УДК 519.614.2

ЧИСЛЕННОЕ РЕШЕНИЕ НЕКОТОРЫХ СПЕКТРАЛЬНЫХ ЗАДАЧ ДЛЯ УРАВНЕНИЙ СТОКСА

А. А. Иванчиков 1

В работе рассмотрен ряд методов, позволяющих численно решать частичные спектральные задачи для уравнений Стокса. Задача состоит в вычислении нескольких минимальных собственных чисел и соответствующих собственных функций, а при наличии многомерных собственных подпространств — в построении в каждом из них базиса. Приводится весь набор алгоритмов и примеры расчета задач в прямоугольных областях.

Ключевые слова: частичная спектральная задача, задача Стокса, метод Ланцоша.

Введение. Основными методами численного решения частичной проблемы собственных чисел являются методы Ланцоша и Арнольди. Эти алгоритмы легли в основу статьи. Однако их непосредственное применение не дает возможности получить исчерпывающее решение задачи. Поэтому наряду с ними применялся метод явного вычисления матрицы оператора с последующим применением к ней *QR*-алгоритма. Этот метод гарантированно решает сеточную спектральную задачу, поскольку из полученного спектра достаточно выбрать нужное число минимальных собственных чисел. В нашем случае он применялся для контроля того, что метод Ланцоша не пропускает ни одного минимального собственного значения, и для выявления кратности значений. Однако применение метода на мелких сетках бесперспективно из-за непомерного увеличения с ростом числа шагов как вычислительных затрат, так и затрат памяти.

Рассматриваемые задачи имеют несколько особенностей. Первой является ограничение решения на подпространство, которое задается уравнением неразрывности div $\mathbf{u} = 0$. Вторая заключается в том, что матрица оператора, спектр которого ищется, неизвестна, и единственной доступной операцией является действие обратного оператора на вектор. Другими словами, единственной доступной операцией является решение краевой задачи для уравнений Стокса с некоторой правой частью. Кроме того, проблемой явилось наличие двумерных собственных подпространств, для исчерпывания которых пришлось несколько модифицировать алгоритмы.

Рассматриваемые спектральные задачи фигурируют в вопросах, связанных с обоснованием существования решений краевых задач для уравнений типа Стокса и Навье–Стокса методом Галеркина (см. [3]). Так, например, решение нестационарных уравнений Стокса представимо рядом Фурье по собственным функциям одной из исследуемых задач. Для такого представления используется сам факт существования этих функций, однако их вид, а также распределение минимальных собственных чисел были неизвестны.

В [9] была развита теория, позволяющая стабилизировать решение уравнений Навье–Стокса к заданному стационарному решению. Задача заключается в том, чтобы, управляя граничными условиями, устремить решение к стационарному с предписанной скоростью $\exp(-\sigma t)$. Большой интерес имеет проведение численной стабилизации. Одним из этапов решения этой задачи является решение спектральной задачи для соответствующих стационарных уравнений. А именно: для построения стабилизирующих краевых условий требуется найти некоторое число минимальных собственных чисел и функций. С вычислительной точки зрения, тем самым, для уравнений ставится частичная проблема поиска собственных чисел и векторов.

Заранее было неясно, применим ли какой-либо из известных методов, а если применим, то насколько он хорош с точки зрения вычислительных затрат. Ответ на этот вопрос таков: методы Ланцоша и Арнольди одинаково хорошо решают эти задачи. Конечно, существенно используется симметрия задач и, в основном, эксплуатируется метод Ланцоша. В литературе (см. [4]) в качестве примера типичных значений для n (размерность матрицы), m (размерность крыловской последовательности), p (число искомых собственных чисел) приводятся p = 10, m = 300, $n = 10^4$. Величины p и m являются важнейшими параметрами методов Ланцоша и Арнольди. В нашем случае типичными значениями являются p = 10, m = 50, $n = 2 \cdot N \times N$, где $N = 32, \ldots, 128$ — размер сетки. При этом точность получаемых приближений к собственным значениям разностной спектральной задачи на много порядков превышает точность аппроксимации

¹ Московский государственный университет им. М.В. Ломоносова, механико-математический факультет, Воробьевы горы, 119899, Москва; e-mail: Ivanchikov_A@mail.ru

[©] Научно-исследовательский вычислительный центр МГУ им. М. В. Ломоносова

дифференциальной спектральной задачи. Это означает, что дальнейшее увеличение значения *m* с целью повышения точности не имеет смысла. С другой стороны, и понизить это число особо не удается, так как при этом не все максимальные собственные числа зарождаются в спектре вспомогательной матрицы, что особенно актуально для мелких сеток.

Численные расчеты были проведены на примере решения двух спектральных задач:

— в единичном квадрате с нулевыми краевыми условиями,

- в прямоугольнике с периодическими условиями по одному направлению.

Во втором случае задачу удается решить явно, благодаря сведению к одномерной. Располагая точными решениями, можно сделать вывод, что и численно она решается правильно.

В работе приведены иллюстрации ко всем найденным собственным функциям, которые являются векторными полями, а также к соответствующим функциям давления *p*. Так что читателю впервые предоставляется возможность увидеть решения давно известных спектральных задач.

1. Необходимые сведения о спектральных задачах для уравнений Стокса

1.1. Определение оператора. Пусть Ω — ограниченная двумерная область. В качестве основного гильбертова пространства возьмем $J^0(\Omega)$, которое можно определить как пополнение множества бесконечно дифференцируемых финитных в Ω соленоидальных векторных полей в норме $L_2(\Omega)$.

Для задачи Стокса в области Ω

$$\begin{cases} -\Delta \mathbf{u} + \nabla p = \mathbf{f}, \\ \text{div } \mathbf{u} = 0, \\ \mathbf{u}|_{\partial \Omega} = 0, \end{cases}$$
(1.1)

известны следующие результаты (все приведенные теоремы доказаны в [3]).

Теорема 1.1. Любому **f** из $\mathbf{J}^0(\Omega)$ соответствует единственное решение (u^1, u^2, p) задачи (1.1), где $\mathbf{u} \in \mathbf{W}_2^2(\Omega') \cap \mathbf{H}(\Omega), \, \Omega'$ — любая внутренняя подобласть Ω .

Теорема 1.2. Различным **f** из $J^0(\Omega)$ соответствуют различные функции u^1 , u^2 , удовлетворяющие (1.1).

Определим оператор A_1 :

$$A_1: \mathbf{u} \mapsto \mathbf{f},\tag{1.2}$$

где $\mathbf{u} = (u^1(x,y), u^2(x,y))$ и удовлетворяет задаче (1.1).

В качестве области определения $D(A_1)$ оператора A_1 возьмем совокупность всех решений задачи (1.1) для всевозможных правых частей из $L_2(\Omega)$. Тогда соответствие

$$A_1: D(A_1) \to \mathbf{J}^0(\Omega) \tag{1.3}$$

биективно.

1.2. Свойства спектра. Спектральная задача для оператора A_1 имеет вид

$$\begin{cases} -\Delta \mathbf{u} + \nabla p = \lambda \mathbf{u}, \\ \text{div } \mathbf{u} = 0, \\ \mathbf{u}|_{\partial \Omega} = 0. \end{cases}$$
(1.4)

Основной результат дается следующей теоремой.

Теорема 1.3. Оператор A_1 самосопряжен и положительно определен на $D(A_1)$. Обратный оператор A_1^{-1} вполне непрерывен.

Отсюда следуют свойства спектра и собственных функций оператора A_1 .

Теорема 1.4. Спектр оператора A_1 дискретный, конечной кратности и стремится $\kappa + \infty$. Система собственных функций ортогональна и полна в $\mathbf{L}_2(\Omega)$.

Кроме того, имеет место следующее утверждение, дающее возможность применять сеточные методы. **Теорема 1.5**. Собственные функции задачи (1.4) бесконечно дифференцируемы внутри Ω .

2. Постановка спектральных задач и их дискретизация

2.1. Задача с краевыми условиями первого рода. В области $\Omega = [0, a] \times [0, b]$ рассмотрим уравнения

$$\begin{cases} -\frac{\partial^2 u^1}{\partial x^2} - \frac{\partial^2 u^1}{\partial y^2} + \frac{\partial p}{\partial x} = \lambda u^1, \\ -\frac{\partial^2 u^2}{\partial x^2} - \frac{\partial^2 u^2}{\partial y^2} + \frac{\partial p}{\partial y} = \lambda u^2, \\ \frac{\partial u^1}{\partial x} + \frac{\partial u^2}{\partial y} = 0 \end{cases}$$
(2.1)

с краевыми условиями

$$\begin{aligned} \mathbf{u}|_{x=0} &= 0, \ \mathbf{u}|_{x=a} = 0, \\ \mathbf{u}|_{y=0} &= 0, \ \mathbf{u}|_{y=b} = 0. \end{aligned} \tag{2.2}$$

Требуется найти порядка десяти минимальных собственных чисел и функций задачи (2.1), (2.2).

2.2. Дискретизация задачи. Решение спектральной задачи (2.1) основано на многократном решении уравнений Стокса, которые мы будем рассматривать в более общем виде — с неоднородными краевыми условиями:

$$\begin{cases} -\Delta \mathbf{u} + \nabla p = \mathbf{f}, \\ \operatorname{div} \mathbf{u} = 0, \\ \mathbf{u}|_{\partial \Omega} = \mathbf{w}. \end{cases}$$
(2.3)

Область $\Omega = [0, a] \times [0, b]$ разобьем на прямоугольники со сторонами $h_x = \frac{a}{n_x}$, $h_y = \frac{b}{n_y}$. Множество всех вершин прямоугольников образует сетку S_1 , множество всех их центров образует сетку S_2 . Пусть

$$u_h^1 = u_{i,j}^1, \ u_h^2 = u_{i,j}^2, \quad i = 0, \dots, n_x, \ j = 0, \dots, n_y$$
 — сеточные функции, определенные в узлах сетки S_1 ;
 $w_h^1, \ w_h^2$ — сеточные функции, определенные в граничных узлах сетки S_1 и равные в них w^1, w^2 ;

$$p_h = p_{i,j}, \quad i = 1, ..., n_x, \; j = 1, ..., n_y$$
 — сеточная функция, определенная в узлах сетки S_2 .

Определим сеточные операторы Лапласа, градиента и дивергенции:

$$\Delta_h(u^k) = \frac{u_{i+1,j}^k - 2u_{i,j}^k + u_{i-1,j}^k}{h_x^2} + \frac{u_{i,j+1}^k - 2u_{i,j}^k + u_{i,j-1}^k}{h_y^2}, \quad k = 1, 2,$$
(2.4)

$$\nabla_h p = \left(\frac{p_{i,j} - p_{i-1,j}}{2h_x} + \frac{p_{i,j+1} - p_{i-1,j+1}}{2h_x}, \frac{p_{i,j} - p_{i,j-1}}{2h_y} + \frac{p_{i+1,j} - p_{i+1,j-1}}{2h_y}\right),\tag{2.5}$$

$$\operatorname{div}_{h} \mathbf{u} = \frac{u_{i,j}^{1} - u_{i-1,j}^{2}}{2h_{x}} + \frac{u_{i,j-1}^{1} - u_{i-1,j-1}^{2}}{2h_{x}} + \frac{u_{i,j}^{2} - u_{i,j-1}^{2}}{2h_{y}} + \frac{u_{i-1,j}^{2} - u_{i-1,j-1}^{2}}{2h_{y}}.$$
 (2.6)

Сеточные операторы аппроксимируют дифференциальные с точностью $O(h_x^2 + h_y^2)$. Для сеточных функций, определенных в узлах S_1 , зададим аналог скалярного произведения $L_2(\Omega)$:

$$(\mathbf{u}, \mathbf{v})_{L_{2}^{h}} = \sum_{k=1}^{2} \left(\sum_{i=1}^{n_{x}-1} \sum_{j=1}^{n_{y}-1} u_{i,j}^{k} \cdot v_{i,j}^{k} + \frac{1}{2} \sum_{i=0,n_{x}} \sum_{j=1}^{n_{y}-1} u_{i,j}^{k} \cdot v_{i,j}^{k} + \frac{1}{2} \sum_{j=0,n_{y}} \sum_{i=1}^{n_{x}-1} u_{i,j}^{k} \cdot v_{i,j}^{k} + \frac{1}{4} \left(u_{0,0}^{k} \cdot v_{0,0}^{k} + u_{0,n_{y}}^{k} \cdot v_{0,n_{y}}^{k} + u_{n_{x},0}^{k} \cdot v_{n_{x},0}^{k} + u_{n_{x},n_{y}}^{k} \cdot v_{n_{x},n_{y}}^{k} \right) \right) \cdot h_{x}h_{y} .$$

$$(2.7)$$

Для сеточных функций, определенных во внутренних узлах S₁, зададим скалярное произведение

$$(\mathbf{u}, \mathbf{v})_{h} = \sum_{(i,j)\in S_{1}\setminus\partial S_{1}} u_{i,j}^{1} \cdot v_{i,j}^{1} + \sum_{(i,j)\in S_{1}\setminus\partial S_{1}} u_{i,j}^{2} \cdot v_{i,j}^{2}.$$
(2.8)

Для сеточных функций, определенных в узлах S₂, зададим скалярное произведение

$$(p,q)_h = \sum_{(i,j)\in S_2} p_{i,j} \cdot q_{i,j},$$
 (2.9)

где ∂S_1 обозначает граничные узлы сетки. Заметим, что ядро оператора div_h $(-\Delta_h)^{-1} \nabla_h$ двумерно:

$$\operatorname{Ker}(\nabla_h) = \operatorname{span}(p^1, p^2), \quad p_{i,j}^1 = (-1)^{i+j} - 1, \quad p_{i,j}^2 = (-1)^{i+j+1} - 1.$$
(2.10)

Сеточная аппроксимация уравнений (2.3) имеет вид

$$\begin{cases} -\Delta_h \mathbf{u} + \nabla_h p = \mathbf{f}, \\ \operatorname{div}_h \mathbf{u} = 0, \\ \mathbf{u}|_{\partial S_1} = \mathbf{w}_h. \end{cases}$$
(2.11)

К численному решению уравнений Стокса теперь применим метод сопряженных градиентов (3.1) с операторами Δ_h , ∇_h , div_h, определенными равенствами (2.4), (2.5), (2.6).

2.3. Задача с периодическими условиями по одному направлению. В этой задаче уравнения (2.1) дополняются краевыми условиями первого типа и периодическими условиями:

$$\begin{aligned} \mathbf{u}|_{y=-a} &= 0, \quad \mathbf{u}|_{y=a} = 0, \\ \mathbf{u}(x,y) &= \mathbf{u}(x+T,y), \quad p(x,y) = p(x+T,y), \quad \Omega = [-T/2, T/2] \times [-a,a], \end{aligned}$$
(2.12)

где a и T — параметры, определяющие размеры области (T — период). Будем считать, что $T = 2\pi$. Требуется, как и прежде, найти несколько минимальных собственных чисел и функций.

2.4. Дискретизация периодической задачи. Спектральная задача решается многократным обращением оператора Стокса, поэтому мы будем рассматривать аппроксимацию задачи (2.3) с условиями

$$\mathbf{u}|_{\partial\Omega} = \mathbf{w}, \quad \mathbf{u}(x,y) = \mathbf{u}(x+T,y), \quad p(x,y) = p(x+T,y).$$
(2.13)

Под границей области $\partial\Omega$ мы будем теперь понимать лишь ту ее часть, на которой заданы краевые условия. В области $\Omega = [-\pi, \pi] \times [-a, a]$, как и в п. 2.2, определим сетки S_1, S_2 . Пусть

$$u_{i,j}^1, u_{i,j}^2, \quad i = 0, \dots, n_x, \ j = 0, \dots, n_y$$
 — сеточные функции, определенные в узлах сетки S_1 с условием периодичности $u_{i,j}^1 = u_{i+n_x,j}^1, \ u_{i,j}^2 = u_{i+n_x,j}^2;$

 $p_{i,j}, i = 1, ..., n_x, j = 1, ..., n_y$ — сеточная функция, определенная в узлах сетки S_2 .

Условие периодичности для сеточных функций надо понимать в том смысле, что при применении к ним сеточных операторов первый индекс берется по модулю n_x . Сеточные операторы Δ_h , ∇_h , div_h определим равенствами (2.4), (2.5), (2.6). Сеточная аппроксимация задачи (2.3), (2.13) имеет вид (2.11) с условиями

$$\mathbf{u}|_{\partial S_1} = \mathbf{w}_h, \quad \mathbf{u}_{i,j} = \mathbf{u}_{i+n_x,j}, \quad p_{i,j} = p_{i+n_x-1,j}.$$
 (2.14)

Уравнения Стокса решаются теперь так же как, это было описано в п. 2.2.

3. Алгоритмы и их тестирование

3.1. Общие замечания. Алгоритмы удобно записывать в следующей форме:

 Arg_1, \ldots, Arg_m — выходные аргументы; arg_1, \ldots, arg_n — входные аргументы; Op_1, \ldots, Op_l — операторы, скалярные произведения, используемые в теле алгоритма;

Algorithm (arg_1, \ldots, arg_n) $\{Op_1, \ldots, Op_l\} \rightarrow (Arg_1, \ldots, Arg_m)$ Тело алгоритма end Algorithm

Так как для каждой конкретной реализации алгоритма будут определяться свои операторы, то их также можно считать входными параметрами. Обращение к алгоритму как к функции будем записывать так:

$$(Arg_1,\ldots,Arg_m) := \mathbf{Algoritm}(arg_1,\ldots,arg_n) \{Op_1,\ldots,Op_l\}$$

Обозначения для некоторых переменных будут рассматриваться как сеточная функция и как вектор. Вектор получается из функции нумерацией компонент, от которой зависит лишь программная реализация алгоритма, но не сам алгоритм. Важно только, чтобы во всех алгоритмах нумерация была согласована.

3.2. Решение уравнения Пуассона методом Фурье. В прямоугольной области одним из самых эффективных методов обращения оператора Лапласа является метод Фурье (см. [6]). В нашем случае

будет использоваться метод разложения решения в однократный ряд Фурье по собственным функциям одномерного оператора Лапласа. Задача сводится к решению серии одномерных уравнений Лапласа и вычислению сумм с использованием алгоритма быстрого дискретного преобразования Фурье.

3.3. Метод сопряженных градиентов решения уравнений Стокса. При дискретизации задачи Стокса (2.3) получим систему уравнений

$$\begin{cases} -\Delta_h \mathbf{u}_h + \nabla_h p_h = \mathbf{f}_h + \Delta_h \mathbf{q}_h, \\ \operatorname{div}_h \mathbf{u}_h = 0, \end{cases}$$
(3.1)

где $\Delta_h \mathbf{q}_h$ — вклад краевых условий $\mathbf{u}_h|_{\partial\Omega} = \mathbf{w}_h$ в правую часть; \mathbf{q}_h — сеточная функция, равная нулю во внутренних узлах сетки S_1 и \mathbf{w}_h — в граничных;

 $\mathbf{u}_h = (u_h^1, u_h^2)$ – неизвестная функция, определенная во внутренних узлах сетки S_1 ;

p_h – неизвестная функция, определенная в узлах сетки *S*₂;

 $\mathbf{f}_h, \mathbf{w}_h$ — ограничения функций \mathbf{f}, \mathbf{w} на узлы сетки S_1 .

Краевые условия, от которых зависит оператор div_h , будем записывать в качестве второго индекca: $\operatorname{div}_h = \operatorname{div}_{h,\mathbf{w}}$. Метод сопряженных градиентов мы изложим применительно к решению уравнений вида (3.1). Выразим u^1 , u^2 из (3.1):

$$\mathbf{u} = (-\Delta_h)^{-1} \left(\mathbf{f} + \Delta_h \mathbf{q} - \nabla_h p \right).$$
(3.2)

Дивергенцию представим в виде $\operatorname{div}_{\mathbf{h},\mathbf{w}} \mathbf{u} = \operatorname{div}_{\mathbf{h},\mathbf{w}^0} \mathbf{u} + \operatorname{div}_{\mathbf{h},\mathbf{w}} \mathbf{u}^0$, где \mathbf{u}^0 и $\mathbf{w}^0 - \phi$ ункции, определенные соответственно во внутренних и граничных узлах сетки S_1 и тождественно равные нулю.

Подставим (3.2) в третье уравнение (3.1):

$$\operatorname{div}_{\mathbf{h},\mathbf{w}^{0}} (-\Delta_{h})^{-1} \nabla_{h} p = \operatorname{div}_{\mathbf{h},\mathbf{w}^{0}} (-\Delta_{h})^{-1} (\mathbf{f} + \Delta_{h} \mathbf{q}) + \operatorname{div}_{\mathbf{h},\mathbf{w}} \mathbf{u}^{0}.$$
(3.3)

Получили систему линейных уравнений с симметричным неотрицательным оператором

$$\operatorname{div}_{\mathbf{h},\mathbf{w}^0} (-\Delta_h)^{-1} \nabla_h,$$

поэтому задачу (3.1) можно решать так:

1) решить уравнение (3.3) методом сопряженных градиентов на подпространстве функций, ортогональных ядру оператора $\operatorname{div}_{\mathbf{h},\mathbf{w}^0}(-\Delta_h)^{-1}\nabla_h;$

2) найти u^1 , u^2 из уравнений (3.2).

Правую часть (3.1) обозначим через f.

Алгоритм 3.1.

Ι		число итераций;
w^{1}, w^{2}		краевые условия;
f^1, f^2		правая часть уравнений Стокса (3.1);
L_h		оператор Стокса, определяемый левой частью (3.1);
$\ \cdot\ _h$		норма, порожденная скалярным произведением $(,)_h;$
u^{1}, u^{2}, p		решение уравнений Стокса (3.1);
Δ_h^{-1}	_	обращение оператора Лапласа;
\mathbf{u}^{0}		функция, определенная во внутренних узлах сетки S ₁ и тождественно
		равная нулю;
\mathbf{w}^0		функция, определенная в граничных узлах сетки S_1 и тождественно
		равная нулю;

CGrad $(I, \mathbf{w}, \mathbf{f}) \{\Delta_h, \nabla_h, \operatorname{div}_h, (,)_h\} \to (u^1, u^2, p)$ $x_0 := p_0$ начальное приближение $x_0 := \mathbf{Orthogonalize} (x_0, Ker(\nabla_h))\{(,)_h\}$ ортогонализация x_0 к ядру оператора ∇_h $z^1 := (-\Delta_h)^{-1} f^1, \quad z^2 := (-\Delta_h)^{-1} f^2$ $g := \operatorname{div}_{h, \mathbf{w}^0} \mathbf{z} + \operatorname{div}_{h, \mathbf{w}} \mathbf{u}^0$ правая часть уравнения (3.3) $(v^1, v^2) := \nabla_h x_0$ $z^1 := (-\Delta_h)^{-1} v^1, \quad z^2 := (-\Delta_h)^{-1} v^2$ $y_{0} := \operatorname{div}_{h, \mathbf{w}^{0}} \mathbf{z}$ $\xi_{0} := g - y_{0}$ начальный вектор невязки уравнения (3.3) $q_{0} := \xi_{0}$ for $i = 0, 1, \dots, I - 1$ $(v^{1}, v^{2}) := \nabla_{h} q_{i}$ $z^{1} := (-\Delta_{h})^{-1} v^{1}, \quad z^{2} := (-\Delta_{h})^{-1} v^{2}$ $y_{i} := \operatorname{div}_{h, \mathbf{w}^{0}} \mathbf{z}$ $\alpha_{i} := \frac{(\xi^{i}, q^{i})_{h}}{(\xi^{i}, y^{i})_{h}}, \quad x_{i+1} := x_{i} + \alpha_{i} q_{i}$ $\xi_{i+1} := x_{i} - \alpha_{i} y_{i}$ вектор невязки уравнения (3.3) $\beta_{i} := \frac{(\xi_{i+1}, y_{i})_{h}}{(q_{i}, y_{i})_{h}}, \quad q_{i+1} := \xi_{i+1} - \beta_{i} q_{i}$ end for $(v^{1}, v^{2}) := \nabla_{h} q_{i}$ $v^{1} := f^{1} - v^{1}, \quad v^{2} := f^{2} - v^{2}$ $z^{1} := (-\Delta_{h})^{-1} v^{1}, \quad z^{2} := (-\Delta_{h})^{-1} v^{2}$ $r := ||L_{h}(\mathbf{z}, x_{I}) - \mathbf{f}||_{h} / ||\mathbf{f}||_{h}$ относительная невязка уравнений Стокса (3.1) $u^{1} := z^{1}$ $u^{2} := z^{2}$ $p := x_{I}$ end CGrad

3.4. Решение симметричной частичной проблемы собственных чисел методом Ланцоша. Мы дадим описание алгоритма Ланцоша применительно к задачам типа (2.1), (2.2). В общем виде он предназначен для решения частичной проблемы собственных чисел и векторов для симметричных матриц. Его описание можно найти в [1] или [2]. Алгоритм состоит в приведении симметричного оператора A к трехдиагональной форме T_m путем ортогонализации крыловской последовательности

$$q_0, Aq_0, \dots, A^{m-1}q_0.$$
 (3.4)

Размерность матрицы T_m (равная m — числу векторов крыловской последовательности) берется значительно меньшей размерности оператора A. Собственные числа матрицы T_m берутся за приближения к собственным числам матрицы A. Пусть $q_0, q_1, \ldots, q_{m-1}$ — ортобазис в span $\{q_0, Aq_0, \ldots, A^{m-1}q_0\}$. Пусть Q_m — матрица со столбцами $q_0, q_1, \ldots, q_{m-1}$, тогда она связана с A отношением

$$T_m = Q_m^* A Q_m. \tag{3.5}$$

Применительно к нашим задачам определим оператор A_1^{-1} как оператор, сопоставляющий паре функций f^1, f^2 решение некоторой краевой задачи для уравнений (3.1). Точное его определение было дано в п. 1.1. Найдем несколько максимальных собственных чисел оператора A_1^{-1} . Тогда обратные к ним величины будут искомыми минимальными собственными числами. Качество полученных приближений измеряется с помощью невязок

$$r_s = \beta_m \cdot x_s^m = \|A_1 - \lambda_s y_s\|,\tag{3.6}$$

где $x_s^m - m$ -я компонента *s*-го собственного вектора матрицы T_m . Заметим также, что алгоритм применяется к парам векторов, которые мы будем записывать в виде $\mathbf{q} = (q^1, q^2)$. Кроме того, мы будем рассматривать алгоритм Ланцоша на подпространстве, ортогональном к некоторому множеству векторов. Это множество может состоять из уже найденных собственных векторов. Такой подход позволяет найти все множество собственных векторов из собственных подпространств. Идея метода состоит в следующем. Поскольку нам необходимо, чтобы каждый из вновь найденных собственных векторов \mathbf{y}_s был ортогонален к некоторому множеству $\{\mathbf{z}_s\}_{s=1}^{s=d}$, а собственные векторы $\{x_s\}_{s=1}^m$ матрицы T_m связаны с приближениями к искомым собственным векторам $\{\mathbf{y}_s\}_{s=1}^m$ отношением

$$\mathbf{y}_s = \mathbf{Q}_m x_s, \tag{3.7}$$

то потребуем, чтобы каждый из векторов \mathbf{q}_i был ортогонален векторам $\{\mathbf{z}_s\}_{s=1}^{s=d}$. Соотношение (3.7) показывает, что и все \mathbf{y}_s будут им ортогональны. Численные эксперименты показали, что такой подход дает очень хорошие результаты.

Алгоритм 3.2. (u_0^1, u_0^2) — начальный вектор крыловской последовательности, у которого $\|\mathbf{u}_0\|_h = 1;$ размерность крыловской последовательности; m— число искомых собственных чисел; $\{\mathbf{y}_s\}_{s=1}^v, \quad \{\lambda_s\}_{s=1}^v$ T_m искомые собственные векторы и собственные числа; трехдиагональная симметричная матрица, имеющая размерность $m \times m$; α, β — диагонали матрицы T_n $T_m = \begin{pmatrix} \alpha_1 & \beta_1 \\ \beta_1 & \alpha_2 & \beta_2 \\ & \beta_2 & \alpha_3 & \ddots \\ & & \ddots & \ddots & \beta_{m-1} \\ & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & \\ & & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & &$ — собственные векторы матрицы Т x_1, \dots, x_m $(q_1^1, q_1^2), \dots, (q_m^1, q_m^2)$ ортогонализованная крыловская последовательность; — матрица со столбцами $\mathbf{q}_1, \ldots, \mathbf{q}_m;$ \mathbf{Q}_m L_h^{-1} — обращение оператора Стокса по алгоритму (3.1); \mathbf{w}^0 — функция, определенная в граничных узлах сетки S_1 и тождественно равная нулю; $\{\mathbf{z}_{s}\}_{s=1}^{d}$ множество векторов, к которым происходит ортогонализация; **SymThreediagonal**(T)— функция, возвращающая собственные числа $\{l_s\}_{s=1}^m$ и векторы $\{x_s\}_{s=1}^m, \|x_s\|_2 = 1$ симметричной трехдиагональной матрицы T; **Choose** $(m, v, \{l_s\}_{s=1}^m, \{r_s\}_{s=1}^m)$ — возвращает функцию $\sigma(\cdot)$, указывающую на v максимальных чисел из множества $\{l_s\}_{s=1}^m$ с минимальными невязками; **SymValues** $\left(\mathbf{u}_{0}, \{\mathbf{z}\}_{s=1}^{d}, m, v\right) \left\{(,)_{h}\right\} \rightarrow \left(\{\mathbf{y}_{s}\}_{s=1}^{v}, \{\lambda_{s}\}_{s=1}^{v}\right)$ $q_0 := 0$ $\mathbf{q}_1 := \mathbf{u}_0$ начальный вектор крыловской последовательности $\mathbf{q}_1 := \mathbf{Orthogonalize} \left(\mathbf{q}_1, \{ \mathbf{z}_s \}_{s=1}^{s=d} \right) \left\{ (,)_h \right\}$ ортогонализация \mathbf{q}_1 к множеству $\{ \mathbf{z}_s \}_{s=1}^{s=d}$ $({\bf u},p):=L_h^{-1}\left({\bf q}_1,{\bf w}^0\right)$ обращение оператора Стокса с правой частью
 ${\bf q}_1$ $\alpha_1:=(u^1,u^1)_h+(u^2,u^2)_h,\ \beta_0:=0$ for $i = 1, 2, \ldots, m - 1$ вычисление матрицы T_m $\mathbf{r} := \mathbf{u} - \alpha_i \mathbf{q}_i - \beta_{i-1} \mathbf{q}_{i-1}$ $\beta_i := \sqrt{(r^1, r^1)_h + (r^2, r^2)_h}$ $\mathbf{q}_{i+1} := \mathbf{r}/\beta_i$ $\mathbf{q}_{i+1} := \mathbf{Orthogonalize} \left(\mathbf{q}_{i+1}, \{\mathbf{z}_s\}_{s=1}^d \right) \{(,)_h\}$ ортогонализация $(\mathbf{u}, p) := L_h^{-1} \left(\mathbf{q}_{i+1}, \mathbf{w}^0 \right)$ обращение оператора Стокса с правой частью \mathbf{q}_{i+1} $\alpha_{i+1} := (u^1, u^1)_h + (u^2, u^2)_h$ end for $(\{l_s\}_{s=1}^m, \{x_s\}_{s=1}^m) :=$ SymThreediagonal (T_m) вычисление собственных чисел матрицы T_m $\mathbf{r} := \mathbf{u} - \alpha_i \mathbf{q}_m - \beta_{m-1} \mathbf{q}_{m-1}$ $\beta_m := \sqrt{(r^1, r^1)_h + (r^2, r^2)_h}$ for i = 1, 2, ..., m $r_i := \beta_i \cdot x_i^m$ вычисление невязок end for $(\sigma) :=$ **Choose** $(m, v, \{l_s\}_{s=1}^m, \{r_s\}_{s=1}^m)$ выбор наилучших v приближений к собственным числам из спектра матрицы T_m for s = 1, 2, ..., v $\lambda_s := 1/l_{\sigma(s)}, \mathbf{y}_s := \mathbf{Q}_m x_{\sigma(s)}$ end for

end SymValues

Функция $Sym_three diagonal(T)$ реализуется с помощью стандартного QR-алгоритма.

4. Решение спектральных задач

4.1. Численное решение спектральной задачи с условиями первого рода. Для нахождения нескольких минимальных собственных значений задачи (2.1) на мелких сетках воспользуемся методом Ланцоша (алгоритм 3.2). В качестве области возьмем $\Omega = [0,1] \times [0,1]$. Для обращения оператора Стокса будем использовать метод сопряженных градиентов (алгоритм 3.1). Результаты расчета представлены в табл. 4.1.

Расчет спектральной задачи

Таблица 4.1

Сетка	16×16	32×32	64×64	128×128	
Число ит. І	100	100	100	100	
Время выч. T_m (сек)	33.0	278.0	2405.0	16819.0	
$\frac{\ L_h x - f\ _2}{\ f\ _2}$	$2.6 \cdot 10^{-14}$	$6.2 \cdot 10^{-8}$	$1.7 \cdot 10^{-6}$	$5.2 \cdot 10^{-5}$	
$m = \dim(T_m)$	50	50	50	50	
λ_i	51.703196	52.183981	52.304547	52.334641	$\rightarrow \lambda_1$
$r_i = \beta_m \{x_i\}^m$	$7.8 \cdot 10^{-17}$	$1.7 \cdot 10^{-12}$	$3.3 \cdot 10^{-10}$	$1.0 \cdot 10^{-7}$	
	90.213966	91.645152	92.004470	92.094425	$\rightarrow \lambda_{2,3}$
	$1.2 \cdot 10^{-15}$	$6.9 \cdot 10^{-9}$	$3.0 \cdot 10^{-8}$	$4.8 \cdot 10^{-9}$	
	125.299275	127.479491	128.026976	128.163919	$\rightarrow \lambda_4$
	$1.4 \cdot 10^{-13}$	$6.5 \cdot 10^{-8}$	$8.8 \cdot 10^{-7}$	$5.9 \cdot 10^{-9}$	
	148.223962	152.645903	153.752245	154.032092	$ ightarrow \lambda_5$
	$2.0 \cdot 10^{-17}$	$7.5 \cdot 10^{-13}$	$3.6 \cdot 10^{-7}$	$8.5 \cdot 10^{-9}$	
	159.373662	165.091814	166.543539	166.907627	$\rightarrow \lambda_6$
	$2.2 \cdot 10^{-16}$	$1.0 \cdot 10^{-8}$	$7.2 \cdot 10^{-7}$	$1.3 \cdot 10^{-7}$	
	182.678908	187.833621	189.136328	189.462952	$\rightarrow \lambda_{7,8}$
	$5.8 \cdot 10^{-13}$	$4.8 \cdot 10^{-8}$	$2.7\cdot 10^{-9}$	$6.1 \cdot 10^{-7}$,
	229.648820	242.078885	245.256658	246.055591	$\rightarrow \lambda_{9,10}$
	$2.3 \cdot 10^{-13}$	$4.6 \cdot 10^{-8}$	$3.2 \cdot 10^{-7}$	$1.2 \cdot 10^{-8}$,

Ι	— число итераций алгоритма 3.1;
T_m	— трехдиагональная матрица (см. описание алгоритма Ланцоша);
$r_i = \beta_m \{x_i\}^m$	— невязка для i -го собственного числа (см. формулу 3.6).

Для обоснования того, что найденные числа действительно являются приближениями к десяти минимальным собственным числам, решим полную проблему собственных чисел методом явного вычисления A_1^{-1} (определение оператора A_1^{-1} см. в п. 1.1) на сетках 16×16 и 32×32 (табл. 4.2). Выберем 10 минимальных. Решение полной проблемы даст также их кратность. Частичную проблему начнем решать с сетки 16×16 . Постепенно измельчая сетку можно наблюдать, что все числа стремятся к некоторым фиксированным значениям.

Напомним, что *i*-й столбец любой матрицы (в нашем случае — матрицы A_1^{-1}) может быть получен по формуле

$$\left[A_1^{-1}\right]_i = A_1^{-1} \mathbf{e}_i,$$

где e_i — вектор с единицей на *i*-м месте. Это означает, что для вычисления матрицы оператора A_1^{-1} необходимо dim (A_1) раз обратить оператор A_1 , т.е. столько же раз решить задачу (2.11), где в качестве правых частей **f** последовательно берутся векторы \mathbf{e}_i .

Известно, что результаты расчетов методами типа Ланцоша и Арнольди сильно зависят от выбора начального вектора в том смысле, что в спектре вспомогательной матрицы (см. описание алгоритмов) отдельные собственные числа могут быть плохо представлены (иметь большие невязки r) либо вообще не

Сетк	a	16×16	32×32
Число и	ат. І	100	100
Время выч.	A^{-1} (сек)	270.0	9986.0
$\frac{\ L_h x - \ f\ _2}{\ f\ _2}$	$\frac{\ f\ _2}{\ f\ _2}$	$4.0 \cdot 10^{-4}$	$3.5\cdot10^{-4}$
$m = \dim$	(A^{-1})	450	1922
$\lambda,$	$1 \times$	51.703196	52.183981
кратность	$2 \times$	90.213966	91.645152
	$1 \times$	125.299275	127.479491
	$1 \times$	148.223962	152.645903
	$1 \times$	159.373662	165.091814
	$2 \times$	182.678908	187.833621
	$2 \times$	229.648820	242.078885

Решение спектральной задачи путем явного вычисления A_1^{-1}

попадать в спектр. В нашем случае брались собственные функции оператора Лапласа

$$\Omega = [0, l_x] \times [0, l_y], \quad k = n_x/2, \quad l = n_y/2, \\ u_{i,j}^1 = u_{i,j}^2 = \sin\left(\pi k i \, \frac{h_x}{l_x}\right) \cdot \sin\left(\pi l j \, \frac{h_y}{l_y}\right).$$
(4.1)

Таблица 4.2

На рис. 4.1-4.14 показаны результаты расчета на сетке 128×128 — функции u^1 , u^2 из соответствующих собственных подпространств, а также функция p, удовлетворяющая совместно с ними задаче (2.1).

Поясним, каким образом происходит построение линий уровня, изображающих сеточную функцию $p_{i,j}$. Построим кусочно-линейную поверхность, состоящую из треугольников, вершины которых совпадают с узлами $p_{i,j}$. Пусть $p_{\max} = \max_{i,j} p_{i,j}$, $p_{\min} = \min_{i,j} p_{i,j}$. Тогда линии уровня представляют собой линии пересечения построенной поверхности и плоскостей $p = \frac{p_{\max} - p_{\min}}{2N} + \frac{p_{\max} - p_{\min}}{N}i$, $i = 0, \ldots, N$, где N — число сечений.

Для построения поля скоростей вычислим вспомогательную функцию тока ψ :

$$\begin{cases} -\Delta_h \psi = f, \\ \psi|_{\partial\Omega} = 0, \\ f_{i,j} = \frac{u_{i,j+1}^1 - u_{i,j-1}^2}{2h_u} - \frac{u_{i+1,j}^2 - u_{i-1,j}^2}{2h_r} \end{cases}$$

Линии уровня функции ψ совпадают с линиями векторного поля (u^1, u^2) , поэтому для построения последнего применим описанную выше процедуру к $\psi_{i,j}$.

Пусть $\mathbf{u}_{i,j}$ — собственная функция, где i — номер собственного подпространства, j — номер функции внутри подпространства. Метод Ланцоша вычисляет некоторые функции из каждого подпространства. Обозначим их $\mathbf{u}_{i,1}$, i = 1, 2, ..., 7. Поскольку размерность подпространств не превышает двух, то для определения базиса в каждом из них достаточно применить метод Ланцоша с ортогонализацией к $\mathbf{u}_{2,1}$, $\mathbf{u}_{6,1}$, $\mathbf{u}_{7,1}$. Расчет проведем лишь на самой мелкой сетке 128×128. Результаты показаны на рис. 4.15 – 4.20. Нас интересуют лишь функции из двумерных подпространств, так как остальные совпадают с вычисленными ранее.

Полученный результат неожиданностью не является: функции u^1 , u^2 входят в задачу в единичном квадрате для уравнений Стокса совершенно равноправно. Поэтому, меняя компоненты скорости местами или отражая поле относительно диагонали квадрата, получим снова собственную функцию. Поля, соответствующие λ_3 , λ_4 , λ_5 , обладают четырьмя осями симметрии, поэтому отражение относительно диагонали ничего нового не дает.

Введем косинус угла между сеточными функциями по формуле

$$\cos(u, v) = \frac{(u, v)}{\|u\| \cdot \|v\|},$$
(4.2)

где скалярное произведение определено равенством (2.7).

Как видно из табл. 4.3, метод Ланцоша с ортогонализацией дает возможность строить ортогональные базисы в собственных подпространствах с высокой точностью.

Таблица 4.3

Углы между базисными векторами собственных подпространств

2	$\cos(\mathbf{u}_{2,1},\mathbf{u}_{2,2})$	=	$-1.44 \cdot 10^{-9}$
6	$\cos(\mathbf{u}_{6,1},\mathbf{u}_{6,2})$	=	$7.33 \cdot 10^{-10}$
7	$\cos(\mathbf{u}_{7,1},\mathbf{u}_{7,2})$	=	$-3.35 \cdot 10^{-10}$

4.2. Аналитическое решение периодической задачи. Решение спектральной задачи (2.1), (2.12) может быть получено аналитически. Функции $u^1(x,y)$, $u^2(x,y)$, p(x,y) (как 2π -периодические по первому аргументу) представимы рядами Фурье:

$$u^{k}(x,y) = \sum_{m=-\infty}^{+\infty} u_{m}^{k}(y) \cdot \exp(imx), \quad k = 1, 2;$$

$$p(x,y) = \sum_{m=-\infty}^{+\infty} p(y)_{m} \cdot \exp(imx).$$
(4.3)

Коэффициенты разложения будем обозначать теми же символами. Далее, предполагая функции $u^1(x, y)$, $u^2(x, y)$, p(x, y) достаточно гладкими и подставляя (4.3) в (2.1), получим спектральную задачу для системы обыкновенных дифференциальных уравнений:

$$\begin{cases} m^{2}u^{1} - u_{yy}^{1} + im \cdot p = \lambda u^{1}, \\ m^{2}u^{2} - u_{yy}^{2} + p_{y} = \lambda u^{2}, \\ im \cdot u^{1} + u_{y}^{2} = 0, \\ \mathbf{u}|_{y=-a} = 0, \mathbf{u}|_{y=a} = 0, \\ \Omega = [-a, a], \end{cases}$$
(4.4)

где u^1 , u^2 , p — коэффициенты, соответствующие фиксированному m (индекс m опускаем). Из третьего уравнения (4.4) u^1 подставим в первое, а u_y^2 — во второе. Рассмотрим случай $m \neq 0$:

$$\begin{cases} -\frac{m^2 - \lambda}{im} u_y^2 - u_{yy}^1 + im \cdot p = 0, \\ (m^2 - \lambda)u^2 + im \cdot u_y^1 + p_y = 0. \end{cases}$$
(4.5)

Первое уравнение (4.5) умножим на *im*, продифференцируем по у и сложим со вторым:

$$(im)^2 \cdot p + p_{yy} = 0. \tag{4.6}$$

Общее решение уравнения (4.6) имеет вид

$$p = A \cdot \operatorname{ch} my + B \cdot \operatorname{sh} my, \tag{4.7}$$

где A и B — произвольные вещественные числа. Подставив это решение в первые два уравнения (4.4), получим

$$\begin{cases} (m^2 - \lambda)u^1 - u_{yy}^1 + im(A \operatorname{ch} my + B \operatorname{sh} my) = 0, \\ (m^2 - \lambda)u^2 - u_{yy}^2 + m(B \operatorname{ch} my + A \operatorname{sh} my) = 0. \end{cases}$$
(4.8)

Общее решение (4.8) имеет вид

$$\begin{cases} u^{1} = \alpha^{1} \cos \mu y + \beta^{1} \sin \mu y + \frac{im}{\lambda} \left(A \operatorname{ch} m y + B \operatorname{sh} m y \right), \\ u^{2} = \alpha^{2} \cos \mu y + \beta^{2} \sin \mu y + \frac{m}{\lambda} \left(B \operatorname{ch} m y + A \operatorname{sh} m y \right), \end{cases}$$
(4.9)

где $\mu = \sqrt{\lambda - m^2}$, а α^1 и β^1 определяются из краевых условий (4.4):

$$\begin{cases} \alpha^{1}\cos a\mu + \beta^{1}\sin a\mu = -\frac{im}{\lambda} \left(A\operatorname{ch} am + B\operatorname{sh} am\right), \\ \alpha^{1}\cos a\mu - \beta^{1}\sin a\mu = -\frac{im}{\lambda} \left(A\operatorname{ch} am - B\operatorname{sh} am\right). \end{cases}$$
(4.10)

Разрешая (4.10) и аналогичные условия для α^2 , β^2 , получим

$$\begin{cases} \alpha^{1} = -A \frac{im}{\lambda \cos a\mu} \operatorname{ch} am, \\ \beta^{1} = -B \frac{im}{\lambda \sin a\mu} \operatorname{sh} am, \end{cases} \begin{cases} \alpha^{2} = -B \frac{m}{\lambda \cos a\mu} \operatorname{ch} am, \\ \beta^{2} = -A \frac{m}{\lambda \sin a\mu} \operatorname{sh} am. \end{cases}$$
(4.11)

Подставляя (4.9) в третье уравнение (4.4) с учетом (4.11), приходим к уравнению

$$\left(-\frac{m^2}{\lambda}\frac{A}{\cos a\mu}\operatorname{ch}am\frac{m\mu}{\lambda}\frac{A}{\sin a\mu}\operatorname{sh}am\right)\cos\mu y + \left(-\frac{m^2}{\lambda}\frac{B}{\sin a\mu}\operatorname{sh}am + \frac{m\mu}{\lambda}\frac{B}{\cos a\mu}\operatorname{ch}am\right)\sin\mu y = 0.$$
(4.12)

Здесь возможны два случая. Первый:

$$\begin{cases} B = 0, \quad A - \text{любое,} \\ m \cdot \text{tg } a\mu = \mu \cdot \text{th } am, \end{cases}$$

$$(4.13)$$

ему соответствуют собственные функции

$$\begin{cases} u^{1}(x,y) = A\left(-\frac{im}{\lambda\cos a\mu}\operatorname{ch} am \cdot \cos \mu y + \frac{im}{\lambda}\operatorname{ch} my\right) \cdot e^{imx}, \\ u^{2}(x,y) = A\left(-\frac{m}{\lambda\sin a\mu}\operatorname{sh} am \cdot \sin \mu y + \frac{m}{\lambda}\operatorname{sh} my\right) \cdot e^{imx}. \end{cases}$$
(4.14)

Второй:

$$\begin{cases} A = 0, \quad B - \text{любое,} \\ \mu \cdot \text{tg } a\mu = m \cdot \text{th } am, \end{cases}$$

$$(4.15)$$

ему соответствуют собственные функции

$$\begin{cases} u^{1} = B\left(-\frac{im}{\lambda\sin a\mu} \operatorname{sh} am \cdot \sin \mu y + \frac{im}{\lambda} \operatorname{sh} my\right) \cdot e^{imx}, \\ u^{2} = B\left(-\frac{m}{\lambda\cos a\mu} \operatorname{ch} am \cdot \cos \mu y + \frac{m}{\lambda} \operatorname{ch} my\right) \cdot e^{imx}. \end{cases}$$
(4.16)

Уравнение (4.13), как и уравнение (4.15), задает для каждого целого m > 0 бесконечную серию собственных чисел λ . Они могут быть решены численными методами, например методом деления отрезка пополам. Приведем несколько минимальных корней для $a = \frac{\pi}{2}$.

Таблица 4.4 Несколько минимальных корней уравнения $m \operatorname{ch} am \cdot \sin a\mu = \mu \operatorname{sh} am \cdot \cos a\mu$

	m	λ
1	1	8.620505
2	2	10.650782
3	3	14.923677
4	3	21.459532

Таблица 4.5 Несколько минимальных корней уравнения $\mu \operatorname{ch} am \cdot \sin a\mu = m \operatorname{sh} am \cdot \cos a\mu$

	m	λ
1	1	3.829901
2	2	5.924224
3	3	10.566679
4	1	15.832447

для $m = 0$				
= (2k + 1)	2	$\lambda =$	$(2k)^2$
	λ			λ
1	1.0		1	4.0
2	9.0		2	16.0
3	25.0		3	36.0

64.0

49.0

Таблица 4.6

Несколько минимальных

собственных чисел

Рассмотрим случай m = 0. Задача (4.4) сведется к простейшей:

$$\begin{aligned} \begin{aligned} & \left(-u_{yy}^{1} = \lambda u^{1}, \\ & \left(u^{1}\right)_{y=\pm a} = 0. \end{aligned}$$

$$\end{aligned}$$

$$(4.17)$$

4

Ее решение распадается на два случая:

$$\begin{cases} u^{1}(x,y) = A\cos\sqrt{\lambda}y, \quad u^{2}(x,y) = 0, \\ \lambda = \left(\frac{\pi k + \pi/2}{a}\right)^{2}, \quad k = 0, 1, \dots; \end{cases} \quad \begin{cases} u^{1}(x,y) = B\sin\sqrt{\lambda}y, \quad u^{2}(x,y) = 0, \\ \lambda = \left(\frac{\pi k}{a}\right)^{2}, \quad k = 1, 2, \dots. \end{cases}$$
(4.18)

Последние формулы дают еще пару бесконечных серий собственных чисел. Значения их для $a = \pi/2$ приведены в табл. 4.6.

4.3. Численное решение спектральной задачи с периодическими условиями. Для нахождения нескольких минимальных собственных значений задачи (2.12) воспользуемся методом Ланцоша (алгоритм 3.2). Параметр *а* положим равным $\frac{\pi}{2}$. Результаты расчета представлены в табл. 4.7.

Таблица 4.7

Расчет спектральной задачи с периодическими условиями

Сетка	16×16	32×32	64×64	128×128	$\infty imes \infty$
Число ит. І	100	100	100	100	
t выч. T_m (сек)	33.0	278.0	2405.0	16819.0	
$\frac{\ L_h x - f\ _2}{\ f\ _2}$	$1.2 \cdot 10^{-14}$	$1.5 \cdot 10^{-7}$	$5.3 \cdot 10^{-6}$	$6.8 \cdot 10^{-6}$	
$m = \dim\left(T_m\right)$	50	50	50	50	
λ_i	0.996791	0.999197	0.999799	0.999950	$\rightarrow 1.000000$
$r_i = \beta_m \{x_i\}^m$	$1.2 \cdot 10^{-15}$	$4.5 \cdot 10^{-11}$	$2.3\cdot 10^{-8}$	$1.0 \cdot 10^{-7}$	
	3.782842	3.818094	3.826947	3.829162	ightarrow 3.829901
	$1.8 \cdot 10^{-14}$	$1.1 \cdot 10^{-9}$	$1.2 \cdot 10^{-9}$	$4.8 \cdot 10^{-9}$	
	3.948859	3.987165	3.996788	3.999197	$\rightarrow 4.000000$
	$3.0 \cdot 10^{-16}$	$2.2 \cdot 10^{-10}$	$1.8\cdot 10^{-9}$	$5.9\cdot10^{-9}$	
	5.661194	5.857757	5.907562	5.920056	$\rightarrow 5.924224$
	$4.2 \cdot 10^{-13}$	$2.3\cdot10^{-8}$	$3.0\cdot10^{-7}$	$8.5\cdot10^{-9}$	
	8.443138	8.575939	8.609349	8.617714	ightarrow 8.620505
	$1.7 \cdot 10^{-13}$	$1.3\cdot10^{-7}$	$1.4\cdot10^{-7}$	$1.3\cdot10^{-7}$	
	8.742758	8.935139	8.983759	8.995935	ightarrow 9.000000
	$5.9 \cdot 10^{-16}$	$1.6 \cdot 10^{-6}$	$5.9 \cdot 10^{-5}$	$6.1 \cdot 10^{-7}$	
	9.487703	10.288270	10.496523	10.549105	$\rightarrow 10.566679$
	$2.0 \cdot 10^{-15}$	$3.0 \cdot 10^{-9}$	$1.4 \cdot 10^{-7}$	$1.2 \cdot 10^{-8}$	

– число итераций алгоритма 3.1;

Ι

 T_m — трехдиагональная матрица (см. описание алгоритма Ланцоша); $r_i = \beta_m \{x_i\}^m$ — невязка для i-го собственного числа (см. формулу 3.6).

Сопоставим с результатами табл. 4.4, 4.5 и 4.6. Как видно, приближения сходятся к точным значениям, которые для удобства приведены в последнем столбце. С наибольшей точностью получено приближение к $\lambda_1 - 5.0 \cdot 10^{-5}$, с наименьшей точностью получено приближение к $\lambda_7 - 1.7 \cdot 10^{-2}$. На рис. 4.21–4.34 показаны результаты расчета на сетке 128 × 128. Отсутствие линий на некоторых картинках означает, что изображенные на них функции являются константами.

Для вычисления собственных функций из двумерных подпространств применим метод Ланцоша с ортогонализацией к $\mathbf{u}_{2,1}$, $\mathbf{u}_{4,1}$, $\mathbf{u}_{5,1}$, $\mathbf{u}_{7,1}$. Расчет проведем на сетке 128×128 . Результаты показаны на рис. 4.35 - 4.42.

Поясним полученные результаты. Поскольку $\mathbf{u}(x, y)$ является собственной функцией, то и $\mathbf{u}(x + \alpha, y)$ является собственной в силу периодичности задачи; следовательно, при изменении α происходит вращение собственной функции в двумерном подпространстве. При $\alpha = \frac{T}{2}$ поворот составляет $\frac{\pi}{2}$ и достигается ортогональность.

Косинус угла между сеточными функциями был введен по формуле (4.2).

			Таблица 4.8	
Углы между	базисными	векторами	собственных	подпространсти

2	$\cos(\mathbf{u}_{2,1},\mathbf{u}_{2,2}) =$	$-1.43 \cdot 10^{-9}$
4	$\cos(\mathbf{u}_{4,1},\mathbf{u}_{4,2}) =$	$2.51 \cdot 10^{-9}$
5	$\cos(\mathbf{u}_{5,1},\mathbf{u}_{5,2}) =$	$-1.87 \cdot 10^{-9}$
7	$\cos(\mathbf{u}_{7,1},\mathbf{u}_{7,2}) =$	$8.41 \cdot 10^{-9}$

Как видно из табл. 4.8, ортогональные базисы в собственных подпространствах построены с удовлетворительной точностью. Дополнительные вычисления показывают, что функции из разных подпространств ортогональны с такой же точностью.

Заключение. Практическим итогом работы явилось создание программного комплекса, позволяющего решать спектральные задачи для уравнений Стокса в прямоугольных областях. Комплекс включает в себя

- решатели уравнения Пуассона методами *QR*-разложения, многосеточным и Фурье,
- решатели уравнений Стокса методами Узавы и сопряженных градиентов,
- реализацию *QR*-алгоритма решения спектральных задач для симметричных матриц,
- реализации алгоритмов Ланцоша и Арнольди применительно к решению частичных спектральных задач для уравнений Стокса.

С его помощью были проведены многочисленные эксперименты, основные из которых нашли отражение в этой работе, и получено исчерпывающее решение поставленных задач.

Коме того, были разработаны программные средства для визуализации сеточных функций и векторных полей, позволившие проиллюстрировать работу.

Основным итогом работы является успешность применения ряда методов, основным из которых является метод Ланцоша, к решению симметричных спектральных задач. Не худшие результаты дает метод Арнольди, т.е. при тех же вычислительных затратах он вычисляет нужную часть спектра с теми же невязками. Основной характеристикой методов является размерность крыловской последовательности, которая фактически равна количеству обращений оператора Стокса. Эта размерность в наших экспериментах бралась в пять раз большей числа искомых собственных чисел (число которых бралось равным десяти). Практика показала, что в этом случае в спектре вспомогательной матрицы появляются хорошие приближения ко всем десяти минимальным числам исходной задачи.

Автор благодарит проф. Е.В. Чижонкова за постановку задачи и постоянное консультирование.

СПИСОК ЛИТЕРАТУРЫ

- 1. Деммель Дж. Вычислительная линейная алгебра. М.: Мир, 2001.
- 2. Икрамов Х.Д. Несимметричная проблема собственных значений. М.: Наука, 1991.
- 3. Ладыженская О.А. Математические вопросы динамики вязкой несжимаемой жидкости. М.: Наука, 1970.
- 4. Парлетт Б. Симметричная проблема собственных значений. М.: Мир, 1983.
- 5. Писсанецки С. Технология разреженных матриц. М.: Мир, 1988.
- 6. Самарский А.А., Николаев Е.С. Методы решения сеточных уравнений. М.: Наука, 1978.
- 7. Темам Р. Уравнения Навье-Стокса. Теория и численный анализ. М.: Мир, 1981.
- 8. Уилкинсон Дж.Х. Алгебраическая проблема собственных значений. М.: Наука, 1970.
- Fursikov A.V. Real process corresponding to 3D Navier–Stokes system and its feedback stabilization from boundary. Report 14/2002/M, SISSA ISAS. Triest (Italy), 2002.

Поступила в редакцию 06.06.2003