Численная оценка влияния шероховатых границ на упругие параметры слоистой среды

Авторы

  • Т.С. Хачкова Институт нефтегазовой геологии и геофизики имени А.А. Трофимука СО РАН
  • В.В. Лисица Институт нефтегазовой геологии и геофизики имени А.А. Трофимука СО РАН
  • Д.Р. Колюхин Институт нефтегазовой геологии и геофизики имени А.А. Трофимука СО РАН
  • Г.В. Решетова Институт вычислительной математики и математической геофизики СО РАН (ИВМиМГ СО РАН)

DOI:

https://doi.org/10.26089/NumMet.v21r320

Ключевые слова:

геостатистическое моделирование, теория упругости, численное осреднение

Аннотация

Представлено численное исследование влияния шероховатости границ
раздела в слоистой среде на эффективные упругие свойства тонкослоистой среды. Предложен алгоритм построения статистически эквивалентных моделей слоистых сред двух различных типов. Первый тип включает в себя модели с постоянными упругими параметрами, но с шероховатой границей раздела. Второй тип состоит из моделей с плоскими границами раздела, но с параметрами, задаваемыми случайными величинами. При этом распределение упругих параметров в моделях второго типа (средние значения и ковариационная матрица) однозначно определяется
шероховатостью границ раздела (длина корреляции и стандартное отклонение) в моделях первого типа.

Авторы

Т.С. Хачкова

Институт нефтегазовой геологии и геофизики имени А.А. Трофимука СО РАН,
проспект Академика Коптюга, 3, 630090, Новосибирск
• научный сотрудник

В.В. Лисица

Институт нефтегазовой геологии и геофизики имени А.А. Трофимука СО РАН,
проспект Академика Коптюга, 3, 630090, Новосибирск
• заведующий лабораторией

Д.Р. Колюхин

Институт нефтегазовой геологии и геофизики имени А.А. Трофимука СО РАН,
проспект Академика Коптюга, 3, 630090, Новосибирск
• старший научный сотрудник

Г.В. Решетова

Институт вычислительной математики и математической геофизики СО РАН (ИВМиМГ СО РАН),
просп. Лаврентьева, 6, 630090, Новосибирск
• ведущий научный сотрудник

Библиографические ссылки

  1. M. P. Varygina, M. A. Pokhabova, O. V. Sadovskaya, and V. M. Sadovskii, “Numerical Algorithms for the Analysis of Elastic Waves in Block Media with Thin Interlayers,” Vychisl. Metody Programm. 12, 435-442 (2011).
  2. R. V. Vasilyev, K. M. Gerke, M. V. Karsanina, and D. V. Korost, “Solution of the Stokes Equation in Three-Dimensional Geometry by the Finite-Difference Method,” Mat. Model. 27 (6), 67-80 (2015) [Math. Models Comput. Simul. 8 (1), 63-72 (2016)].
  3. K. A. Gadylshina, T. S. Khachkova, and V. V. Lisitsa, “Numerical Modeling of Chemical Interaction between a Fluid and Rocks,” Vychisl. Metody Programm. 20, 457-470 (2019).
  4. R. M. Christensen, Theory of Viscoelasticity: An Introduction (Academic Press, New York, 1971; Mir, Moscow, 1974).
  5. M. A. Novikov, Ya. V. Bazaikin, V. V. Lisitsa, and A. A. Kozyaev, “Numerical Modeling of Wave Propagation in Fractured Porous Fluid-Saturated Media,” Vychisl. Metody Programm. 19, 235-252 (2018).
  6. M. A. Novikov, V. V. Lisitsa, and A. A. Kozyaev, “Numerical Modeling of Wave Processes in Fractured Porous Fluid-Saturated Media,” Vychisl. Metody Programm. 19, 130-149 (2018).
  7. G. V. Reshetova and T. S. Khachkova, “A Numerical Method to Estimate the Effective Elastic Moduli of Rocks from Two- and Three-Dimensional Digital Images of Rock Core Samples,” Vychisl. Metody Programm. 18, 416-433 (2017).
  8. S. M. Rytov, Yu. A. Kravtsov, and V. I. Tatarskii, Principles of Statistical Radiophysics 2. Correlation Theory of Random Processes (Springer, Berlin, 1988; Nauka, Moscow, 1978).
  9. V. M. Sadovskii and O. V. Sadovskaya, “A Numerical Algorithm for the Analysis of Viscoelastic Waves in the Kelvin-Voigt Medium,” Vychisl. Metody Programm. 15, 98-108 (2014).
  10. S. Abe, H. van Gent, and J. L. Urai, “DEM Simulation of Normal Faults in Cohesive Materials,” Tectonophysics 512 (1-4), 12-21 (2011).
  11. H. Andr854, N. Combaret, J. Dvorkin, et al., “Digital Rock Physics Benchmarks - Part I: Imaging and Segmentation,” Comput. Geosci. 50, 25-32 (2013).
  12. H. Andr854, N. Combaret, J. Dvorkin, et al., “Digital Rock Physics Benchmarks - Part II: Computing Effective Properties // Comput. Geosci. 50, 33-43 (2013).
  13. G. E. Backus, “Long-Wave Elastic Anisotropy Produced by Horizontal Layering,” J. Geophys. Res. 67 (11), 4427-4440 (1962).
  14. S. M. Binesh, E. Eslami-Feizabad, and R. Rahmani, “Discrete Element Modeling of Drained Triaxial Test: Flexible and Rigid Lateral Boundaries,” Int. J. Civil Eng. 16 (10), 1463-1474 (2018).
  15. M. A. Biot, “Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. I. Low-Frequency Range,” J. Acoust. Soc. Am. 28 (2), 168-178 (1956).
  16. M. A. Biot, “Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. II. Higher Frequency Range,” J. Acoust. Soc. Am. 28 (2), 179-191 (1956).
  17. Y. Capdeville, L. Guillot, and J.-J. Marigo, “2-D Non-Periodic Homogenization to Upscale Elastic Media for P-SV Waves,” Geophys. J. Int. 182 (2), 903-922 (2010).
  18. J. M. Carcione, S. Picotti, F. Cavallini, J. E. Santos, “Numerical Test of the Schoenberg-Muir Theory,” Geophysics 77 (2), C27-C35 (2012).
  19. J. M. Carcione, J. E. Santos, and S. Picotti, “Anisotropic Poroelasticity and Wave-Induced Fluid Flow: Harmonic Finite-Element Simulations,” Geophys. J. Int. 186 (3), 1245-1254 (2011).
  20. P. A. Cundall and O. D. L. Strack, “A Discrete Numerical Model for Granular Assemblies,” Geotechnique 29 (1), 47-65 (1979).
  21. S. Gelinsky and S. A. Shapiro, “Poroelastic Backus Averaging for Anisotropic Layered Fluid- and Gas-Saturated Sediments,” Geophysics 62 (6), 1867-1878 (1997).
  22. K. M. Gerke, M. V. Karsanina, and R. Katsman, “Calculation of Tensorial Flow Properties on Pore Level: Exploring the Influence of Boundary Conditions on the Permeability of Three-Dimensional Stochastic Reconstructions,” Phys. Rev. E 100 (2019). doi 10.1103/PhysRevE.100.053312
  23. S. Hardy and E. Finch, “Discrete-Element Modelling of Detachment Folding,” Basin Res. 17 (4), 507-520 (2005).
  24. S. Hardy, K. McClay, and J. A. Munoz, “Deformation and Fault Activity in Space and Time in High-Resolution Numerical Models of Doubly Vergent Thrust Wedges,” Mar. Petrol. Geol. 26 (2), 232-248 (2009).
  25. P. Iassonov, T. Gebrenegus, and M. Tuller, “Segmentation of X-Ray Computed Tomography Images of Porous Materials: A crucial Step for Characterization and Quantitative Analysis of Pore Structures,” Water Resour. Res. 45 (2009). doi 10.1029/2009WR008087
  26. V. Lisitsa, V. Tcheverda, and V. Volianskaia, “GPU-Accelerated Discrete Element Modeling of Geological Faults,” J. Phys. Conf. Ser. 1392 (2019). doi: 10.1088/1742-6596/1392/1/012070
  27. V. V. Lisitsa, V. T. Tcheverda, and V. V. Volianskaia, “GPU-based Implementation of Discrete Element Method for Simulation of the Geological Fault Geometry and Position,” Supercomput. Front. Innov. 5 (3), 46-50 (2018).
  28. S. Luding, “Introduction to Discrete Element Methods,” Eur. J. Environ. Civ. Eng. 12 (7-8), 785-826 (2008).
  29. Y. J. Masson and S. R. Pride, “Finite-Difference Modeling of Biot’s Poroelastic Equations across all Frequencies,” Geophysics 75 (2), N33-N41 (2010).
  30. J. Meng, J. Huang, D. Sheng, and S. W. Sloan, “Granular Contact Dynamics with Elastic Bond Model,” Acta Geotech. 12 (3), 479-493 (2017).
  31. F. Muir, J. Dellinger, J. Etgen, and D. Nichols, “Modeling Elastic Fields across Irregular Boundaries,” Geophysics 57 (9), 1189-1193 (1992).
  32. J. P. Royston, “Some Techniques for Assessing Multivariate Normality Based on the Shapiro-Wilk W,” J. Roy. Stat. Soc. C (Appl. Stat.) 32 (2), 121-133 (1983).
  33. K. K. Sabelfeld, Monte Carlo Methods in Boundary Value Problems (Springer, Berlin, 1991).
  34. V. M. Sadovskii, O. V. Sadovskaya, and A. A. Lukyanov, “Modeling of Wave Processes in Blocky Media with Porous and Fluid-Saturated Interlayers,” J. Comput. Phys. 345, 834-855 (2017).
  35. E. H. Saenger, “Numerical Methods to Determine Effective Elastic Properties,” Int. J. Eng. Sci. 46 (6), 598-605 (2008).
  36. E. H. Saenger, F. Enzmann, Y. Keehm, and H. Steeb, “Digital Rock Physics: Effect of Fluid Viscosity on Effective Elastic Properties,” J. Appl. Geophys. 74 (4), 236-241 (2011).
  37. E. H. Saenger, M. Lebedev, D. Uribe, et al., “Analysis of High-Resolution X-Ray Computed Tomography Images of Bentheim Sandstone under Elevated Confining Pressures,” Geophys. Prospect. 64 (4), 848-859 (2016).
  38. M. Schoenberg and F. Muir, “A Calculus for Finely Layered Anisotropic Media,” Geophysics 54 (5), 581-589 (1989).
  39. A. Theocharis, J.-N. Roux, and V. Langlois, “Elasticity of Model Weakly Cemented Granular Materials: A numerical Study,” Int. J. Solids Struct. 193-194}, 13-27 (2020).
  40. MATLAB Central File Exchange
    https://www.mathworks.com/matlabcentral/fileexchange/17811-roystest . Cited June 30, 2020.
  41. D. Vishnevsky, V. Lisitsa, V. Tcheverda, and G. Reshetova, “Numerical Study of the Interface Errors of Finite-Difference Simulations of Seismic Waves,” Geophysics 79 (4), T219-T232 (2014).
  42. Y. Zhu, I. Tsvankin, and I. Vasconcelos, “Effective Attenuation Anisotropy of Thin-Layered Media,” Geophysics 72 (5), D93-D106 (2007).

Загрузки

Опубликован

2020-09-27

Как цитировать

Хачкова Т.С., Лисица В.В., Колюхин Д.Р., Решетова Г.В. Численная оценка влияния шероховатых границ на упругие параметры слоистой среды // Вычислительные методы и программирование. 2020. 21. 225-240. doi 10.26089/NumMet.v21r320

Выпуск

Раздел

Методы и алгоритмы вычислительной математики и их приложения

Наиболее читаемые статьи этого автора (авторов)

1 2 > >>