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СТЮАРТСОНОВСКИЙ СЛОЙ ПОД ВОЗДЕЙСТВИЕМ СИЛ ЛОРЕНЦА

И АРХИМЕДА

И. Цупал 1, П. Хейда1, М.Ю. Решетняк2

В pаботе pассмотpено воздействие сил Лоpенца на слой Стюаpтсона для случая вpащающегося
тведого ядpа с учетом нелинейных эффектов. Рассмотpен также случай наложенных аpхиме-
довских сил. Задача pешена с использованием конечно-pазностной аппpоксимации в физиче-
ских пеpеменных. Для обеспечения условия бездивеpгентности поля скоpости нами использован
метод пpедиктоp-коppектоp. Пpи наличии только сил вязкости на гpанице с внутpенним ядpом
pазличий с известными pанее pезультатами нет. Однако, когда учитываются силы Лоpенца в
нелинейной аппpоксимации, то возникает эффект супеpвpащения. В отличие от pассмотpенного
pанее линейного пpиближения, нелинейный случай имеет дpугое пpостpанственное pаспpеде-
ление и амплитуду. Пpисутствие аpхимедовских сил пpиводит к увеличению толщины слоя
Стюаpтсона и уменьшению гpадиентов полей в этой области.

Ключевые слова: слой Стюаpтсона, сила Лоpенца, сила Архимеда, сеточно-спектральный метод,
конечно-pазностная аппpоксимация, супеpвpащение, итерационные алгоритмы, математическое модели-
рование.

1. Introduction. The Stewartson layer, that evolves at the cylinder circumscribing the rotating Earth’s
inner core, and the Ekman layers at the core-mantle boundary (CMB) and at the inner core boundary (ICB)
complicate the problem on numerical simulation of the geodynamo. These layers are caused by the fluid viscosity
and may be very thin when the viscosity is sufficiently small. Such thin layers usually create many difficulties
for any numerical process applied to solve the dynamo equation. This is particularly true for the Stewartson
layer and, therefore, its behavior under different conditions has been examined in several studies. Hollerbach [9]
assumed that the inner core and the mantle are insulators. He also considered the imposed rotation of the inner
core relative to the outer core and the imposed dipole magnetic field fitted with the inner core. Hollerbach’s
numerical results were revised by Anufriev and Hejda [1, 2] in an inviscid approximation. The main results of
their work was that an increase of the imposed magnetic field leads to the destruction of the Stewartson layer, a
fact that is very suitable for the solution of the self-consistent dynamo problem. Note that otherwise we have to
resolve structures with a spatial scale of order E1/3 where the Ekman number E < 10−8. The next step in the
examination of the Stewartson layer was made in [4]. In addition to Hollerbach’s assumptions [9], the authors
of [4] assumed that the inner core is conductive and also took the linearized Lorentz force into account. They
found an interesting effect of so-called superrotation of the outer core, where a part of the outer core rotates
faster than ICB. Recall that in [4] the Stewartson layer was also analyzed in detail for the pure viscous case
in which the Lorentz force is ignored. They were able to follow the Proudman [10] asymptotics and to confirm
some conclusions made in [11].

No previous studies examined the influence of the nonlinear terms in the Lorentz force on the Stewartson
layer or the influence of the Archimedean force. This paper is an attempt to investigate these influences and, at
the same time, to try another numerical method. Namely, the previous studies mostly used the decomposition
into spherical harmonics (spectral methods). In this paper a grid method of discretization is applied instead
of the spectral method where the pressure is eliminated. We solve the equations in basic physical variables
and use a fractional step method for pressure correction to provide the divergence of velocity [5, 3, 8]. The
numerical method is also tried in the pure viscous case in which the Archimedean and Lorentz forces are
ignored. However, we do not repeat the detailed study presented in [4], where the Ekman number was decreased
down to E = 10−8 and the conclusion that for E < 10−4 the Proudman asymptotics started to be visible was
obtained. Nevertheless, a comparison of our solution in the pure viscous case with [4] and [9] is possible. In
addition, the solution with neglected nonlinear terms in the Lorentz force can be compared with that given
in [4].
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2. Basic equations and the numerical method. Let the outer spherical boundary of the liquid outer
core of radius r0 rotate with an angular velocity Ω (the Earth’s rotation rate). Let the inner core of radius ri
rotate with a prescribed angular velocity Ω+ωi. This means that ωi is the prescribed rotation of the inner core
relative to CMB. Accepting L = r0 as the length scale and L2/η as the time scale, we scale the velocity v, the
magnetic field B, and the pressure p as η/L,

√
2Ωρµη, and 2Ωρη, respectively. Here ρ is an average density of

the core, µ its permeability, and η the diffusivity of the outer core. In the magnetic case we will assume the
imposed dipole field B0 in the outer core to be fitted with the rotating ICB. Inside the inner core this dipole field
is assumed to be zero. Therefore, the magnetic field is B0+b in the outer core and b in the inner core, where b

is the induced magnetic field. The induction equation and the equation of motion describing the problem in the
outer core are

R0

(

∂v

∂t
+ v · ∇v

)

= −∇p+ F+ E∇2
v, (2.1)

∂b

∂t
= ∇×

(

v × (B0 + b)
)

+∇2
b. (2.2)

In the inner core the induction equation can be reduced to

∂b

∂t
= ∇× (riωi sin θ 1ϕ × b) +∇2

b. (2.3)

Moreover, in the outer and inner cores the equations

∇ · v = 0, ∇ · b = 0 (2.4)

can be solved. The sum of the Archimedean (Fa), Coriolis, and Lorentz (FL) forces in the outer core is
represented as

F = Fa − (1z × v) + FL, (2.5)

where for the imposed dipole magnetic field the Lorentz force is

FL = (∇× b)×B0 + (∇× b)× b. (2.6)

The Ekman number and the Rossby number appear in the equations:

E =
ν

2ΩL2
, R0 =

η

2ΩL
.

The equations are accompanied by the boundary conditions

vr = vθ = 0, vϕ = riωi sin θ, b continuous at ICB,

vr = vθ = vϕ = 0, b potential at CMB. (2.7)

In the practical calculation the inertial terms in the left-hand side of (2.1) can be ignored, since R0 is
chosen sufficiently small. However, we temporarily leave the time derivative ∂v/∂t in its place at the beginning
of the numerical process to keep the parabolic structure of PDE and integrate the equations up to a stable
steady-state where this derivative becomes negligible.

The numerical method in use is described in [6, 7, 8] in sufficient detail. Therefore, only the main features
of our approach will be outlined here. The transformed variables f = r−1F are used instead of the components
of velocity, magnetic field, and pressure to avoid singularity of the magnetic field at the center. Thus, the zero
boundary conditions at the center can be applied for all variables. The system (2.1) – (2.6) then leads to a system
of linear algebraic equations due to the nonstaggered grid in the r- and θ-directions. The second order terms are
treated implicitly using the Gauss–Seidel scheme to avoid Courant’s problem for small time steps. Having bθ
and bϕ from (2.2) or (2.3), the br-component is obtained from the second equation (2.4). Actually, this equation
is only a restriction in the initial condition for the magnetic field in the induction equation. However, that is
not the case for the velocity in (2.1). The solution of this equation requires an additional equation for pressure.

The problem of how to satisfy the first equation (2.4) can then be solved using spatial time splitting (a
fractional step method) as used, for instance, in [5] or [3] (see also [8]). In principle, the steady-state solution is
obtained by successive integration of the parabolic problem (2.1) (the convective term in the left-hand side is
omitted), where the velocity v is split into two parts at each time step n: vn = U

n + u
n having ∇ · vn = 0. At

the next time step, the equation is first solved without the pressure term

R0

U
n+1 − v

n

δt
= F

n + E∇2
v
n
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with the boundary conditions R0U
n+1
τ = δt ∂pn/∂τ+vICMB

τ and Un+1
r = 0 at ICB and CMB. Here τ indicates the

tangential components (τ = θ, ϕ) and the derivatives (∂/∂τ = ∂/r ∂θ, ∂/r sin θ ∂ϕ), whereas vICMB
τ represents

the boundary condition for the tangential velocity components (2.7) at ICB and CMB. The correction of velocity
is then computed with the help of the pressure variable. Applying the divergence ∇· to equation (2.1), we get
the Poisson equation

∇2pn+1 = ∇ ·
(

F
n + E∇2

v
n
)

=
R0

δt
∇ ·Un+1,

which is solved with the boundary condition ∂pn+1/∂r = 0 at ICB and CMB. The correction of velocity is
then R0u

n+1 = −δt∇pn+1. Therefore, vn+1 satisfies (2.1) and the first equation (2.4). At the same time, the
boundary condition for the radial velocity component at ICB and CMB are satisfied.

3. Numerical results and discussion. In all calculations we assume r0 = 1, ri = 0.4, and R0 = E. The
stabilized steady-state solution was found in all cases and, therefore, the role of the Rossby number is marginal.

The first step in our calculations was directed to obtain the Stewartson layer without any external force.
Therefore, Fa and FL in (2.5) are omitted. The prescribed ωi = 1 was considered and the model was calculated
for the Ekman numbers E = 10−3, 3 · 10−4, 10−4. Figure 1 shows the expected dependence of the Stewartson
layer thickness on the decreasing Ekman number. The behavior of the Stewartson layer in the above cases is
the same as in the previous investigation in [4]; this allows us to state that our numerical approach is suitable
for this task. It is not a purpose of this paper to confirm the Proudman asymptotic solution [10], which can be
followed for smaller Ekman numbers.

Fig. 1. Meridional sections of the velocity components in the pure viscous case for the Ekman numbers
E = 10−3, E = 3 · 10−4, and E = 10−4

The dependence of the Stewartson layer thickness on an amplitude of the Archimedean force was also
investigated. The Lorentz force FL in (2.5) was omitted and ωi = 1 was again considered. The Archimedean
force was prescribed only radially dependent

Fa = Fa(r0 − r)(r − ri)1r.

Our calculations were made for E = 3 ·10−4 and Fa = 0.3, 3.0. Figure 2 shows the influence of the Archimedean
force amplitude on the Stewartson layer thickness. The thickness increases as the Archimedean force amplitude
increases.

The dependence of the Stewartson layer on the Lorentz force was observed without the presence of any
Archimedean force (Fa = 0). For this purpose, the imposed dipole field is assumed in the outer core to be fitted
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Fig. 2. Meridional sections of the velocity component when the prescribed Archimedean force is applied and
the Ekman number E = 3 · 10−4 is considered

with the rotating ICB:

B0 =
r3iB0

3r3
(2 1r cos θ + 1θ sin θ).

In this case the prescribed rotation of the inner core is considered ωi = 0.1 and the Ekman number was again
taken E = 3 · 10−4. We considered values B0 = 4.8, 5.4, 35.8, 44.8.

In the linearized case, the second term in the right-hand side of (2.6) is omitted. This case should relate to
the similar investigation in [4]. The superrotation is also observed in the equatorial region (see Figure 3) with
the maximum of the azimuthal velocity shifting away from ICB with the increasing amplitude of the imposed
dipole field.

Except in the case of B0 = 4.8, the amplitude of the superrotation of the outer core does not change with
the increasing amplitude of the imposed dipole. This result is also in agreement with findings in [4], although the
authors of [4] observed a slow depression of the amplitude of superrotation for large amplitudes of the imposed
dipole. Nevertheless, in the range of amplitudes B0 ∈ (5.4, 44.8) we considered, they also observed no change in
the amplitude of superrotation. Figure 4 demonstrates that the typical cylindrical structure of the Stewartson
layer is destroyed.

When the second term in the right-hand side of (2.6) is included, the nonlinear effects of the Lorentz force
slightly change the picture that can be observed in the linearized case. The typical cylindrical structure of the
Stewartson layer is again destroyed; however, this destruction is stronger (see Figure 5).

Calculating the nonlinear case for the same values as the previous linear one, we can again observe
superrotation with the maximum of the azimuthal velocity shifting away from ICB. However, it is essential
that its amplitude increases when the imposed dipole amplitude increases (see Figure 6). This effect was not
observed in the linearized case. Moreover, the amplitude of superrotation is two or three times larger than that
in the linearized case. Therefore, the nonlinear terms in the Lorentz force play an important role in influencing
the velocity in the outer core.

4. Conclusion. The Stewartson layer appeared in the pure viscous case when the Archimedean and Lorentz
forces are omitted (Fa = 0, B0 = 0). These calculations bring nothing new to the research of the Stewartson
layer and only confirm previous investigations made in [9] and [4]. The Proudman asymptotics were not tested.
Our calculations of the pure viscous case can be considered as a good test of our codes.

The imposed Archimedean force (Fa 6= 0, B0 = 0) in radial direction brings new findings. The increasing
amplitude of the Archimedean force leads to the increased thickness of the Stewartson layer while the cylindrical
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Fig. 3. Dependence of the angular velocity ω = vϕ/s in the equatorial plane on the cylindrical radius s = r sin θ
for different magnitudes of the imposed magnetic dipole: B0 = 4.8, B0 = 5.4, B0 = 35.8, and B0 = 44.8. The

Ekman number E = 3 · 10−4 is considered and the nonlinear terms in the Lorentz force are ignored

Fig. 4. Meridional sections of the velocity components when the imposed magnetic dipole is applied within the
outer core: B0 = 5.4, B0 = 35.8, and B0 = 44.8. The Ekman number E = 3 · 10−4 is considered and the

nonlinear terms in the Lorentz force are ignored

character of the layer remains unchanged. Therefore, the azimuthal component of the velocity changes more
slowly, crossing the cylinder circumscribing the inner core, than in the pure viscous case. A significant influence
on the Ekman layers at ICB or CMB was not observed.

The imposed dipole field (Fa = 0, B0 6= 0) causes the generation of the magnetic field in the outer and inner
cores and thus the Lorentz force influences the flow in the outer core. When only the linearized Lorentz force is
considered, the effects observed in [4] are confirmed. In particular, the superrotation of the outer core appears
and when the imposed dipole amplitude increases, the maximum of the azimuthal velocity shifts away from
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Fig. 5. Meridional sections of the velocity components when the imposed magnetic dipole is applied within the
outer core: B0 = 5.4, B0 = 35.8, and B0 = 44.8. The Ekman number E = 3 · 10−4 is considered and the

nonlinear terms in the Lorentz force are taken into account

Fig. 6. Dependence of the angular velocity ω = vϕ/s in the equatorial plane on the cylindrical radius
s = r sin θ for the different magnitudes of the imposed magnetic dipole: B0 = 4.8, B0 = 5.4, B0 = 35.8, and
B0 = 44.8. The Ekman number E = 3 · 10−4 is considered and the nonlinear terms in the Lorentz force are

taken into account

ICB. At the same time, the amplitude of this superrotation remains unchanged for a relatively large interval
of strength of the imposed dipole. When the nonlinear terms are also considered in the Lorentz force (this was
not a subject of the study in [4]), new effects can be observed. In addition to the previous effects caused by the
linearized Lorentz force, the amplitude of super-rotation increases as the imposed dipole amplitude increases.
The amplitude of superrotation is also two or three times larger than that in the linearized case. The structure
of the Stewartson layer is no more cylindrical in either the linearized or the nonlinear case. However, in the
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nonlinear case this destruction is much stronger.
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