Численное моделирование химического взаимодействия флюида с горной породой
Авторы
-
К.А. Гадыльшина
-
Т.С. Хачкова
-
В.В. Лисица
Ключевые слова:
метод функции уровня
метод погруженных границ
химическое растворение
Аннотация
Предложен алгоритм численного моделирования процессов химического взаимодействия флюида с породой в масштабе пор. Алгоритм основан на методе расщепления задачи по физическим процессам. Предполагается, что скорость течения флюида мала, а установление потока происходит мгновенно при малых изменениях геометрии порового пространства. Таким образом, поток флюида в поровом пространстве моделируется при помощи уравнения Стокса для стационарного течения жидкости. Перенос химически активного компонента описывается уравнением конвекции-диффузии с граничными условиями третьего рода. Граница порового пространства изменяется со временем и задается неявно функцией уровня. Для численного решения уравнения Стокса и уравнения конвекции-диффузии применяется метод конечных разностей с аппроксимацией краевого условия взаимодействия жидкой и твердой фазы на погруженной границе.
Раздел
Раздел 1. Вычислительные методы и приложения
Библиографические ссылки
- A. E. Amikiya and M. K. Banda, “Modelling and Simulation of Reactive Transport Phenomena,” J. Comput. Sci. 28, 155-167 (2018).
- H. Andr854, N. Combaret, J. Dvorkin, et al., “Digital Rock Physics Benchmarks - Part I: Imaging and Segmentation,” Comput. Geosci. 50, 25-32 (2013).
- H. Andr854, N. Combaret, J. Dvorkin, et al., “Digital Rock Physics Benchmarks - Part II: Computing Effective Properties,” Comput. Geosci. 50, 33-43 (2013).
- Y. Bazaikin, B. Gurevich, S. Iglauer, et al., “Effect of CT Image Size and Resolution on the Accuracy of Rock Property Estimates,” J. Geophys. Res.: Solid Earth 122 (5), 3635-3647 (2017).
- F. Bouchelaghem, “A Numerical and Analytical Study on Calcite Dissolution and Gypsum Precipitation,” Appl. Math. Model. 34 (2), 467-480 (2010).
- S. Emberley, I. Hutcheon, M. Shevalier, et al., “Geochemical Monitoring of Fluid-Rock Interaction and CO_2 Storage at the Weyburn CO_2-Injection Enhanced Oil Recovery Site, Saskatchewan, Canada,” Energy 29 (9-10), 1393-1401 (2004).
- R. P. Fedkiw, T. Aslam, B. Merriman, and S. Osher, “A Non-oscillatory Eulerian Approach to Interfaces in Multimaterial Flows (the Ghost Fluid Method),” J. Comput. Phys. 152 (2), 457-492 (1999).
- M. Ghommem, W. Zhao, S. Dyer, et al., “Carbonate Acidizing: Modeling, Analysis, and Characterization of Wormhole Formation and Propagation,” J. Petrol. Sci. Eng. 131, 18-33 (2015).
- F. Gibou, R. Fedkiw, and S. Osher, “A Review of Level-Set Methods and Some Recent Applications,” J. Comput. Phys. 353, 82-109 (2018).
- Y. Hao, M. Smith, Y. Sholokhova, and S. Carroll, “CO_2-Induced Dissolution of Low Permeability Carbonates. Part II: Numerical Modeling of Experiments,” Adv. Water Resour. 62 (Part C), 388-408 (2013).
- J. D. Hyman and C. L. Winter, “Stochastic Generation of Explicit Pore Structures by Thresholding Gaussian Random Fields,” J. Comput. Phys. 277, 16-31 (2014).
- H. Johansen and P. Colella, “A Cartesian Grid Embedded Boundary Method for Poisson’s Equation on Irregular Domains,” J. Comput. Phys. 147 (1), 60-85 (1998).
- N. Kalia and V. Balakotaiah, “Effect of Medium Heterogeneities on Reactive Dissolution of Carbonates,” Chem. Eng. Sci. 64 (2), 376-390 (2009).
- Q. Kang, L. Chen, A. J. Valocchi, and H. S. Viswanathan, “Pore-Scale Study of Dissolution-Induced Changes in Permeability and Porosity of Porous Media,” J. Hydrol. 517, 1049-1055 (2014).
- A. M. M. Leal, M. J. Blunt, and T. C. LaForce, “A Robust and Efficient Numerical Method for Multiphase Equilibrium Calculations: Application to CO_2-Brine-Rock Systems at High Temperatures, Pressures and Salinities,” Adv. Water Resour. 62 (Part C), 409-430 (2013).
- M. Lebedev, Y. Zhang, M. Sarmadivaleh, et al., “Carbon Geosequestration in Limestone: Pore-Scale Dissolution and Geomechanical Weakening,” Int. J. Greenh. Gas Con. 66, 106-119 (2017).
- X. Li, H. Huang, and P. Meakin, “Level Set Simulation of Coupled Advection-Diffusion and Pore Structure Evolution Due to Mineral Precipitation in Porous Media,” Water Resour. Res. 44 (2008).
doi 10.1029/2007WR006742
- X. Li, H. Huang, and P. Meakin, “A Three-Dimensional Level Set Simulation of Coupled Reactive Transport and Precipitation/Dissolution,” Int. J. Heat Mass Transf. 53 (13-14), 2908-2923 (2010).
- K. Luo, Z. Zhuang, J. Fan, and N. E. L. Haugen, “A Ghost-Cell Immersed Boundary Method for Simulations of Heat Transfer in Compressible Flows under Different Boundary Conditions,” Int. J. Heat Mass Transf. 92, 708-717 (2016).
- S. Marella, S. Krishnan, H. Liu, and H. S. Udaykumar, “Sharp Interface Cartesian Grid Method I: An Easily Implemented Technique for 3D Moving Boundary Computations,” J. Comput. Phys. 210 (1), 1-31 (2005).
- A. Meirmanov, N. Omarov, V. Tcheverda, and A. Zhumaly, “Mesoscopic Dynamics of Solid-Liquid Interfaces. A General Mathematical Model,” Sib. Elektron. Mat. Izv. 12, 884-900 (2015).
- R. Mittal and G. Iaccarino, “Immersed Boundary Methods,” Ann. Rev. Fluid. Mech. 37 (1), 239-261 (2005).
- S. Molins, D. Trebotich, C. I. Steefel, and C. Shen, “An Investigation of the Effect of Pore Scale Flow on Average Geochemical Reaction Rates Using Direct Numerical Simulation,” Water Resour. Res. 48 (2012).
doi 10.1029/2011WR011404
- S. Molins, D. Trebotich, L. Yang, et al., “Pore-Scale Controls on Calcite Dissolution Rates from Flow-through Laboratory and Numerical Experiments,” Environ. Sci. Technol. 48 (13), 7453-7460 (2014).
- J. Mou and S. Zhang, “Modeling Acid Leakoff during Multistage Alternate Injection of Pad and Acid in Acid Fracturing,” J. Nat. Gas Sci. Eng. 26, 1161-1173 (2015).
- S. Osher and R. Fedkiw, “Level Set Methods: An Overview and Some Recent Results,” J. Comput. Phys. 169 (2), 463-502 (2001).
- C. S. Peskin, “Flow Patterns around Heart Valves: A Numerical Method,” J. Comput. Phys. 10 (2), 252-271 (1972).
- F. Sotiropoulos and X. Yang, “Immersed Boundary Methods for Simulating Fluid-Structure Interaction,” Prog. Aerosp. Sci. 65, 1-21 (2014).
- C. I. Steefel, C. A. J. Appelo, B. Arora, et al., “Reactive Transport Codes for Subsurface Environmental Simulation,” Comput. Geosci. 19 (3), 445-478 (2015).
- C. I. Steefel and A. C. Lasaga, “A Coupled Model for Transport of Multiple Chemical Species and Kinetic Precipitation/Dissolution Reactions with Application to Reactive Flow in Single Phase Hydrothermal Systems,” Am. J. Sci. 294 (5), 529-592 (1994).
- M. Sussman and E. Fatemi, “An Efficient, Interface-Preserving Level Set Redistancing Algorithm and Its Application to Interfacial Incompressible Fluid Flow,” SIAM J. Sci. Comput. 20 (4), 1165-1191 (1999).
- M. Sussman, E. Fatemi, P. Smereka, and S. Osher, “An Improved Level Set Method for Incompressible Two-Phase Flows,” Comput. Fluids 27 (5-6), 663-680 (1998).
- D. Trebotich, M. F. Adams, S. Molins, et al., “High-Resolution Simulation of Pore-Scale Reactive Transport Processes Associated with Carbon Sequestration,” Comput. Sci. Eng. 16 (6), 22-31 (2014).
- Y.-H. Tseng and J. H. Ferziger, “A Ghost-Cell Immersed Boundary Method for Flow in Complex Geometry,” J. Comput. Phys. 192 (2), 593-623 (2003).
- T. Vanorio, A. Nur, and Y. Ebert, “Rock Physics Analysis and Time-Lapse Rock Imaging of Geochemical Effects Due to the Injection of CO_2 into Reservoir Rocks,” Geophysics. 76 (2011).
doi 10.1190/geo2010-0390.1
- Z. Xu and P. Meakin, “Phase-Field Modeling of Solute Precipitation and Dissolution,” J. Chem. Phys. 129 (2008).
doi 10.1063/1.2948949
- H. Yoon, A. J. Valocchi, C. J. Werth, and T. A. Dewers, “Pore-scale Simulation of Mixing-Induced Calcium Carbonate Precipitation and Dissolution in a Microfluidic Pore Network,” Water Resour. Res. 48 (2012).
doi 10.1029/2011WR011192
- G. Zimmermann, G. Blöcher, A. Reinicke, and W. Brandt, “Rock Specific Hydraulic Fracturing and Matrix Acidizing to Enhance a Geothermal System - Concepts and Field Results,” Tectonophysics 503 (1-2), 146-154 (2011).