trans. Antennas Propag. Mag. 67 (4), 2167-2175 (2019).
  5. O. Ozgun, “Recursive Two-Way Parabolic Equation Approach for Modeling Terrain Effects in Tropospheric Propagation,” IEEE Trans. Antennas Propag. Mag. 57 (9), 2706-2714 (2009).
  6. M. J. Mills, M. D. Collins, and J. F. Lingevitch, “Two-Way Parabolic Equation Techniques for Diffraction and Scattering Problems,” Wave Motion 31 (2), 173-180 (2000).
  7. V. V. Akhiyarov, “Attenuation Factor Calculation for Backscattering from the Terrain Using the Parabolic Equation Technique,” J. Radio Electron., No. 11 (2019).
    doi 10.30898/1684-1719.2019.11.1
  8. S. A. Vavilov and M. S. Lytaev, “Modeling Equation for Multiple Knife-Edge Diffraction,” IEEE Trans. Antennas Propag. Mag. 68 (5), 3869-3877 (2020).
  9. E. S. Malevich, M. S. Mikhailov, and A. A. Volkova, “Comparison of the Results of an Experimental Research of the Radio Wave Propagation in the Forest with Numerical Simulation,” in Proc. Int. Conf. on Radiation and Scattering of Electromagnetic Waves, Divnomorskoe, Russia, June 24-28, 2019 (IEEE Press, Piscataway, 2019),
    doi 10.1109/RSEMW.2019.8792732
  10. J. R. Kuttler and R. Janaswamy, “Improved Fourier Transform Methods for Solving the Parabolic Wave Equation,” Radio Sci. 37 (2), 1-11 (2002).
    doi 10.1029/2001RS002488
  11. M. S. Mikhailov, V. A. Permyakov, and D. M. Sazonov, “Calculation the Energy Characteristics of a Phased Array Antenna above the Irregular Earth Surface by the Parabolic Equation Method (Three Dimensional Model),” J. Radio Electron., No 12 (2014).
    http://jre.cplire.ru/jre/dec14/24/abstract_e.html . Cited November 25, 2020.
  12. M. S. Mikhailov, V. A. Permyakov, and E. S. Malevich, “Calculation by the Method of Parabolic Equation in Three-Dimensional Space with Obstacles,” Izv. Vyssh. Uchebn. Zaved., Fizika 59 (12-3), 145-148 (2016).
  13. Y. C. Li, Y. Q. Bian, Z. He, and R.-S. Chen, “EM Pulse Propagation Modeling for Tunnels by Three-Dimensional ADI-TDPE Method,” IEEE Access 8 (2020).
    doi 10.1109/ACCESS.2020.2991205
  14. K. V. Avilov, “Pseudodifferential Parabolic Equations of Sound Propagation in the Slowly Range-Dependent Ocean and Their Numerical Solutions,” Akust. Zh. 41 (1), 5-12 (1995) [Acoust. Phys. 41 (1), 1-7 (1995)].
  15. A. V. Terekhov, “The Laguerre Finite Difference One-Way Equation Solver,” Comput. Phys. Commun. 214, 71-82 (2017).
  16. R. M. Feshchenko and A. V. Popov, “Exact Transparent Boundary Condition for the Parabolic Equation in a Rectangular Computational Domain,” J. Opt. Soc. Am. A 28 (3), 373-380 (2011).
  17. A. Zlotnik and A. Romanova, “On a Numerov-Crank-Nicolson-Strang Scheme with Discrete Transparent Boundary Conditions for the Schr{ödinger Equation on a Semi-Infinite Strip,” Appl. Numer. Math. 93, 279-294 (2015).
  18. M. Taylor, Pseudo-Differential Operators (Springer, Berlin, 1974; Mir, Moscow, 1985).
  19. M. D. Collins, “A Split-Step Padé Solution for the Parabolic Equation Method,” J. Acoust. Soc. Am. 93 (4), 1736-1742 (1993).
  20. L. Fishman and J. J. McCoy, “Derivation and Application of Extended Parabolic Wave Theories. I. The Factorized Helmholtz Equation,” J. Math. Phys. 25 (2), 285-296 (1984).
  21. R. H. Hardin and F. D. Tappert, “Applications of the Split-Step Fourier Method to the Numerical Solution of Nonlinear and Variable Coefficient Wave Equations,” SIAM Rev. 15 (2), 423-423 (1973).
  22. P. Zhang, L. Bai, Z. Wu, and L. Guo, “Applying the Parabolic Equation to Tropospheric Groundwave Propagation: A review of Recent Achievements and Significant Milestones,” IEEE Antennas Propag. Mag. 58 (3), 31-44 (2016)
  23. M. D. Collins and W. L. Siegmann, Parabolic Wave Equations with Applications (Springer, New York, 2019).
  24. D. Lee, A. D. Pierce, and E.-C. Shang, “Parabolic Equation Development in the Twentieth Century,” J. Comput. Acoust. 8 (4), 527-637 (2000).
  25. Q. Guo, C. Zhou, and Y. Long, “Greene Approximation Wide-Angle Parabolic Equation for Radio Propagation,” IEEE Trans. Antennas Propag. Mag. 65 (11), 6048-6056 (2017).
  26. Q. Guo and Y. Long, “Pade Second-Order Parabolic Equation Modeling for Propagation over Irregular Terrain,” IEEE Antennas Wirel. Propag. Lett. 16, 2852-2855 (2017).
  27. Q. Guo and Y. Long, “Two-Way Parabolic Equation Method for Radio Propagation over Rough Sea Surface,” IEEE Trans. Antennas Propag. Mag. 68 (6), 4839-4847 (2020).
  28. M. S. Lytaev and A. G. Vladyko, “Split-Step Padé Approximations of the Helmholtz Equation for Radio Coverage Prediction over Irregular Terrain” in Proc. Int. Conf. on Advances in Wireless and Optical Communications, Riga, Latvia, November 15-16, 2018 (IEEE Press, Piscataway, 2018), pp. 179-184.
  29. F. N. Zakharov, Numerical Analysis of the Electromagnetic Field during VHF Propagation in a Randomly Inhomogeneous Troposphere over the Sea Surface , Candidate’s Dissertation in Technical Sciences (Tomsk State Univ. of Control Systems and Radioelectronics, Tomsk, 2015).
  30. I. N. Vaulin, Ways to Improve the Accuracy of the Numerical Solution of the Parabolic Equation for Predicting the Characteristics of the VHF Field over the Sea , Candidate’s Dissertation in Technical Sciences (Tomsk State Univ. of Control Systems and Radioelectronics, Tomsk, 2008).
  31. M. S. Lytaev, “A Numerical Method for Estimating Tropospheric Radio Wave Propagation for Remote Monitoring Geoinformation Systems,” Tr. St. Petersburg Inst. Inform. Avtomat., Ross. Akad. Nauk 56, 195-213 (2018).
  32. G. Apaydin and L. Sevgi, “The Split-Step-Fourier and Finite-Element-Based Parabolic-Equation Propagation-Prediction Tools: Canonical Tests, Systematic Comparisons, and Calibration,” IEEE Antennas Propag. Mag. 52 (3), 66-79 (2010).
  33. G. Apaydin, O. Ozgun, M. Kuzuoglu, and L. Sevgi, “A Novel Two-Way Finite-Element Parabolic Equation Groundwave Propagation Tool: Tests with Canonical Structures and Calibration,” IEEE Trans. Geosci. Remote Sens. 49 (8), 2887-2899 (2011).
  34. A. Vladyko and M. Lytaev, “Path Loss Modelling in Millimeter Wave Radio Channel by the Parabolic Equation Method,” Tr. Uchebn. Zaved. Svyazi 5 (2), 108-116 (2019).
  35. V. A. Baskakov and A. V. Popov, “Implementation of Transparent Boundaries for Numerical Solution of the Schr{ödinger Equation,” Wave Motion 14 (2), 123-128 (1991).
  36. M. F. Levy, “Transparent Boundary Conditions for Parabolic Equation Solutions of Radiowave Propagation Problems,” IEEE Trans. Antennas Propag. Mag. 45 (1), 66-72 (1997).
  37. P. S. Petrov and M. Ehrhardt, “Transparent Boundary Conditions for Iterative High-Order Parabolic Equations,” J. Comput. Phys. 313, 144-158 (2016).
  38. M. Ehrhardt and A. Zisowsky, “Discrete Non-Local Boundary Conditions for Split-Step Padé Approximations of the One-Way Helmholtz Equation,” J. Comput. Appl. Math. 200 (2), 471-490 (2007).
  39. M. S. Lytaev, “Nonlocal Boundary Conditions for Split-Step Padé Approximations of the Helmholtz Equation with Modified Refractive Index,” IEEE Antennas Wirel. Propag. Lett. 17 (8), 1561-1565 (2018).
  40. C. R. Sprouse and R. S. Awadallah, “An Angle-Dependent Impedance Boundary Condition for the Split-Step Parabolic Equation Method,” IEEE Trans. Antennas Propag. Mag. 60 (2), 964-970 (2012).
  41. G. A. Baker and P. R. Graves-Morris, Padé Approximants (Cambridge University Press, Cambridge, 1996; Mir, Moscow, 1986).
  42. P. H. Pathak, G. Carluccio, and M. Albani, “The Uniform Geometrical Theory of Diffraction and Some of Its Applications,” IEEE Antennas Propag. Mag. 55 (4), 41-69 (2013).
  43. O. Ozgun, V. Sahin, M. E. Erguden, et al., “PETOOL v2.0: Parabolic Equation Toolbox with Evaporation Duct Models and Real Environment Data,” Comput. Phys. Commun. 256 (2020).
    doi 10.1016/j.cpc.2020.107454
  44. O. Ozgun, “New Software Tool (GO+UTD) for Visualization of Wave Propagation [Testing Ourselves],” IEEE Antennas Propag. Mag. 58 (3), 91-103 (2016).
  45. M.S. Lytaev, “Wave Propagation Framework for Python 3,”
    https://github.com/mikelytaev/wave-propagation . Cited November 25, 2020.
  46. O. N. Pishchin and O. V. Kalambatskaya, “Characteristics of UHF Waves Distribution in Land and Water Surface Tropospheric Waveguide,” Vestn. Astrakhan Gos. Tech. Univ. Ser. Management. Comput. Sci. Inf., No. 4, 115-121 (2019).
  47. F. Johansson et al., “mpmath: A Python Library for Arbitrary-Precision Floating-Point Arithmetic (Version 1.1.0, 2018),”
    http://mpmath.org/. Cited November 25, 2020.
  48. K. W. Smith, Cython: A Guide for Python Programmers (O’Reilly Media, Sebastopol, 2015).