Использование методов асимптотического анализа при решении одной коэффициентной обратной задачи для системы нелинейных сингулярно возмущенных уравнений типа реакция-диффузия с кубической нелинейностью
Авторы
-
Д.В. Лукьяненко
-
А.А. Мельникова
Ключевые слова:
сингулярно возмущенная задача
внутренние и пограничные слои
уравнение типа реакция-диффузия
обратная задача с данными о положении внутреннего слоя
Аннотация
Продемонстрированы возможности методов асимптотического анализа в применении к решению коэффициентной обратной задачи для системы нелинейных сингулярно возмущенных уравнений типа реакция-диффузия с кубической нелинейностью. Рассматриваемая в статье задача для системы уравнений в частных производных сводится к гораздо более простой для численного исследования системе алгебраических уравнений, которая связывает данные обратной задачи (информацию о положении фронта реакции во времени) с коэффициентом, который необходимо восстановить. Численные эксперименты подтверждают эффективность предложенного подхода.
Раздел
Раздел 1. Вычислительные методы и приложения
Библиографические ссылки
- H. Meinhardt, Models of Biological Pattern Formation (Academic Press, London, 1982).
- R. FitzHugh, “Impulses and Physiological States in Theoretical Models of Nerve Membrane,” Biophys. J. 1 (6), 445-466 (1961).
- R. R. Aliev and A. V. Panfilov, “A Simple Two-Variable Model of Cardiac Excitation,” Chaos Soliton Fract. 7 (3), 293-301 (1996).
- Y. M. Ham, “Internal Layer Oscillations in FitzHugh-Nagumo Equation,” J. Comput. Appl. Math. 1999. 103 (2), 287-295 (1999).
- A. Hagberg and E. Meron, “Pattern Formation in Non-gradient Reaction-Diffusion Systems: The Effects of Front Bifurcations,” Nonlinearity 7 (3), 805-835 (1994).
- S.-L. Wu and H.-Q. Zhao, “Traveling Fronts for a Delayed Reaction-Diffusion System with a Quiescent Stage,” Commun. Nonlinear Sci. Numer. Simul. 16 (9), 3610-3621 (2011).
- H. Larralde, M. Araujo, S. Havlin, and H. E. Stanley, “Diffusion-Reaction Kinetics for A+B(static)->C(inert) for One-Dimensional Systems with Initially Separated Reactants,” Phys. Rev. A 46 (10), R6121-R6123 (1992).
- D. A. Kessler and H. Levine, “Fluctuation-Induced Diffusive Instabilities,” Nature 394 (6693), 556-558 (1998).
- R. O. Prum and S. Williamson, “Reaction-Diffusion Models of within-feather Pigmentation Patterning,” Proc. R. Soc. Lond. B: Biol. Sci. 269 (1493), 781-792 (2002).
- D. V. Lukyanenko, M. A. Shishlenin, and V. T. Volkov, “Solving of the Coefficient Inverse Problems for a Nonlinear Singularly Perturbed Reaction-Diffusion-Advection Equation with the Final Time Data,” Commun. Nonlinear Sci. Numer. Simul. 54, 233-247 (2018).
- D. V. Lukyanenko, V. T. Volkov, and N. N. Nefedov, “Dynamically Adapted Mesh Construction for the Efficient Numerical Solution of a Singular Perturbed Reaction-Diffusion-Advection Equation,” Model. Analiz Inform. Sist. 24 (3), 322-338 (2017).
- D. Lukyanenko, N. Nefedov, E. Nikulin, and V. Volkov, “Use of Asymptotics for New Dynamic Adapted Mesh Construction for Periodic Solutions with an Interior Layer of Reaction-Diffusion-Advection Equations,” in Lecture Notes in Computer Science (Springer, Heidelberg, 2017), Vol. 10187, pp. 107-118.
- A. Melnikova, N. Levashova, and D. Lukyanenko, “Front Dynamics in an Activator-Inhibitor System of Equations,” in Lecture Notes in Computer Science (Springer, Heidelberg, 2017), Vol. 10187, pp. 492-499.
- V. T. Volkov, D. V. Lukyanenko, and N. N. Nefedov, “Analytical-Numerical Approach to Describing Time-Periodic Motion of Fronts in Singularly Perturbed Reaction-Advection-Diffusion Models,” Zh. Vychisl. Mat. Mat. Fiz. 59 (1), 50-62 (2019) [Comput. Math. Math. Phys. 59 (1), 46-58 (2019)].
- D. V. Lukyanenko, M. A. Shishlenin, and V. T. Volkov, “Asymptotic Analysis of Solving an Inverse Boundary Value Problem for a Nonlinear Singularly Perturbed Time-Periodic Reaction-Diffusion-Advection Equation,” J. Inverse Ill-Posed Probl. 27 (2019).
doi 10.1515/jiip-2017-0074
- D. V. Lukyanenko, V. B. Grigorev, V. T. Volkov, and M. A. Shishlenin, “Solving of the Coefficient Inverse Problem for a Nonlinear Singularly Perturbed Two-Dimensional Reaction-Diffusion Equation with the Location of Moving Front Data,” Comput. Math. Appl. 77 (5), 1245-1254 (2019).
- S. I. Kabanikhin, “Definitions and Examples of Inverse and Ill-Posed Problems,” J. Inverse Ill-Posed Probl. 16 (4), 317-357 (2008).
- M. I. Belishev and Ya. V. Kuryiev, “Boundary Control, Wave Field Continuation and Inverse Problems for the Wave-Equation,” Comput. Math. Appl. 1991. 22 (4-5), 27-52 (1991).
- M. I. Belishev and Ya. V. Kuryiev, “To the Reconstruction of a Riemannian Manifold via its Spectral Data (BC-Method),” Commun. Part. Diff. Eq. 17 (5-6), 767-804 (1992).
- M. I. Belishev, “Boundary Control in Reconstruction of Manifolds and Metrics (the BC Method),” Inverse Probl. 13 (5), R1-R45 (1997).
- L. Beilina and M. V. Klibanov, “A Globally Convergent Numerical Method for a Coefficient Inverse Problem,” SIAM J. Sci. Comput. 31 (1), 478-509 (2008).
- N. Pantong, J. Su, H. Shan, et al., “Globally Accelerated Reconstruction Algorithm for Diffusion Tomography with Continuous-Wave Source in an Arbitrary Convex Shape Domain,” J. Opt. Soc. Am. A Opt. Image Sci. Vis. 2009. 26 (3), 456-472 (2009).
- M. V. Klibanov, M. A. Fiddy, L. Beilina, et al., “Picosecond Scale Experimental Verification of a Globally Convergent Algorithm for a Coefficient Inverse Problem,” Inverse Probl. 26 (2010).
doi 10.1088/0266-5611/26/4/045003
- N. T. Thánh, L. Beilina, M. V. Klibanov, and M. A. Fiddy, “Imaging of Buried Objects from Experimental Backscattering Time-Dependent Measurements Using a Globally Convergent Inverse Algorithm,” SIAM J. Imaging Sci. 8 (1), 757-786 (2015).
- M. V. Klibanov, N. A. Koshev, J. Li, and A. G. Yagola, “Numerical Solution of an Ill-Posed Cauchy Problem for a Quasilinear Parabolic Equation Using a Carleman Weight Function,” J. Inverse Ill-Posed Probl. 24 (6), 761-776 (2016).
- M. V. Klibanov and A. G. Yagola, “Convergent Numerical Methods for Parabolic Equations with Reversed Time via a New Carleman Estimate,” Inverse Probl. (in press).
doi 10.1088/1361-6420/ab2777
- S. I. Kabanikhin and M. A. Shishlenin, “Boundary Control and Gel’fand-Levitan-Krein Methods in Inverse Acoustic Problem,” J. Inverse Ill-Posed Probl. 12 (2), 125-144 (2004).
- S. I. Kabanikhin and M. A. Shishlenin, “Numerical Algorithm for Two-Dimensional Inverse Acoustic Problem Based on Gel’fand-Levitan-Krein Equation,” J. Inverse Ill-Posed Probl. 18 (9), 979-995 (2011).
- S. I. Kabanikhin, N. S. Novikov, I. V. Oseledets, and M. A. Shishlenin, “Fast Toeplitz Linear System Inversion for Solving Two-Dimensional Acoustic Inverse Problem,” J. Inverse Ill-Posed Probl. 23 (6), 687-700 (2015).
- S. I. Kabanikhin and M. A. Shishlenin, “Two-Dimensional Analogs of the Equations of Gelfand, Levitan, Krein, and Marchenko,” Eurasian J. Math. Comput. Appl. 3 (2), 70-99 (2015).
- S. I. Kabanikhin, K. K. Sabelfeld, N. S. Novikov, and M. A. Shishlenin, “Numerical Solution of an Inverse Problem of Coefficient Recovering for a Wave Equation by a Stochastic Projection Methods,” Monte Carlo Methods Appl. 21 (3), 189-203 (2015).
- S. I. Kabanikhin, K. K. Sabelfeld, N. S. Novikov, and M. A. Shishlenin, “Numerical Solution of the Multidimensional Gelfand-Levitan Equation,” J. Inverse Ill-Posed Probl. 23 (5), 439-450 (2015).
- S. I. Kabanikhin and M. A. Shishlenin, “Comparative Analysis of Boundary Control and Gel’fand-Levitan Methods of Solving Inverse Acoustic Problem,” in Inverse Problems in Engineering Mechanics IV (Elsevier, Amsterdam, 2003), pp. 503-512.
- N. T. Levashova and A. A. Mel’nikova, “Step-like Contrast Structure in a Singularly Perturbed System of Parabolic Equations,” Differ. Uravn. 51 (3), 339-358 (2015) [Differ. Equ. 51 (3), 342-361 (2015)].
- A. A. Melnikova and M. Chen, “Existence and Asymptotic Representation of the Autowave Solution of a System of Equations,” Zh. Vychisl. Mat. Mat. Fiz. 58 (5), 705-715 (2018) [Comput. Math. Math. Phys. 58 (5), 680-690 (2018)].
- A. B. Vasil’eva and V. F. Butuzov, Asymptotic Methods in the Theory of Singular Perturbations (Vysshaya Shkola, Moscow, 1990) [in Russian].
- M. M. Lavrent’ev, “On Integral Equations of the First Kind,” Dokl. Akad. Nauk SSSR 127 (1), 31-33 (1959).
- A. N. Tikhonov, “Regularization of Incorrectly Posed Problems,” Dokl. Akad. Nauk SSSR 153 (1), 49-52 (1963) [Sov. Math. Dokl. 4 (6), 1624-1627 (1963)].
- V. V. Vasin and A. L. Ageev, Ill-Posed Problems with A Priori Information (VSP, Utrecht, 1995).
- A. N. Tikhonov, A. V. Goncharsky, V. V. Stepanov, and A. G. Yagola, Numerical Methods for the Solution of Ill-Posed Problems (Kluwer, Dordrecht, 1995).
- V. A. Morozov, “Regularization of Incorrectly Posed Problems and the Choice of Regularization Parameter,” Zh. Vychisl. Mat. Mat. Fiz. 6 (1), 170-175 (1966) [USSR Comput. Math. Math. Phys. 6 (1), 242-251 (1966)].
- A. E. Sidorova, N. T. Levashova, A. A. Melnikova, et al., “Autowave Self-Organization in Heterogeneous Natural-Anthropogenic Ecosystems,” Vestn. Mosk. Univ., Ser. 3: Fiz. Astron., No. 5, 107-113 (2016) [Moscow Univ. Phys. Bull. 71 (6), 562-568 (2016)].
- N. T. Levashova, A. A. Melnikova, D. V. Luk’yanenko, et al., “Modeling of Ecosystems as a Process of Self-Organization,” Mat. Model. 29 (11), 40-52 (2017).
- A. G. Yagola, A. S. Leonov, and V. N. Titarenko, “Data Errors and an Error Estimation for Ill-Posed Problems,” Inverse Probl. Eng. 10 (2), 117-129 (2002).
- K. Yu. Dorofeev, V. N. Titarenko, and A. G. Yagola, “Algorithms for Constructing a Posteriori Errors of Solutions to Ill-Posed Problems,” Zh. Vychisl. Mat. Mat. Fiz. 43 (1), 12-25 (2003) [Comput. Math. Math. Phys. 43 (1), 10-23 (2003)].
- V. Titarenko and A. Yagola, “Error Estimation for Ill-Posed Problems on Piecewise Convex Functions and Sourcewise Represented Sets,” J. Inverse Ill-Posed Probl. 16 (6), 625-638 (2008).
- A. G. Yagola and Y. M. Korolev, “Error Estimation in Ill-Posed Problems in Special Cases,” in Applied Inverse Problems. Springer Proceedings in Mathematics and Statistics (Springer, New York, 2013), Vol. 48, pp. 155-164.
- A. S. Leonov, “Which of Inverse Problems Can Have a Priori Approximate Solution Accuracy Estimates Comparable in Order with the Data Accuracy,” Numer. Anal. Appl. 7 (4), 284-292 (2014).
- A. S. Leonov, “A Posteriori Accuracy Estimations of solutions to Ill-Posed Inverse Problems and Extra-Optimal Regularizing Algorithms for Their Solution,” Numer. Anal. Appl. 5 (1), 68-83 (2012).