Параметризация речной сети для модели Земной системы
Авторы
-
В.М. Степаненко
-
А.И. Медведев
-
И.А. Корпушенков
-
Н.Л. Фролова
-
В.Н. Лыкосов
Ключевые слова:
модель Земной системы
блок термогидродинамики суши
речная сеть
снеготаяние
Аннотация
Представлена новая версия модели ИВМ РАН-МГУ деятельного слоя суши с описанием термогидродинамики речных потоков. Динамика рек представлена уравнениями диффузионной волны, термика — одномерным уравнением притока тепла. Объектно-ориентированная реализация блока речной сети позволяет использовать произвольные решатели одномерных задач речной динамики, например уравнений Сен-Венана. В описание термодинамики снежного покрова добавлены эффекты просачивания жидкой влаги и ее замерзания. Совокупность усовершенствований модели позволила существенно улучшить расчет годового расхода воды и удовлетворительно воспроизвести термический режим крупной равнинной реки Северная Двина.
Раздел
Раздел 1. Вычислительные методы и приложения
Библиографические ссылки
- E. M. Volodin, V. Ya. Galin, A. S. Gritsun, et al., Mathematical Modeling of the Earth System (MAKS Press, Moscow, 2016) [in Russian].
- G. M. Flato, “Earth System Models: An Overview,” Wiley Interdiscip. Rev. Clim. Change 2 (6), 783-800 (2011).
- V. K. Arora, F. H. S. Chiew, and R. B. Grayson, “A River Flow Routing Scheme for General Circulation Models,” J. Geophys. Res. Atmos. 104 (D12), 14347-14357 (1999).
- V. A. Bell, A. L. Kay, R. G. Jones, and R. J. Moore, “Development of a High Resolution Grid-Based River Flow Model for Use with Regional Climate Model Output,” Hydrol. Earth Syst. Sci. 11 (1), 532-549 (2007).
- P. Falloon, R. Betts, and C. Bunton, New Global River Routing Scheme in the Unified Model , Tech. Note No. 72 (Hadley Centre, Exeter, 2007).
- P. Lucas-Picher, V. K. Arora, D. Caya, and R. Laprise, “Implementation of a Large-Scale Variable Velocity River Flow Routing Algorithm in the Canadian Regional Climate Model (CRCM),” Atmos. Ocean 41 (2), 139-153 (2003).
- R. Sausen, S. Schubert, and L. Dümenil, “A Model of River Runoff for Use in Coupled Atmosphere-Ocean Models,” J. Hydrol. 155 (3-4), 337-352 (1994).
- A. Ye, Q. Duan, C. Zhan, et al., “Improving Kinematic Wave Routing Scheme in Community Land Model,” Hydrol. Res. 44 (5), 886-903 (2013).
- V. I. Kuzin, G. A. Platov, and N. A. Lapteva, “Assessing the Effect of Year-to-Year Runoff Variations in Siberian Rivers on Circulation in the Arctic Ocean,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 51 (4), 437-447 (2015) [Izv., Atmos. Ocean. Phys. 51 (4), 381-390 (2015)].
- B. Huang and V. M. Mehta, “Influences of Freshwater from Major Rivers on Global Ocean Circulation and Temperatures in the MIT Ocean General Circulation Model,” Adv. Atmos. Sci. 27 (3), 455-468 (2010).
- V. V. Malakhova and E. N. Golubeva, “The Role of the Siberian Rivers in Increase of the Dissolved Methane Concentration in the East Siberian Shelf,” Optika Atmosfery Okeana 25 (6), 534-538 (2012).
- P. A. Raymond, J. Hartmann, R. Lauerwald, et al., “Global Carbon Dioxide Emissions from Inland Waters,” Nature 503 (7476), 355-359 (2013).
- G. H. Allen and T. M. Pavelsky, “Global Extent of Rivers and Streams,” Science 361 (6402), 585-588 (2018).
- E. M. Volodin and V. N. Lykosov, “Parametrization of Heat and Moisture Transfer in the Soil-Vegetation System for Use in Atmospheric General Circulation Models: 2. Numerical Experiments in Climate Modeling,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 34 (5), 622-633 (1998) [Izv., Atmos. Ocean. Phys. 34 (5), 559-569 (1998)].
- V. N. Lykosov and E. G. Palagin, “Dynamics of Interrelated Heat and Moisture Transfer in the System Atmosphere-Soil,” Meteorol. Gidrol., No. 8, 48-56 (1978).
- The ECHAM3 Atmospheric General Circulation Model. Technical Report No. 6. (Deutsches Klimarechnenzentrum, Hamburg, 1992).
- M. F. Wilson and A. Henderson-Sellers, “A global Archive of Land Cover and Soils Data for Use in General Circulation Climate Models,” J. Climatol. 5 (2), 119-143 (1985).
- V. Bogomolov, V. Stepanenko, and E. Volodin, “Development of Lake Parametrization in the INMCM Climate Model,” IOP Conference Series: Earth and Environmental Science 48 (2016).
doi 10.1088/1755-1315/48/1/012005
- M. Choulga, E. Kourzeneva, E. Zakharova, and A. Doganovsky, “Estimation of the Mean Depth of Boreal Lakes for Use in Numerical Weather Prediction and Climate Modelling,” Tellus A 66 (2014)
doi 10.3402/tellusa.v66.21295
- V. N. Lykosov and E. G. Palagin, “A Method and an Example for Heat and Moisture Transfer in the Freezing Soil under a Snow Cover,” Tr. Gos. Gidrolog. Inst., No. 264, 12-23 (1980).
- E. E. Volodina, L. Bengtsson, and V. N. Lykosov, “Parameterization of Processes of Heat and Moisture Transfer in the Snow Cover for Modeling of Seasonal Variations in the Land Hydrological Cycle,” Meteorol. Gidrol., No. 5, 5-14 (2000).
- E. E. Machul’skaya, Simulation and Diagnosis of Processes of Heat and Moisture Transfer between the Atmosphere and Dry Land under Cold Climate Conditions , Candidate’s Dissertation in Mathematics and Physics (Moscow State Univ., Moscow, 2001).
- P. D{öll and B. Lehner, “Validation of a New Global 30-Min Drainage Direction Map,” J. Hydrol. 258 (1-4), 214-231 (2002).
- J. A. Downing, J. J. Cole, C. M. Duarte, et al., “Global Abundance and Size Distribution of Streams and Rivers,” Inland Waters 2 (4), 229-236 (2012).
- D. G. Tarboton, R. L. Bras, and I. Rodriguez-Iturbe, “The Fractal Nature of River Networks,” Water Resour. Res. 24 (8), 1317-1322 (1988).
- V. V. Kovalenko, N. V. Viktorova, and E. V. Gaidukova, Simulation of Hydrological Processes (Ross. Gidrometeorol. Univ., St. Petersburg, 2006) [in Russian].
- W. Wu, Computational River Dynamics (Taylor and Francis, London, 2008).
- S. L. Dingman, Fluvial Hydrology (Freeman, New York, 1984).
- C. Yu and J. G. Duan, “High Resolution Numerical Schemes for Solving Kinematic Wave Equation,” J. Hydrol. 519, 823-832 (2014).
- A. W. Vreman, “The Adjoint Filter Operator in Large-Eddy Simulation of Turbulent Flow,” Phys. Fluids 16 (6), 2012-2022 (2004).
- E. M. Volodin, “Representation of Heat, Moisture, and Momentum Fluxes in Climate Models. Fluxes at Surface,” Fundam. Prikl. Klimatol. 1, 28-42 (2016).