Анализ устойчивости неявных конечно-разностных решеточных схем Больцмана с направленными разностями
Авторы
-
Г.В. Кривовичев
-
М.П. Мащинская
Ключевые слова:
метод решеточных уравнений Больцмана
неявные разностные схемы
устойчивость
Аннотация
Статья посвящена анализу устойчивости неявных конечно-разностных схем для системы кинетических уравнений, применяемых для проведения гидродинамических расчетов в рамках метода решеточных уравнений Больцмана. Представлены семейства двухслойных и трехслойных схем с направленными разностями первого-четвертого порядков аппроксимации по пространственным переменным. Важной особенностью схем является то, что конвективные слагаемые аппроксимируются одной конечной разностью. Показано, что в выражении для аппроксимационной вязкости схем высоких порядков отсутствуют фиктивные слагаемые, что позволяет применять их во всем диапазоне значений времени релаксации. Анализ устойчивости проводится по линейному приближению с использованием метода Неймана. Получены приближенные условия устойчивости в виде неравенств на значения параметра Куранта. При расчетах показано, что площади областей устойчивости в пространстве параметров у двухслойных схем больше, чем у трехслойных. Исследованные схемы могут применяться при расчетах как непосредственно, так и в методах типа предиктор-корректор.
Раздел
Раздел 1. Вычислительные методы и приложения
Библиографические ссылки
- S. Succi, The Lattice Boltzmann Equation for Complex States of Flowing Matter (Oxford Univ. Press, Oxford, 2018).
- D. A. Bikulov and D. S. Senin, “Implementation of the Lattice Boltzmann Method without Stored Distribution Functions on GPU,” Vychisl. Metody Programm. 14, 370-374 (2013).
- D. A. Bikulov, “An Efficient Implementation of the Lattice Boltzmann Method for Hybrid Supercomputers,” Vychisl. Metody Programm. 16, 205-214 (2015).
- A. L. Kupershtokh, “Three-Dimensional Simulations of Two-Phase Liquid-Vapor Systems on GPU Using the Lattice Boltzmann Method,” Vychisl. Metody Programm. 13, 130-138 (2012).
- A. L. Kupershtokh, D. A. Medvedev, and I. I. Gribanov, “Modeling of Thermal Flows in a Medium with Phase Transitions Using the Lattice Boltzmann Method,” Vychisl. Metody Programm. 15, 317-328 (2014).
- J. Wang, Q. Kang, Y. Wang, et al., “Simulation of Gas Flow in Micro-Porous Media with the Regularized Lattice Boltzmann Method,” Fuel 205, 232-246 (2017).
- X. He and L.-S. Luo, “A Priori Derivation of the Lattice Boltzmann Equation,” Phys. Rev. E 55 (6), R6333-R6336 (1997).
- V. Sofonea and R. F. Sekerka, “Viscosity of Finite Difference Lattice Boltzmann Models,” J. Comput. Phys. 184 (2), 422-434 (2003).
- T. Seta and R. Takakashi, “Numerical Stability Analysis of FDLBM,” J. Stat. Phys. 107 (1-2), 557-572 (2002).
- X. Shi, X. Huang, Y. Zheng, and T. Ji, “A Hybrid Algorithm of Lattice Boltzmann Method and Finite-Difference-Based Lattice Boltzmann Method for Viscous Flows,” Int. J. Numer. Meth. Fluids 85 (11), 641-661 (2017).
- A. Fakhari and T. Lee, “Finite-Difference Lattice Boltzmann Method with a Block-Structured Adaptive-Mesh-Refinement Technique,” Phys. Rev. E 89, 033310-1-033310-12 (2014).
- W. Li and W. Li, “A Gas-Kinetic BGK Scheme for the Finite Volume Lattice Boltzmann Method for Nearly Incompressible Flows,” Comput. Fluids 162, 126-138 (2018).
- L. Chen and L. Schaefer, “Godunov-Type Upwind Flux Schemes of the Two-Dimensional Finite Volume Discrete Boltzmann Method,” Comput. Math. Appl. 75 (9), 3105-3126 (2018).
- W. Shao and J. Li, “Three Time Integration Methods for Incompressible Flows with Discontinuous Galerkin lattice Boltzmann method,” Comput. Math. Appl. 75 (11), 4091-4106 (2018).
- M. Min and T. Lee, “A Spectral-Element Discontinuous Galerkin Lattice Boltzmann Method for Nearly Compressible Flows,” J. Comput. Phy. 230 (1), 245-259 (2011).
- T. Biciusca, A. Horga, and V. Sofonea, “Simulation of Liquid-vapour Phase Separation on GPUs Using Lattice Boltzmann Models with Off-Lattice Velocity Sets,” Comptes Rendus Mécanique 343 (10-11), 580-588 (2015).
- G. V. Krivovichev and S. A. Mikheev, “Stability of Three-Layer Finite Difference-Based Lattice Boltzmann Schemes,” Vychisl. Metody Programm. 15, 211-221 (2014).
- G. V. Krivovichev and S. A. Mikheev, “Stability Study of Finite-Difference-Based Lattice Boltzmann Schemes with Upwind Differences of High Order Approximation,” Vychisl. Metody Programm. 16, 196-204 (2015).
- G. V. Krivovichev and S. A. Mikheev, “On the Stability of Multi-Step Finite-Difference-Based Lattice Boltzmann Schemes,” Int. J. Comput. Meth. 16 (2019).
doi 10.1142/S0219876218500871
- G. V. Krivovichev and E. V. Voskoboinikova, “Application of Predictor-Corrector Finite-Difference-Based Schemes in the Lattice Boltzmann Method,” Vychisl. Metody Programm. 16, 10-17 (2015).
- P. Asinari, “Semi-Implicit-Linearized Multiple-Relaxation-Time Formulation of Lattice Boltzmann Schemes for Mixture Modeling,” Phys. Rev. E 63 (2006).
doi 10.1103/PhysRevE.73.056705
- D. R. Rector and M. L. Stewart, “A Semi-Implicit Lattice Method for Simulating Flow,” J. Comput. Phys. 229 (19), 6732-6743 (2010).
- N. Cao, S. Chen, S. Jin, and D. Martinez, “Physical Symmetry and Lattice Symmetry in the Lattice Boltzmann Method,” Phys. Rev. E 55 (1), R21-R24 (1997).
- M. Bernaschi, S. Succi, and H. Chen, “Accelerated Lattice Boltzmann Schemes for Steady-State Flow Simulations,” J. Sci. Comput. 16 (2), 135-144 (2001).
- T. Lee and C.-L. Lin, “An Eulerian Description of the Streaming Process in the Lattice Boltzmann Equation,” J. Comput. Phys. 185 (2), 445-471 (2003).
- Y. Li, E. J. LeBoeuf, and P. K. Basu, “Least-Squares Finite-Element Lattice Boltzmann Method,” Phys. Rev. E 69 (2004).
doi 10.1103/PhysRevE.69.065701
- Y. Wang, Y. L. He, T. S. Zhao, et al., “Implicit-Explicit Finite-Difference Lattice Boltzmann Method for Compressible Flows,” Int. J. Mod. Phys. C 18 (12), 1961-1983 (2007).
- R.-F. Qiu, Y.-C. You, C.-X. Zhu, and R.-Q. Chen, “Lattice Boltzmann Simulation for High-Speed Compressible Viscous Flows with a Boundary Layer,” Appl. Math. Model. 48, 567-583 (2017).
- R. D. Richtmyer and K. W. Morton, Difference Methods for Initial Value Problems (Wiley, New York, 1967; Mir, Moscow, 1972).
- B. S. Garbow, “EISPACK - A Package of Matrix Eigensystem Routines,” Comput. Phys. Commun. 7, 179-184 (1974).
- E. A. Prokhorova and G. V. Krivovichev, “Parallel Realization of the Computational Algorithm Based on the Implicit Lattice Boltzmann Equations,” J. Phys. Conf. Ser. 1038 (2018).
doi 10.1088/1742-6596/1038/1/012041