Численная оценка удельного электрического сопротивления горных пород по их цифровым изображениям с использованием графических со-процессоров

Авторы

  • Т.С. Хачкова Институт нефтегазовой геологии и геофизики имени А.А. Трофимука СО РАН
  • В.В. Лисица Институт нефтегазовой геологии и геофизики имени А.А. Трофимука СО РАН
  • Г.В. Решетова Институт вычислительной математики и математической геофизики СО РАН (ИВМиМГ СО РАН)
  • В.А. Чеверда Институт нефтегазовой геологии и геофизики имени А.А. Трофимука СО РАН

DOI:

https://doi.org/10.26089/NumMet.v21r326

Ключевые слова:

вычислительная физика горных пород, конечно-разностный метод, итерационные методы, удельное электрическое сопротивление, численное осреднение

Аннотация

Представлен алгоритм расчета потенциального электрического поля в образцах горных пород и предложены оценки их удельного электрического сопротивления (проводимости). Алгоритм ориентирован на расчет поля в существенно неоднородных моделях среды с частично насыщенными и полиминеральными образцами горных пород. В основе алгоритма – итерационные методы крыловского типа, в качестве предобусловливателя используется оператор, обратный к оператору Лапласа для однородной среды. Для вычисления предобусловливателя используется спектральный метод в направлениях, нормальных к основному направлению электрического тока, а серия одномерных задач решается методом прогонки. Решатель реализован с использованием графических процессоров (GPU) и позволяет обрабатывать образцы размером до 4003 вокселей на одном GPU.

Авторы

Т.С. Хачкова

Институт нефтегазовой геологии и геофизики имени А.А. Трофимука СО РАН,
проспект Академика Коптюга, 3, 630090, Новосибирск
• научный сотрудник

В.В. Лисица

Институт нефтегазовой геологии и геофизики имени А.А. Трофимука СО РАН,
проспект Академика Коптюга, 3, 630090, Новосибирск
• заведующий лабораторией

Г.В. Решетова

Институт вычислительной математики и математической геофизики СО РАН (ИВМиМГ СО РАН),
просп. Лаврентьева, 6, 630090, Новосибирск
• ведущий научный сотрудник

В.А. Чеверда

Институт нефтегазовой геологии и геофизики имени А.А. Трофимука СО РАН,
проспект Академика Коптюга, 3, 630090, Новосибирск
• заведующий лабораторией

Библиографические ссылки

  1. Ya. V. Bazaikin, D. R. Kolyukhin, V. V. Lisitsa, et al., “Effect of CT-Image Scale on Macro-Scale Properties Estimation,” Tekhnol. Seismorazved., No. 2, 38-47 (2016).
  2. R. V. Vasilyev, K. M. Gerke, M. V. Karsanina, and D. V. Korost, “Solution of the Stokes Equation in Three-Dimensional Geometry by the Finite-Difference Method,” Mat. Model. 27 (6), 67-80 (2015) [Math. Models Comput. Simul. 8 (1), 63-72 (2016)].
  3. K. V. Voronin and S. A. Solovyev, “Solution of the Helmholtz Problem Using the Preconditioned Low-Rank Approximation Technique,” Vychisl. Metody Programm. 16, 268-280 (2015).
  4. K. A. Gadylshina, T. S. Khachkova, and V. V. Lisitsa, “Numerical Modeling of Chemical Interaction between a Fluid and Rocks,” Vychisl. Metody Programm. 20, 457-470 (2019).
  5. A. V. Likhachov, “Allocation of Three Brightness Levels on a Noisy Image,” Vychisl. Metody Programm. 21, 180-186 (2020).
  6. D. A. Neklyudov, I. Yu. Silvestrov, and V. A. Tcheverda, “A 3D Helmholtz Iterative Solver with a Semi-Analytical Preconditioner for Acoustic Wavefield Modeling in Seismic Exploration Problems,” Vychisl. Metody Programm. 15, 514-529 (2014).
  7. G. V. Reshetova and T. S. Khachkova, “A Numerical Method to Estimate the Effective Elastic Moduli of Rocks from Two- and Three-Dimensional Digital Images of Rock Core Samples,” Vychisl. Metody Programm. 18, 416-433 (2017).
  8. A. A. Samarskii, The Theory of Finite Difference Schemes (Nauka, Moscow, 1989; Marcel Dekker, New York, 2001).
  9. S. A. Solovyev, “Application of the Low-Rank Approximation Technique in the Gauss Elimination Method for Sparse Linear Systems,” Vychisl. Metody Programm. 15, 441-460 (2014).
  10. T. S. Khachkova, Ya. V. Bazaikin, and V. V. Lisitsa, “Use of the Computational Topology to Analyze the Pore Space Changes during Chemical Dissolution,” Vychisl. Metody Programm. 21, 41-55 (2020).
  11. Y. Al-Khulaifi, Q. Lin, M. J. Blunt, and B. Bijeljic, “Pore-Scale Dissolution by CO_2 Saturated Brine in a Multimineral Carbonate at Reservoir Conditions: Impact of Physical and Chemical Heterogeneity,” Water Resour. Res. 55 (4), 3171-3193 (2019).
  12. Y. Al-Khulaifi, Q. Lin, M. J. Blunt, and B. Bijeljic, “Pore-Scale Dissolution by CO_2 Saturated Brine in a Multi-Mineral Carbonate at Reservoir Conditions: Impact of Physical and Chemical Heterogeneity,” (2019)
    http://dx.doi.org/10.5285/52b08e7f-9fba-40a1-b0b5-dda9a3c83be2 . Cited August 15, 2020.
  13. F. O. Alpak, B. Riviere, and F. Frank, “A Phase-Field Method for the Direct Simulation of Two-Phase Flows in Pore-Scale Media Using a Non-Equilibrium Wetting Boundary Condition,” Computat. Geosci. 20, 881-908 (2016).
  14. H. Andr854, N. Combaret, J. Dvorkin, et al., “Digital Rock Physics Benchmarks - Part I: Imaging and Segmentation,” Comput. Geosci. 50, 25-32 (2013).
  15. H. Andr854, N. Combaret, J. Dvorkin, et al., “Digital Rock Physics Benchmarks - Part II: Computing Effective Properties // Comput. Geosci. 50, 33-43 (2013).
  16. Y. Bazaikin, B. Gurevich, S. Iglauer, et al., “Effect of CT Image Size and Resolution on the Accuracy of Rock Property Estimates,” J. Geophys. Res.: Solid Earth 122 (5), 3635-3647 (2017).
  17. M. Belonosov, V. Kostin, D. Neklyudov, and V. Tcheverda, “3D Numerical Simulation of Elastic Waves with a Frequency-Domain Iterative Solver,” Geophysics 83 (6), T333-T344 (2018).
  18. N. Dugan, L. Genovese, and S. Goedecker, “A Customized 3D GPU Poisson Solver for Free Boundary Conditions,” Comput. Phys. Commun. 184 (8), 1815-1820 (2013).
  19. H. Edelsbrunner and J. Harer, Computational Topology: An Introduction (AMS Press, Providence, 2010).
  20. K. M. Gerke, M. V. Karsanina, and R. Katsman, “Calculation of Tensorial Flow Properties on Pore Level: Exploring the Influence of Boundary Conditions on the Permeability of Three-Dimensional Stochastic Reconstructions,” Phys. Rev. E 100 (2019). doi 10.1103/PhysRevE.100.053312
  21. E. Haber, U. M. Ascher, D. A. Aruliah, and D. W. Oldenburg, “Fast Simulation of 3D Electromagnetic Problems Using Potentials,” J. Comput. Phys. 163 (1), 150-171 (2000).
  22. E. Haber and U. M. Ascher, “Fast Finite Volume Simulation of 3D Electromagnetic Problems with Highly Discontinuous Coefficients,” SIAM J. Sci. Comput. 22 (6), 1943-1961 (2001).
  23. P. Iassonov, T. Gebrenegus, and M. Tuller, “Segmentation of X-Ray Computed Tomography Images of Porous Materials: A crucial Step for Characterization and Quantitative Analysis of Pore Structures,” Water Resour. Res. 45 (2009). doi 10.1029/2009WR008087
  24. H. Johansen and Ph. Colella, “A Cartesian Grid Embedded Boundary Method for Poisson’s Equation on Irregular Domains,” J. Comput. Phys. 147 (1), 60-85 (1998).
  25. J. L. Jodra, I. Gurrutxaga, J. Muguerza, and A. Yera, “Solving Poisson’s Equation Using FFT in a GPU Cluster,” J. Parallel Distr. Comput. 102, 28-36 (2017).
  26. A. Kameda, J. Dvorkin, Y. Keehm, et al., “Permeability-Porosity Transforms from Small Sandstone Fragments,” Geophysics 71 (2006). doi 10.1190/1.2159054
  27. M. V. Karsanina and K. M. Gerke, “Hierarchical Optimization: Fast and Robust Multiscale Stochastic Reconstructions with Rescaled Correlation Functions,” Phys. Rev. Lett. 121 (2018).
    doi 10.1103/PhysRevLett.121.265501
  28. V. Kostin, S. Solovyev, A. Bakulin, and M. Dmitriev, “Direct Frequency-Domain 3D Acoustic Solver with Intermediate Data Compression Benchmarked Against Time-Domain Modeling for Full-Waveform Inversion Applications,” Geophysics 84 (2019). doi 10.1190/geo2018-0465.1
  29. C. Madonna, B. Quintal, M. Frehner, et al., “Synchrotron-Based X-Ray Tomographic Microscopy for Rock Physics Investigations,” Geophysics 78 (2013). doi 10.1190/geo2012-0113.1
  30. A. Pleshkevich, D. Vishnevskiy, and V. Lisitsa, “Sixth-Order Accurate Pseudo-Spectral Method for Solving One-Way Wave Equation,” Appl. Math. Comput. 359, 34-51 (2019).
  31. E. H. Saenger, M. Lebedev, and D. Uribe, “Analysis of High-Resolution X-Ray Computed Tomography Images of Bentheim Sandstone under Elevated Confining Pressures,” Geophys. Prospect. 64 (4), 848-859 (2016).
  32. V. Shulakova, M. Pervukhina, T. M. Müller, et al., “Computational Elastic Up-scaling of Sandstone on the Basis of X-Ray Micro-Tomographic Images,” Geophys. Prospect. 61 (2), 287-301 (2013).
  33. K. Stüben, “A Review of Algebraic Multigrid,” J. Comput. Appl. Math. 128 (1-2), 281-309 (2001).
  34. U. Wollner, A. Kerimov, and G. Mavko, “Scale and Boundary Effects on the Effective Elastic Properties of 2-D and 3-D Non-REV Heterogeneous Porous Media,” J. Geophys. Res.: Solid Earth 123 (7), 5451-5465 (2018).
  35. X. Zhan, L. M. Schwartz, M. N. Toksöz, et al., “Pore-Scale Modeling of Electrical and Fluid Transport in Berea Sandstone,” Geophysics 75 (2010). doi 10.1190/1.3463704

Загрузки

Опубликован

2020-09-27

Как цитировать

Хачкова Т.С., Лисица В.В., Решетова Г.В., Чеверда В.А. Численная оценка удельного электрического сопротивления горных пород по их цифровым изображениям с использованием графических со-процессоров // Вычислительные методы и программирование. 2020. 21. 306-318. doi 10.26089/NumMet.v21r326

Выпуск

Раздел

Методы и алгоритмы вычислительной математики и их приложения

Наиболее читаемые статьи этого автора (авторов)

1 2 > >>