Модификация схемы Кабаре для разрешения звуковых точек в газовых течениях
Авторы
-
А.В. Данилин
-
А.В. Соловьев
Ключевые слова:
системы гиперболических уравнений
схема Кабаре
вычислительная гидродинамика (CFD)
консервативный метод
звуковые точки
ударные волны разрежения
Аннотация
Представлен явный численный алгоритм для разрешения звуковых точек в рамках схемы Кабаре. Звуковые точки характеризуются сменой знака хотя бы одной из характеристических скоростей. Потоки в узлах расчетной сетки, которым соответствуют звуковые точки, вычисляются путем решения задачи Римана о распаде разрыва. Подход успешно испытан на задачах со сверхзвуковым переходом на волне разрежения с разбеганием двух сверхзвуковых потоков и со сверхзвуковым обтеканием прямой ступеньки.
Раздел
Раздел 1. Вычислительные методы и приложения
Библиографические ссылки
- M. V. Abakumov, S. I. Mukhin, Yu. P. Popov, and D. V. Rogozhkin, Shock Waves of Rarefaction in Computational Gas Dynamics , Preprint No. 3 (Keldysh Institute of Applied Mathematics, Moscow, 2006).
- Yu. M. Davydov, “Application of the Differential Approximation Method to Study and Construction of Nonlinear Difference Schemes,” Numer. Methods Continuum Mech. 11 (4), 41-59 (1980).
- O. A. Kuznetsov, Numerical Testing of Roe-Einfeldt Scheme for Hydrodynamics , Preprint No. 043 (Keldysh Institute of Applied Mathematics, Moscow, 1998).
- V. G. Kondakov, A Generalization of the Cabaret Scheme to Multidimensional Gas Dynamics Equations , Candidate’s Dissertation in Mathematics and Physics (Moscow State Univ., Moscow, 2014).
- V. M. Goloviznin, A. V. Solovjev, and V. A. Isakov, “An Approximation Algorithm for the Treatment of Sound Points in the CABARET Scheme,” Vychisl. Metody Programm. 17, 166-176 (2016).
- Yu. P. Raizer, Introduction to Hydrogasdynamics and the Theory of Shock Waves for Physicists (Intellekt, Dolgoprudnyi, 2011) [in Russian].
- B. Einfeldt, C. D. Munz, P. L. Roe, and B. Sjögreen, “On Godunov-Type Methods near Low Densities,” J. Comput. Phys. 92 (2), 273-295 (1991).
- P. Woodward and P. Colella, “The Numerical Simulation of Two-Dimensional Fluid Flow with Strong Shocks,” J. Comput. Phys. 54 (1), 115-173 (1984).
- V. M. Goloviznin and A. A. Samarskii, “Some Characteristics of Finite Difference Scheme Cabaret,” Mat. Model. 10 (1), 101-116 (1998).
- V. M. Goloviznin and S. A. Karabasov, “Nonlinear Correction of Cabaret Scheme,” Mat. Model. 10 (12), 107-123 (1998).
- V. M. Goloviznin, S. A. Karabasov, and I. M. Kobrinskii, “Balance-Characteristic Schemes with Separated Conservative and Flux Variables,” Mat. Model. 15 (9), 29-48 (2003).
- V. M. Goloviznin, “Balanced Characteristic Method for 1D Systems of Hyperbolic Conservation Laws in Eulerian Representation,” Mat. Model. 18 (11), 14-30 (2006).
- S. A. Karabasov and V. M. Goloviznin, “Compact Accurately Boundary-Adjusting High-Resolution Technique for Fluid Dynamics,” J. Comput. Phys. 228 (19), 7426-7451 (2009).
- A. V. Danilin and A. V. Solovjev, “A Modification of the CABARET Scheme for the Computation of Multicomponent Gaseous Flows,” Vychisl. Metody Programm. 16, 18-25 (2015).
- A. V. Danilin, A. V. Solovjev, and A. M. Zaitsev, “A Modification of the CABARET Scheme for Numerical Simulation of Multicomponent Gaseous Flows in Two-Dimensional Domains,” Vychisl. Metody Programm. 16, 436-445 (2015).