О схемах второго порядка точности для моделирования плазменных колебаний
Авторы
-
Е.В. Чижонков
Ключевые слова:
численное моделирование
плазменные колебания
эффект опрокидывания
схемы МакКормака и Лакса-Вендроффа
порядок точности разностной схемы
законы сохранения
Аннотация
Для моделирования колебаний холодной плазмы как в нерелятивистском случае, так и с учетом релятивизма предложены модификации классических разностных схем второго порядка точности: метода МакКормака и двухэтапного метода Лакса-Вендроффа. Ранее для подобных расчетов в эйлеровых переменных была известна только схема первого порядка точности. Для задачи о свободных плазменных колебаниях, инициированных коротким мощным лазерным импульсом, с целью тестирования представленных схем проведены численные эксперименты по сохранению энергии и других величин. Сделан вывод о достоверности численного анализа колебаний как на основе схемы МакКормака, так и на основе схемы Лакса-Вендроффа, однако для расчетов "долгоживущих" процессов первая схема более предпочтительна. Теоретическое исследование аппроксимации и устойчивости вместе с экспериментальным наблюдением за количественными характеристиками погрешности для наиболее чувствительных величин существенно повышает достоверность вычислений.
Раздел
Раздел 1. Вычислительные методы и приложения
Библиографические ссылки
- R. C. Davidson, Methods in Nonlinear Plasma Theory (Academic, New York, 1972).
- Ya. B. Zel’dovich and A. D. Myshkis, Elements of Mathematical Physics (Nauka, Moscow, 1973) [in Russian].
- A. I. Akhiezer and R. V. Polovin, “Theory of Wave Motion of an Electron Plasma,” Zh. Eksp. Teor. Fiz. 30 (5), 915-928 (1956) [J. Exp. Theor. Phys. 3, 696-705 (1956)].
- J. M. Dawson, “Nonlinear Electron Oscillations in a Cold Plasma,” Phys. Rev. 113 (2), 383-387 (1959).
- G. Lehmann, E. W. Laedke, and K. H. Spatschek, “Localized Wake-Field Excitation and Relativistic Wave-Breaking,” Phys. Plasmas 14 (2007).
doi 10.1063/1.2796103
- A. G. Kulikovskii, N. V. Pogorelov, and A. Yu. Semenov, Mathematical Aspects of Numerical Solution of Hyperbolic Systems (Fizmatlit, Moscow, 2001; CRC Press, Boca Raton, 2001).
- E. V. Chizhonkov, Mathematical Aspects of Modelling Oscillations and Wake Waves in Plasma (Fizmatlit, Moscow, 2018; CRC Press, Boca Raton, 2019).
- A. A. Frolov and E. V. Chizhonkov, “The Effect of Electron-Ion Collisions on the Breaking of Cylindrical Plasma Oscillations,” Mat. Model. 30 (10), 86-106 (2018). [Math. Models Comput. Simul. 11 (3), 438-450 (2019)].
- A. A. Frolov and E. V. Chizhonkov, “Numerical Modeling of Plasma Oscillations with Consideration of Electron Thermal Motion,” Vychisl. Metody Programm. 19, 194-206 (2018).
- E. V. Chizhonkov and A. A. Frolov, “Influence of Electron Temperature on Breaking of Plasma Oscillations,” Russ. J. Numer. Anal. Math. Modelling 34 (2), 71-84 (2019).
- S. K. Godunov and V. S. Ryaben’kii, Difference Schemes (Nauka, Moscow, 1973; North Holland, Amsterdam, 1987).
- D. E. Potter, Computational Physics (Wiley, London, 1973; Mir, Moscow, 1975).
- Yu. I. Shokin and N. N. Yanenko, Method of Differential Approximation: Application to Gas Dynamics (Nauka, Novosibirsk, 1985) [in Russian].
- D. A. Anderson, J. C. Tannehill, and R. H. Pletcher, Computational Fluid Mechanics and Heat Transfer (Hemisphere, New York, 1984; Mir, Moscow, 1990).
- V. P. Silin, Introduction to Kinetic Theory of Gases (Nauka, Moscow, 1971) [in Russian].
- A. F. Aleksandrov, L. S. Bogdankevich, and A. A. Rukhadze, Principles of Plasma Electrodynamics (Springer, New York, 1984; Vysshaya Shkola, Moscow, 1988).
- V. L. Ginzburg and A. A. Rukhadze, Waves in Magnetoactive Plasma (Nauka, Moscow, 1975) [in Russian].
- V. P. Silin and A. A. Rukhadze, Electromagnetic Properties of Plasma and Plasma-Like Media (Librokom, Moscow, 2012) [in Russian].
- C. J. R. Sheppard, “Cylindrical Lenses - Focusing and Imaging: A Review [Invited],” Appl. Opt. 52 (4), 538-545 (2013).
- R. W. MacCormack, “The Effect of Viscosity in Hypervelocity Impact Cratering,” J. Spacecr. Rockets 40 (2003).
doi 10.2514/2.6901
- P. D. Lax and B. Wendroff, “Systems of Conservation Laws III,” Commun. Pure Appl. Math. 13 (2), 217-237 (1960).
- Z. I. Fedotova, “On the Application of the MacCormack Scheme for Problems of Long Wave Hydrodynamics,” Vychisl. Teknol. 11, Special Issue, 53-63 (2006).
- J. Machalinska-Murawska and M. Szydlowski, “Lax-Wendroff and McCormack Schemes for Numerical Simulation of Unsteady Gradually and Rapidly Varied Open Channel Flow,” Arch. Hydro-Eng. Environ. Mech. 60 (1-4), 51-62 (2013).