Многомасштабное суперкомпьютерное моделирование процессов очистки газа методом адсорбции

Авторы

DOI:

https://doi.org/10.26089/NumMet.v21r106

Ключевые слова:

многомасштабное суперкомпьютерное моделирование, процессы очистки газа методом адсорбции, высокопроизводительные вычисления

Аннотация

Рассматривается проблема суперкомпьютерного моделирования процессов очистки воздушной среды от мелкодисперсных твердых загрязняющих примесей, кластеризованных в виде наночастиц. Моделируемый способ очистки предполагает применение нанофильтров и сорбентов. Оба способа очистки часто комбинируются в современных очистных системах. Способ очистки с помощью нанофильтров позволяет получить высокое качество, но является дорогостоящим вследствие необходимости частой замены фильтрующих элементов (мембран). Способ очистки с помощью сорбентов оказывается несколько хуже по качеству, однако позволяет проводить очистку многократно после промывки сорбента специальными жидкостями. Для оптимизации систем воздушной очистки, использующих нанофильтры и сорбенты, необходимо детальное исследование протекающих в системе очистки процессов. В предлагаемом исследовании рассматривается часть проблемы, связанная с прохождением воздушного потока, содержащего твердые наночастицы загрязнителя, через слой гранулированного сорбента. Для этого разработаны многомасштабная математическая модель, численный алгоритм и параллельная реализация модели на макроскопическом масштабе. Новизна подхода связана с использованием квазигазодинамической модели для описания течения в сорбирующем слое и нескольких вариантов граничных условий на гранулах сорбента. Предварительные расчеты показали возможность расчета течений подобного класса.

Авторы

С.В. Поляков

Институт прикладной математики имени М.В. Келдыша РАН (ИПМ РАН)
Миусская пл., 4, 125047, Москва
• заведующий сектором

Ю.Н. Карамзин

Институт прикладной математики имени М.В. Келдыша РАН (ИПМ РАН)
Миусская пл., 4, 125047, Москва
• ведущий научный сотрудник

Т.А. Кудряшова

Институт прикладной математики имени М.В. Келдыша РАН (ИПМ РАН)
Миусская пл., 4, 125047, Москва
• старший научный сотрудник

В.О. Подрыга

Институт прикладной математики имени М.В. Келдыша РАН (ИПМ РАН)
Миусская пл., 4, 125047, Москва
• ведущий научный сотрудник

Д.В. Пузырьков

Институт прикладной математики имени М.В. Келдыша РАН (ИПМ РАН)
Миусская пл., 4, 125047, Москва
• младший научный сотрудник

Н.И. Тарасов

Институт прикладной математики имени М.В. Келдыша РАН (ИПМ РАН)
Миусская пл., 4, 125047, Москва
• младший научный сотрудник

Библиографические ссылки

  1. W. Strauss, Industrial Gas Cleaning (Pergamon, New York, 1975; Khimiya, Moscow, 1981).
  2. N. V. Keltsev, Fundamentals of Adsorption Technique (Khimiya, Moscow, 1976) [in Russian].
  3. V. G. Matveikin, V. A. Pogonin, S. B. Putin, and S. A. Skvortsov, Mathematical Modeling and Control of Short-Cycle Nonthermal Adsorption (Mashinostroenie-1, Moscow, 2007) [in Russian].
  4. E. S. Pikalov, Processes and Apparatuses for Environmental Protection. Physico-Сhemical Methods for Cleaning the Industrial Emissions in the Atmosphere and Gydrosphere (Vladimir Gos. Univ., Vladimir, 2016) [in Russian].
  5. Yu. A. Gorbatenko, Adsorption of Toxic Gas Impurities from Contaminated Air (Ural. Gos. Lesotekhn. Univ., Ekaterinburg, 2014) [in Russian].
  6. A. M. Mazgarov and O. M. Kornetova, Technologies for Cleaning Associated Gas from Hydrogen Sulphide (Kazan Univ., Kazan, 2015) [in Russian].
  7. G. T. Shcherban, M. I. Zhukova, N. A. Nikulin, and V. A. Obrubov, Resource-Saving during the Fume Cleaning in Synthetic Rubber Industry (TsNIITE Neftekhim., Moscow, 1988) [in Russian].
  8. L. B. Begun and V. I. Trachenko, Adsorption Refining of Gas Emissions from Organic Compounds (TsNIITE Neftekhim., Moscow, 1985) [in Russian].
  9. N. M. Kuz’menko, Yu. M. Afanas’ev, G. S. Frolov, and V. N. Glupanov, Adsorption Refining of Natural Gas from Sulfide Compounds (TsNIITE Neftekhim., Moscow, 1987) [in Russian].
  10. S. Brunauer, Adsorption of Gases and Vapors (Oxford Univ. Press, London, 1945; Izdatinlit, Moscow, 1948).
  11. E. A. Shtokman, Air Cleaning (ASW Press, Moscow, 2007) [in Russian].
  12. N. F. Gladyshev, T. V. Gladysheva, and S. I. Dvoretskiy, Systems of Air Regeneration and Cleaning in Habitable Hermetic Objects (Spektr, Moscow, 2016) [in Russian].
  13. V. S. Soldatov, A. A. Shunkevich, and V. V. Martsinkevich, “Comparative Study of Water Softening with Granular and Fibrous Ion Exchangers,” Zh. Prikl. Khim. 74 (9), 1477-1480 (2001) [Russ. J. Appl. Chem. 74 (9), 1521-1524 (2001)].
  14. E. A. Zakharchenko, O. B. Mokhodoeva, and G. V. Myasoedova, “Use of Fibrous Filled Sorbents for the Dynamic Concentration of Noble Metals,” Sorbtsion. Khromatich. Protsessy 5 (5), 679-689 (2005).
  15. I. V. Komarova, N. K. Galkina, and K. I. Shcheptovetskaya, “Study of Fibrous Sorbent Filled with Cation-Exchanger KU-2 Using Mathematical Models of Water Softening Process,” Sorbtsion. Khromatich. Protsessy 10 (3), 371-377 (2010).
  16. Yu. N. Karamzin, T. A. Kudryashova, V. O. Podryga, and S. V. Polyakov, “Multiscale Simulation of Nonlinear Processes in Technical Microsystems,” Mat. Model. 27 (7), 65-74 (2015).
  17. T. Kudryashova, Yu. Karamzin, V. Podryga, and S. Polyakov, “Two-Scale Computation of N_2-H_2 Jet Flow Based on QGD and MMD on Heterogeneous Multi-Core Hardware,” Adv. Eng. Softw. 120, 79-87 (2018).
  18. V. O. Podryga, Yu. N. Karamzin, T. A. Kudryashova, and S. V. Polyakov, “Multiscale Simulation of Three-Dimensional Unsteady Gas Flows in Microchannels of Technical Systems,” in Proc. Seventh European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2016), Crete Island, Greece, June 5-10, 2016.
    https://www.eccomas2016.org/proceedings/pdf/8869.pdf . Cited February 7, 2020.
  19. V. O. Podryga, “Multiscale Approach to Computation of Three-Dimensional Gas Mixture Flows in Engineering Microchannels,” Dokl. Akad. Nauk 469 (6), 656-658 (2016) [Dokl. Math. 94 (1), 458-460 (2016)].
  20. V. O. Podryga and S. V. Polyakov, “Parallel Implementation of Multiscale Approach to the Numerical Study of Gas Microflows,” Vychisl. Metody Programm. 17, 147-165 (2016).
  21. V. O. Podryga and S. V. Polyakov, Multiscale Modeling of Gas Jet Outflow to Vacuum , Preprint No. 81 (Keldysh Inst. Appl. Math., Moscow, 2016).
  22. T. Kudryashova, V. Podryga, and S. Polyakov, “HPC-Simulation of Gasdynamic Flows on Macroscopic and Molecular Levels,” in Nonlinearity. Problems, Solutions and Applications (Nova Science Publ., New York, 2017), pp. 543-556.
  23. L. I. Kheifets and A. V. Neimark, Multiphase Processes in Porous Media (Khimiya, Moscow, 1982) [in Russian].
  24. P. V. Moskalev and V. V. Shitov, Mathematical Modeling of Porous Structures (Fizmatlit, Moscow, 2007) [in Russian].
  25. R. W. Hockney and J. W. Eastwood, Computer Simulation Using Particles (McGraw-Hill, New York, 1981; Mir, Moscow, 1987).
  26. D. C. Rapaport, The Art of Molecular Dynamics Simulation (Cambridge Univ. Press, Cambridge, 2004).
  27. G. S. Fishman, Monte Carlo: Concepts, Algorithms, and Applications (Springer, New York, 1996).
  28. O. M. Belotserkovskii and Yu. I. Khlopkov, Monte Carlo Methods in Mechanics of Fluid and Gas (Azbuka, Moscow, 2008; World Scientific Publ., Singapore, 2010).
  29. B. N. Chetverushkin, Kinetic Schemes and Quasi-Gasdynamic System of Equations (CIMNE, Barcelona, 2008).
  30. T. G. Elizarova, Quasi-Gas Dynamic Equations and Methods for the Computation of Viscous Flow (Nauchnyi Mir, Moscow, 2007) [in Russian].
  31. Yu. V. Sheretov, Dynamics of Continuum Media under Spatiotemporal Averaging (Regular and Chaotic Dynamics, Izhevsk, 2009) [in Russian].
  32. T. G. Elizarova, A. A. Zlotnik, and B. N. Chetverushkin, “On Quasi-Gasdynamic and Quasi-Hydrodynamic Equations for Binary Gas Mixtures,” Dokl. Akad. Nauk 459 (4), 395-399 (2014) [Dokl. Math. 90 (3), 719-723 (2014)].
  33. V. O. Podryga, S. V. Polyakov, and D. V. Puzyrkov, “Supercomputer Molecular Modeling of Thermodynamic Equilibrium in Gas-Metal Microsystems,” Vychisl. Metody Programm. 16, 123-138 (2015).
  34. V. O. Podryga and S. V. Polyakov, Molecular Dynamic Calculation of Gas Macroparameters in the Stream and on the Boundary , Preprint No. 80 (Keldysh Inst. Appl. Math., Moscow, 2016).
  35. G. I. Marchuk, Splitting Methods (Nauka, Moscow, 1988) [in Russian].
  36. R. Eymard, T. Gallouёt, and R. Herbin, “Finite Volume Methods,” in Handbook of Numerical Analysis (North Holland, Amsterdam, 2000), Vol. 7, pp. 713-1020.
  37. Yu. N. Grigor’ev, V. A. Vshivkov, and M. P. Fedoruk, Numerical Simulation with Particle-in-Cell Methods (Izd. Ross. Akad. Nauk, Novosibirsk, 2004) [in Russian].
  38. I. V. Popov and S. V. Polyakov, “Construction of Adaptive Irregular Triangular Grids for 2D Multiply Connected Nonconvex Domains,” Mat. Model. 14 (6), 25-35 (2002).
  39. Computational Fluid Dynamics in ANSYS CFX.
    https://www.cadfem-cis.ru/products/ansys/fluids/cfx/. Cited February 7, 2020.
  40. I. V. Popov and I. V. Fryazinov, Method of Adaptive Artificial Viscosity for Solving the Gas Dynamics Equations (Krasand, Moscow, 2014) [in Russian].
  41. Yu. N. Karamzin and S. V. Polyakov, “Exponential Finite Volume Schemes for Solving Elliptic and Parabolic Equations of the General Type on Irregular Grids,” in Proc. 8th All-Russian Conference on Grid Methods for Boundary-Value Problems and Applications, Kazan, Russia, September 30-October 5, 2010 (Kazan Gos. Univ., Kazan, 2010), pp. 234-248.

Загрузки

Опубликован

13-02-2020

Как цитировать

Поляков С., Карамзин Ю., Кудряшова Т., Подрыга В., Пузырьков Д., Тарасов Н. Многомасштабное суперкомпьютерное моделирование процессов очистки газа методом адсорбции // Вычислительные методы и программирование. 2020. 21. 64-77. doi 10.26089/NumMet.v21r106

Выпуск

Раздел

Раздел 1. Вычислительные методы и приложения