Численная оценка удельного электрического сопротивления горных пород по их цифровым изображениям с использованием графических со-процессоров
Авторы
-
Т.С. Хачкова
-
В.В. Лисица
-
Г.В. Решетова
-
В.А. Чеверда
Ключевые слова:
вычислительная физика горных пород
конечно-разностный метод
итерационные методы
удельное электрическое сопротивление
численное осреднение
Аннотация
Представлен алгоритм расчета потенциального электрического поля в образцах горных пород и предложены оценки их удельного электрического сопротивления (проводимости). Алгоритм ориентирован на расчет поля в существенно неоднородных моделях среды с частично насыщенными и полиминеральными образцами горных пород. В основе алгоритма – итерационные методы крыловского типа, в качестве предобусловливателя используется оператор, обратный к оператору Лапласа для однородной среды. Для вычисления предобусловливателя используется спектральный метод в направлениях, нормальных к основному направлению электрического тока, а серия одномерных задач решается методом прогонки. Решатель реализован с использованием графических процессоров (GPU) и позволяет обрабатывать образцы размером до 4003 вокселей на одном GPU.
Раздел
Методы и алгоритмы вычислительной математики и их приложения
Библиографические ссылки
- Ya. V. Bazaikin, D. R. Kolyukhin, V. V. Lisitsa, et al., “Effect of CT-Image Scale on Macro-Scale Properties Estimation,” Tekhnol. Seismorazved., No. 2, 38-47 (2016).
- R. V. Vasilyev, K. M. Gerke, M. V. Karsanina, and D. V. Korost, “Solution of the Stokes Equation in Three-Dimensional Geometry by the Finite-Difference Method,” Mat. Model. 27 (6), 67-80 (2015) [Math. Models Comput. Simul. 8 (1), 63-72 (2016)].
- K. V. Voronin and S. A. Solovyev, “Solution of the Helmholtz Problem Using the Preconditioned Low-Rank Approximation Technique,” Vychisl. Metody Programm. 16, 268-280 (2015).
- K. A. Gadylshina, T. S. Khachkova, and V. V. Lisitsa, “Numerical Modeling of Chemical Interaction between a Fluid and Rocks,” Vychisl. Metody Programm. 20, 457-470 (2019).
- A. V. Likhachov, “Allocation of Three Brightness Levels on a Noisy Image,” Vychisl. Metody Programm. 21, 180-186 (2020).
- D. A. Neklyudov, I. Yu. Silvestrov, and V. A. Tcheverda, “A 3D Helmholtz Iterative Solver with a Semi-Analytical Preconditioner for Acoustic Wavefield Modeling in Seismic Exploration Problems,” Vychisl. Metody Programm. 15, 514-529 (2014).
- G. V. Reshetova and T. S. Khachkova, “A Numerical Method to Estimate the Effective Elastic Moduli of Rocks from Two- and Three-Dimensional Digital Images of Rock Core Samples,” Vychisl. Metody Programm. 18, 416-433 (2017).
- A. A. Samarskii, The Theory of Finite Difference Schemes (Nauka, Moscow, 1989; Marcel Dekker, New York, 2001).
- S. A. Solovyev, “Application of the Low-Rank Approximation Technique in the Gauss Elimination Method for Sparse Linear Systems,” Vychisl. Metody Programm. 15, 441-460 (2014).
- T. S. Khachkova, Ya. V. Bazaikin, and V. V. Lisitsa, “Use of the Computational Topology to Analyze the Pore Space Changes during Chemical Dissolution,” Vychisl. Metody Programm. 21, 41-55 (2020).
- Y. Al-Khulaifi, Q. Lin, M. J. Blunt, and B. Bijeljic, “Pore-Scale Dissolution by CO_2 Saturated Brine in a Multimineral Carbonate at Reservoir Conditions: Impact of Physical and Chemical Heterogeneity,” Water Resour. Res. 55 (4), 3171-3193 (2019).
- Y. Al-Khulaifi, Q. Lin, M. J. Blunt, and B. Bijeljic, “Pore-Scale Dissolution by CO_2 Saturated Brine in a Multi-Mineral Carbonate at Reservoir Conditions: Impact of Physical and Chemical Heterogeneity,” (2019)
doi 10.5285/52b08e7f-9fba-40a1-b0b5-dda9a3c83be2 . Cited August 15, 2020
- F. O. Alpak, B. Riviere, and F. Frank, “A Phase-Field Method for the Direct Simulation of Two-Phase Flows in Pore-Scale Media Using a Non-Equilibrium Wetting Boundary Condition,” Computat. Geosci. 20, 881-908 (2016).
- H. Andr854, N. Combaret, J. Dvorkin, et al., “Digital Rock Physics Benchmarks - Part I: Imaging and Segmentation,” Comput. Geosci. 50, 25-32 (2013).
- H. Andr854, N. Combaret, J. Dvorkin, et al., “Digital Rock Physics Benchmarks - Part II: Computing Effective Properties // Comput. Geosci. 50, 33-43 (2013).
- Y. Bazaikin, B. Gurevich, S. Iglauer, et al., “Effect of CT Image Size and Resolution on the Accuracy of Rock Property Estimates,” J. Geophys. Res.: Solid Earth 122 (5), 3635-3647 (2017).
- M. Belonosov, V. Kostin, D. Neklyudov, and V. Tcheverda, “3D Numerical Simulation of Elastic Waves with a Frequency-Domain Iterative Solver,” Geophysics 83 (6), T333-T344 (2018).
- N. Dugan, L. Genovese, and S. Goedecker, “A Customized 3D GPU Poisson Solver for Free Boundary Conditions,” Comput. Phys. Commun. 184 (8), 1815-1820 (2013).
- H. Edelsbrunner and J. Harer, Computational Topology: An Introduction (AMS Press, Providence, 2010).
- K. M. Gerke, M. V. Karsanina, and R. Katsman, “Calculation of Tensorial Flow Properties on Pore Level: Exploring the Influence of Boundary Conditions on the Permeability of Three-Dimensional Stochastic Reconstructions,” Phys. Rev. E 100 (2019).
doi 10.1103/PhysRevE.100.053312
- E. Haber, U. M. Ascher, D. A. Aruliah, and D. W. Oldenburg, “Fast Simulation of 3D Electromagnetic Problems Using Potentials,” J. Comput. Phys. 163 (1), 150-171 (2000).
- E. Haber and U. M. Ascher, “Fast Finite Volume Simulation of 3D Electromagnetic Problems with Highly Discontinuous Coefficients,” SIAM J. Sci. Comput. 22 (6), 1943-1961 (2001).
- P. Iassonov, T. Gebrenegus, and M. Tuller, “Segmentation of X-Ray Computed Tomography Images of Porous Materials: A crucial Step for Characterization and Quantitative Analysis of Pore Structures,” Water Resour. Res. 45 (2009).
doi 10.1029/2009WR008087
- H. Johansen and Ph. Colella, “A Cartesian Grid Embedded Boundary Method for Poisson’s Equation on Irregular Domains,” J. Comput. Phys. 147 (1), 60-85 (1998).
- J. L. Jodra, I. Gurrutxaga, J. Muguerza, and A. Yera, “Solving Poisson’s Equation Using FFT in a GPU Cluster,” J. Parallel Distr. Comput. 102, 28-36 (2017).
- A. Kameda, J. Dvorkin, Y. Keehm, et al., “Permeability-Porosity Transforms from Small Sandstone Fragments,” Geophysics 71 (2006).
doi 10.1190/1.2159054
- M. V. Karsanina and K. M. Gerke, “Hierarchical Optimization: Fast and Robust Multiscale Stochastic Reconstructions with Rescaled Correlation Functions,” Phys. Rev. Lett. 121 (2018).
doi 10.1103/PhysRevLett.121.265501
- V. Kostin, S. Solovyev, A. Bakulin, and M. Dmitriev, “Direct Frequency-Domain 3D Acoustic Solver with Intermediate Data Compression Benchmarked Against Time-Domain Modeling for Full-Waveform Inversion Applications,” Geophysics 84 (2019).
doi 10.1190/geo2018-0465.1
- C. Madonna, B. Quintal, M. Frehner, et al., “Synchrotron-Based X-Ray Tomographic Microscopy for Rock Physics Investigations,” Geophysics 78 (2013).
doi 10.1190/geo2012-0113.1
- A. Pleshkevich, D. Vishnevskiy, and V. Lisitsa, “Sixth-Order Accurate Pseudo-Spectral Method for Solving One-Way Wave Equation,” Appl. Math. Comput. 359, 34-51 (2019).
- E. H. Saenger, M. Lebedev, and D. Uribe, “Analysis of High-Resolution X-Ray Computed Tomography Images of Bentheim Sandstone under Elevated Confining Pressures,” Geophys. Prospect. 64 (4), 848-859 (2016).
- V. Shulakova, M. Pervukhina, T. M. Müller, et al., “Computational Elastic Up-scaling of Sandstone on the Basis of X-Ray Micro-Tomographic Images,” Geophys. Prospect. 61 (2), 287-301 (2013).
- K. Stüben, “A Review of Algebraic Multigrid,” J. Comput. Appl. Math. 128 (1-2), 281-309 (2001).
- U. Wollner, A. Kerimov, and G. Mavko, “Scale and Boundary Effects on the Effective Elastic Properties of 2-D and 3-D Non-REV Heterogeneous Porous Media,” J. Geophys. Res.: Solid Earth 123 (7), 5451-5465 (2018).
- X. Zhan, L. M. Schwartz, M. N. Toksöz, et al., “Pore-Scale Modeling of Electrical and Fluid Transport in Berea Sandstone,” Geophysics 75 (2010).
doi 10.1190/1.3463704