Численная оценка влияния шероховатых границ на упругие параметры слоистой среды
Авторы
-
Т.С. Хачкова
-
В.В. Лисица
-
Д.Р. Колюхин
-
Г.В. Решетова
Ключевые слова:
геостатистическое моделирование
теория упругости
численное осреднение
Аннотация
Представлено численное исследование влияния шероховатости границ
раздела в слоистой среде на эффективные упругие свойства тонкослоистой среды. Предложен алгоритм построения статистически эквивалентных моделей слоистых сред двух различных типов. Первый тип включает в себя модели с постоянными упругими параметрами, но с шероховатой границей раздела. Второй тип состоит из моделей с плоскими границами раздела, но с параметрами, задаваемыми случайными величинами. При этом распределение упругих параметров в моделях второго типа (средние значения и ковариационная матрица) однозначно определяется
шероховатостью границ раздела (длина корреляции и стандартное отклонение) в моделях первого типа.
Раздел
Методы и алгоритмы вычислительной математики и их приложения
Библиографические ссылки
- M. P. Varygina, M. A. Pokhabova, O. V. Sadovskaya, and V. M. Sadovskii, “Numerical Algorithms for the Analysis of Elastic Waves in Block Media with Thin Interlayers,” Vychisl. Metody Programm. 12, 435-442 (2011).
- R. V. Vasilyev, K. M. Gerke, M. V. Karsanina, and D. V. Korost, “Solution of the Stokes Equation in Three-Dimensional Geometry by the Finite-Difference Method,” Mat. Model. 27 (6), 67-80 (2015) [Math. Models Comput. Simul. 8 (1), 63-72 (2016)].
- K. A. Gadylshina, T. S. Khachkova, and V. V. Lisitsa, “Numerical Modeling of Chemical Interaction between a Fluid and Rocks,” Vychisl. Metody Programm. 20, 457-470 (2019).
- R. M. Christensen, Theory of Viscoelasticity: An Introduction (Academic Press, New York, 1971; Mir, Moscow, 1974).
- M. A. Novikov, Ya. V. Bazaikin, V. V. Lisitsa, and A. A. Kozyaev, “Numerical Modeling of Wave Propagation in Fractured Porous Fluid-Saturated Media,” Vychisl. Metody Programm. 19, 235-252 (2018).
- M. A. Novikov, V. V. Lisitsa, and A. A. Kozyaev, “Numerical Modeling of Wave Processes in Fractured Porous Fluid-Saturated Media,” Vychisl. Metody Programm. 19, 130-149 (2018).
- G. V. Reshetova and T. S. Khachkova, “A Numerical Method to Estimate the Effective Elastic Moduli of Rocks from Two- and Three-Dimensional Digital Images of Rock Core Samples,” Vychisl. Metody Programm. 18, 416-433 (2017).
- S. M. Rytov, Yu. A. Kravtsov, and V. I. Tatarskii, Principles of Statistical Radiophysics 2. Correlation Theory of Random Processes (Springer, Berlin, 1988; Nauka, Moscow, 1978).
- V. M. Sadovskii and O. V. Sadovskaya, “A Numerical Algorithm for the Analysis of Viscoelastic Waves in the Kelvin-Voigt Medium,” Vychisl. Metody Programm. 15, 98-108 (2014).
- S. Abe, H. van Gent, and J. L. Urai, “DEM Simulation of Normal Faults in Cohesive Materials,” Tectonophysics 512 (1-4), 12-21 (2011).
- H. Andr854, N. Combaret, J. Dvorkin, et al., “Digital Rock Physics Benchmarks - Part I: Imaging and Segmentation,” Comput. Geosci. 50, 25-32 (2013).
- H. Andr854, N. Combaret, J. Dvorkin, et al., “Digital Rock Physics Benchmarks - Part II: Computing Effective Properties // Comput. Geosci. 50, 33-43 (2013).
- G. E. Backus, “Long-Wave Elastic Anisotropy Produced by Horizontal Layering,” J. Geophys. Res. 67 (11), 4427-4440 (1962).
- S. M. Binesh, E. Eslami-Feizabad, and R. Rahmani, “Discrete Element Modeling of Drained Triaxial Test: Flexible and Rigid Lateral Boundaries,” Int. J. Civil Eng. 16 (10), 1463-1474 (2018).
- M. A. Biot, “Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. I. Low-Frequency Range,” J. Acoust. Soc. Am. 28 (2), 168-178 (1956).
- M. A. Biot, “Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. II. Higher Frequency Range,” J. Acoust. Soc. Am. 28 (2), 179-191 (1956).
- Y. Capdeville, L. Guillot, and J.-J. Marigo, “2-D Non-Periodic Homogenization to Upscale Elastic Media for P-SV Waves,” Geophys. J. Int. 182 (2), 903-922 (2010).
- J. M. Carcione, S. Picotti, F. Cavallini, J. E. Santos, “Numerical Test of the Schoenberg-Muir Theory,” Geophysics 77 (2), C27-C35 (2012).
- J. M. Carcione, J. E. Santos, and S. Picotti, “Anisotropic Poroelasticity and Wave-Induced Fluid Flow: Harmonic Finite-Element Simulations,” Geophys. J. Int. 186 (3), 1245-1254 (2011).
- P. A. Cundall and O. D. L. Strack, “A Discrete Numerical Model for Granular Assemblies,” Geotechnique 29 (1), 47-65 (1979).
- S. Gelinsky and S. A. Shapiro, “Poroelastic Backus Averaging for Anisotropic Layered Fluid- and Gas-Saturated Sediments,” Geophysics 62 (6), 1867-1878 (1997).
- K. M. Gerke, M. V. Karsanina, and R. Katsman, “Calculation of Tensorial Flow Properties on Pore Level: Exploring the Influence of Boundary Conditions on the Permeability of Three-Dimensional Stochastic Reconstructions,” Phys. Rev. E 100 (2019).
doi 10.1103/PhysRevE.100.053312
- S. Hardy and E. Finch, “Discrete-Element Modelling of Detachment Folding,” Basin Res. 17 (4), 507-520 (2005).
- S. Hardy, K. McClay, and J. A. Munoz, “Deformation and Fault Activity in Space and Time in High-Resolution Numerical Models of Doubly Vergent Thrust Wedges,” Mar. Petrol. Geol. 26 (2), 232-248 (2009).
- P. Iassonov, T. Gebrenegus, and M. Tuller, “Segmentation of X-Ray Computed Tomography Images of Porous Materials: A crucial Step for Characterization and Quantitative Analysis of Pore Structures,” Water Resour. Res. 45 (2009).
doi 10.1029/2009WR008087
- V. Lisitsa, V. Tcheverda, and V. Volianskaia, “GPU-Accelerated Discrete Element Modeling of Geological Faults,” J. Phys. Conf. Ser. 1392 (2019).
doi 10.1088/1742-6596/1392/1/012070
- V. V. Lisitsa, V. T. Tcheverda, and V. V. Volianskaia, “GPU-based Implementation of Discrete Element Method for Simulation of the Geological Fault Geometry and Position,” Supercomput. Front. Innov. 5 (3), 46-50 (2018).
- S. Luding, “Introduction to Discrete Element Methods,” Eur. J. Environ. Civ. Eng. 12 (7-8), 785-826 (2008).
- Y. J. Masson and S. R. Pride, “Finite-Difference Modeling of Biot’s Poroelastic Equations across all Frequencies,” Geophysics 75 (2), N33-N41 (2010).
- J. Meng, J. Huang, D. Sheng, and S. W. Sloan, “Granular Contact Dynamics with Elastic Bond Model,” Acta Geotech. 12 (3), 479-493 (2017).
- F. Muir, J. Dellinger, J. Etgen, and D. Nichols, “Modeling Elastic Fields across Irregular Boundaries,” Geophysics 57 (9), 1189-1193 (1992).
- J. P. Royston, “Some Techniques for Assessing Multivariate Normality Based on the Shapiro-Wilk W,” J. Roy. Stat. Soc. C (Appl. Stat.) 32 (2), 121-133 (1983).
- K. K. Sabelfeld, Monte Carlo Methods in Boundary Value Problems (Springer, Berlin, 1991).
- V. M. Sadovskii, O. V. Sadovskaya, and A. A. Lukyanov, “Modeling of Wave Processes in Blocky Media with Porous and Fluid-Saturated Interlayers,” J. Comput. Phys. 345, 834-855 (2017).
- E. H. Saenger, “Numerical Methods to Determine Effective Elastic Properties,” Int. J. Eng. Sci. 46 (6), 598-605 (2008).
- E. H. Saenger, F. Enzmann, Y. Keehm, and H. Steeb, “Digital Rock Physics: Effect of Fluid Viscosity on Effective Elastic Properties,” J. Appl. Geophys. 74 (4), 236-241 (2011).
- E. H. Saenger, M. Lebedev, D. Uribe, et al., “Analysis of High-Resolution X-Ray Computed Tomography Images of Bentheim Sandstone under Elevated Confining Pressures,” Geophys. Prospect. 64 (4), 848-859 (2016).
- M. Schoenberg and F. Muir, “A Calculus for Finely Layered Anisotropic Media,” Geophysics 54 (5), 581-589 (1989).
- A. Theocharis, J.-N. Roux, and V. Langlois, “Elasticity of Model Weakly Cemented Granular Materials: A numerical Study,” Int. J. Solids Struct. 193-194}, 13-27 (2020).
- MATLAB Central File Exchange
https://www.mathworks.com/matlabcentral/fileexchange/17811-roystest . Cited June 30, 2020.
- D. Vishnevsky, V. Lisitsa, V. Tcheverda, and G. Reshetova, “Numerical Study of the Interface Errors of Finite-Difference Simulations of Seismic Waves,” Geophysics 79 (4), T219-T232 (2014).
- Y. Zhu, I. Tsvankin, and I. Vasconcelos, “Effective Attenuation Anisotropy of Thin-Layered Media,” Geophysics 72 (5), D93-D106 (2007).