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CONDITIONS OF SOURCEWISE REPRESENTATION AND RATES OF CONVERGENCE
OF METHODS FOR SOLVING ILL-POSED OPERATOR EQUATIONS. PART I

A. B. Bakushinsky' and M. Yu. Kokurin?

We outline some recent results on rates of convergence of regularization methods for linear ill-posed
operator equations in Hilbert and Banach spaces. Special attention is paid to the necessity of
sourcewise representation conditions for power estimates of convergence rates of the methods under
consideration.

1. Introduction. The aim of this paper is to introduce experts in numerical methods to a certain group
of recent results concerning stable methods for solving ill-posed operator equations. Since these results are of
theoretical and practical interest, their systematization and detailed presentation seem to be useful.

Let I/ : X1 — X3 be a nonlinear operator and X; and X5 be complex Banach spaces. Our interest 1s
focussed on equations of the form

F(z)=0, z€X, (1.1)

Suppose equation (1.1) possesses a solution z* that may be not unique. Let the operator F'(x) be twice
Gateaux differentiable in a neighborhood of the solution *. We do not introduce any assumptions on existence
of a continuous inverse of the linear operator F’(x) in a neighborhood of #*. Equations of this type often
arise in the field of mathematical modeling when solving various inverse problems in geophysics, astrophysics,
scattering theory, and other research areas of natural sciences (see [1-6] for more details). A wide spectrum
of applications of such equations motivates the growing interest in computational analysis of (1.1). Under the
above conditions, equation (1.1) appears to be an ill-posed one [1-4], since the dependence of z* on small
variations of the operator F' is not in general continuous. This means that small perturbations of F' can result
in considerable changes of #* or even in the transformation of the original equation into an inconsistent problem.
The circumstances outlined give rise to significant difficulties in practical solving of applied ill-posed problems of
type (1.1) by traditional methods of computational mathematics. The characteristic feature of these methods is
that they generally do not use available information on the level of noise in input data of the problem. The need
of approximate solving of practical ill-posed problems has initiated the development of special regularization
methods that allow us, using an approximate operator F and the information on a level of errors 4, to obtain such
an approximation to z* which tends to #* as § — 0. Unlike methods of classical computational mathematics,
the regularization procedures substantially use the information on a level of errors in input data.

In many cases, it is convenient to construct regularization methods for equations of form (1.1) by the
following scheme (see [4, 5]). Let F be a class of operators F' : X1 — X5 that contains both the exact and the
approximate (noisy) operators in (1.1). At the first stage, it is assumed that the original operator F is available
without errors. A parametric family of mappings R, : F — X is constructed such that Oléli% Ro(F) = 2*.

The mapping R, takes an operator F' € F and a regularization parameter a € (0, «g] and, then, relates an
approximate solution 2o = R (F) for (1.1) to them. At the second stage, it is supposed that an approximate
operator ' € F (rather than the exact operator F') and a value (vector) ¢ of estimates for the level of errors with
respect to a suitable metric are available. Then, a dependence a = () (the rule of regularization parameter
choice) is sought such that for the elements xi(é) = %a(é)(ﬁ) we have }i_I}I(lJ xi(é) = z*. By the latter relation, the

element xi(é) may be taken as a desired approximation for the exact solution z* adequate to a noisy operator F.
Another very actual and fruitful line of investigations within the regularization theory is related to studying
classes of solutions z* such that the following power estimates for the rate of convergence hold:

lea = a"llx, < ca?  (p>0) Vo€ (0,a0] (1.2)

€05y = «"|lx, < ed” (p>0) V€ (0,d] (1.3)

Throughout this paper, || - ||x denotes a norm of a Banach space X; R(A) = {y € Xa:y = Az, # € X1} and

N(A) = {z € X1: Az = 0} are the range and the nullspace of an operator A € L(X1, X2), respectively; A* is
the conjugate operator for A.
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The commonly accepted way to formalize requirements on the solution z* that guarantee estimates (1.2)
and (1.3) is to impose on z* some sourcewise representation conditions of the form

2" =& e R((F" (&) F' (")) (1.4)

or
¥ — &€ R(F'(z")) (1.5)
The element £ € X3 used in (1.4) and (1.5) is a parameter of regularization methods, which can be used to
control the convergence of the methods. Specifically, the choice & = 0 is, as a rule, admissible. This technique
has received the most study for linear equations in Hilbert spaces, i.e., when the operator F in (1.1) is of the
form
Fle)=Aze— f (1.6)
where A : X7 — X5 is a linear continuous operator, f € X5, and X; and X, are Hilbert spaces. Over the past
thirty years, broad classes of regularization procedures for linear operator equations have been presented and
studied, and procedures optimal on several classes of sourcewise representable solutions were distinguished [3—
9]. In [4, 5, 10—12], the studies of extensions of these procedures for linear equations in Banach spaces have been
initiated. An abstract scheme of constructing iterative regularization methods for nonlinear equations in Hilbert
spaces was proposed in [5, 13 — 15]. We emphasize that the majority of papers within the above-mentioned
framework are focussed on obtaining various estimates of convergence rate for given methods on the basis of
representations (1.4) and (1.5), but the question of whether these conditions are necessary is not discussed as
a rule. The presentation of a formalism allowing to derive necessary conditions for convergence of methods for
linear and nonlinear ill-posed operator equations is among of the main aims of this paper. An application of this
formalism to classes of the methods under consideration shows that conditions (1.4) and (1.5) used previously
by most authors as sufficient ones for estimates (1.2) in fact appear to be very close to necessary conditions
for (1.2). In other words, relations (1.4) and (1.5) yield a highly accurate description of the class of possible
solutions for (1.1) such that power estimate (1.2) holds. In this regard, the results presented are similar to
classical converse theorems of the Bernstein type in the theory of approximation [16]. Another purpose of this
work is to continue studies of [4, 5] and to justify a general scheme of constructing regularization procedures
for linear operator equations in Banach spaces. On this basis, we derive a technique to study necessary and
sufficient conditions for the convergence of iterative methods of the Newton type for nonlinear equations in
Banach spaces; this thechnique generalizes formalism previously developed in [5, 13— 15] for the case of Hilbert
spaces.

Our paper is organized as follows. The first part (Subsections 1.2—1.6) considers linear equations (1.1) with
operators F' of type (1.6). In Subsection 2 we rcall a well-known scheme [4, 8] of constructing regularization
methods for linear ill-posed equations in Hilbert spaces. These constructions may be considered as a starting
point for our further examinations. In Subsection 3 we give a survey of recent results on the sufficiency of
sourcewise representation conditions for convergence of the above-mentioned methods with the power rate of
convergence. Theorems 3.1 and 3.2 from this section have been obtained in cooperation with N. A. Yusoupova.
In Subsection 4 we justify an extension of the scheme from Subsection 2 for linear equations in Banach spaces
when input data are given without errors. In this case, it is convenient to take the sourcewise representation
condition in form (1.5). We prove that, in Banach spaces, relation (1.5) is sufficient for (1.2) with the same
exponent p. In Subsection 5 we establish the regularization property for the scheme from Subsection 4 when
input data are noisy. Finally, in Subsection 6 we prove that sourcewise representation (1.5) in Banach spaces
is actually very close to a sufficient condition for (1.2). The second part of this paper will be concerned with
iterative methods of solving nonlinear equations (1.1).

2. Regularization methods for linear equations in Hilbert spaces. In this section we present a
basic scheme of constructing regularization methods for linear operator equations in Hilbert spaces (see [4, 8]).

First, we recall the necessary notations and definitions. As usual, for Banach spaces X; and X5 we denote
by L(X1, X2) the space of all linear continuous operators A: X; — X3 supplied with the norm |[A]|L(x, x,) =
max{||Az||x,: ||#||x, < 1}. For simplicity, we put L(X,X) = L(X). By o(A) and p(4) = C\c(A) we denote
the spectrum and the resolvent set of an operator A, respectively; A € L(X), R(\, A) = (AE — A)~! is the
resolvent operator for A and E is the identity operator.

Consider the equation

Az =f, ze X, (2.1)
where A € L(X1, Xa), f € X2, and X, and X, are Hilbert spaces.

Since the class of selfadjoint operators possesses a highly developed operator calculus (see, for example, [17]),
equations involving such operators are, in many respects, more convenient to deal with. If the original operator A
is not selfadjoint, then, acting on (2.1) by the conjugate operator A*, we come to the equation

A"Ar = A"f, ze€ X, (2.2)



64 NUMERICAL METHODS AND PROGRAMMING, 2000, VoL. 1

with the selfadjoint operator A*A. Denote by P the orthoprojector on the closure cl R(A) of the range R(A).
The relation between solutions of equations (2.1) and (2.2) establishes the following well-known assertion.
Lemma 2.1. The solution set of (2.2) coincides with the solution set of the equation

Ar=Pf, zeX,
The solutions of (2.2) are called the quasisolutions for (2.1). Note that if f ¢ R(A) but Pf € R(A), then

equation (2.1) has no solutions but possesses a nonempty set of quasisolutions. The set of quasisolutions being
not empty obviously coincides with the solution set. In this section we consider the problem of finding a solution
of (2.1) in the case of a selfadjoint operator A* = A € L(X), X = X; = X5, and a quasisolution when the
operator A is not selfadjoint. Denote by X* (X7) the set of all solutions (quasisolutions) of equation (2.1). In
what follows, we assume that X* # § (X} # 0).

We define the class F of possible exact and approximate data (A, f) in (2.1) as F = L(X1, X2) X Xa.

Let us turn now to the structure of mappings %o: F — X1, & € (0, ag], that generate regularization methods
for equations (2.1). Recall that functions of a selfadjoint operator A € L(X) with its spectrum in [Mg, M] can

M
be defined with the use of the spectral decomposition A = [ AdEy [17, Ch. IX], where {E)} is the family
Mo
of spectral projectors for the operator A. In these notations, let the function ¢:[My, M] — C be measurable,
finite, and defined almost everywhere with respect to the family {Ex} (i.e., with respect to all Lebesgue-Stieltjes

measures generated by the functions ||Exz||%, « € X). Then, the following representations hold

() = / () dEy (2.3)
le(A)ell% = / 2 d|Exll, & € D(p(A) (2.4)

In the case of a real-valued function ¢(A), the operator ¢(A) is selfadjoint along with A; ¢(A) is bounded if and

only if vrai sup |¢(A)| < oo with an upper bound calculated over the family of all measures generated by the
{Ex}

projectors {E}. Moreover,

(Al x) = vrai sup |p(A)] (2.5)
{Ex}
Generally, the operator ¢(A) is unbounded and its domain of definition
M
D) = {r e X: [ |oP dlEselk < oc (26)
Mo

is dense in X.

First, let us consider the case when X; = Xo = X and A € L(X) is a selfadjoint operator. Choose an
initial guess & € X for #* and fix a family ©(A, ), o € (0, ag], of Borel measurable real- or complex-valued
functions on [My, M] D o(A) that satisfy the following condition.

Assumption 2.1. For all p € [0, po] (po > 0)

sup AP 1= 0O(A a) Al < e Vo € (0, ag) (2.7)
)\E[MU,M]

where ¢g = ¢g(po) > 0.
Throughout the paper, we denote by ¢g, ¢1, ... positive constants, which may depend on a given equation
and characteristics of the methods under consideration. We put

Re(A, f) = (F—0O(A,a) A)E+O(A4,a) f
By doing so, we have defined the family of procedures
o =(F—0(Aa)A)E+0(A,0) f, a€(0,aq) (2.8)

for approximation of the solution to original equation (2.1). The functions ©(A, ) are said to be generating
functions for the group of methods (2.8). The next statement establishes the convergence and formulates
estimates of convergence rate for methods (2.8).
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Theorem 2.1 [4, pp. 33-37; 8, p. 42]. Suppose Assumption 2.1 is salisfied. Then
lim [z, — 2" lx = 0 (2.9
where x* is the solution of (2.1) nearest to €, i.e.,
2* € X*, ||l2* —€|lx = min{|lr — ¢]|x: 2 € X*} (2.10)
If, in addition, the wnitial discrepancy can be represented as
¥ —¢é=APv, veX (2.11)
where p,q >0, p+ ¢ € (0,po], then along with (2.9) we have

[A%(zo — 27)[[x < crllvllxa’™ Vo € (0, a] (2.12)

Similarly to (2.8), taking (2.2) in place of (2.1), we obtain a regularizing mapping ¥, when the operator A
is not selfadjoint. Let the generating functions ©(A, ) satisfy condition (2.7). We denote

Ro(A, f) = (E—0O(A"A o) A¥A) £+ O(A* A, o) A* f
and construct the family of procedures for finding quasisolutions of equation (2.1) as
o= (F—0OA A, a) A"A)E+ O(A" A, a) AT f, a€(0,aq] (2.13)
Theorem 2.2 [4, pp. 33-37; 8, p. 45]. Suppose Assumption 2.1 is satisfied. Then
lim [z, — a*lx, =0
where x™ is the quasisolution of (2.1) nearest to £, i.e.,
et e X7, |le" = ¢€llx, = min{[le —€|lx, ;2 € X7} (2.14)
If, in addition, the nitial discrepancy can be represented
=& =(A"Aw, weX; (2.15)
where p,q >0, p+q € (0, pol, then

(A" A)? (0 — 2L, < ealluoflx,0”*e ¥ € (0, ] (2.16)

Remark 2.1. If ¢ = 0, then the left-hand sides of (2.12) and (2.16) involve the usual pointwise discrepancy
2o —* of the solution #*. In the case of ¢ = 1, the expressions under the norm signs take the form A(z,—2*) =
Azg — [ and A*A(wq — 2*) = A* Az, — A" f, respectively, and represent the discrepancies of the right-hand
sides in equations (2.1) and (2.2).

Note that, in nontrivial situations, assumptions (2.11) and (2.15) with p’ > p are more rigid as compared
with the exponent p > 0. Therefore, these conditions define more amd more restrictive classes of initial
discrepancies z* — ¢ as p increases. Specifically, when X, X5 are functional spaces (for eqxample, Ly or W¥)
and the operator A is integral, conditions (2.11) and (2.15) mean that the discrepancy #™ — £ possesses an
increasing smoothness as compared with the usual smoothness of elements from X;. In the special case when
A is the Green operator for an elliptic differential operator, these conditions are equivalent to the inclusion
z* — & € C" with the coefficient r of smoothness proportional to p ([18, p. 454]).

We now present a number of generating functions (A, a) that are of the widest applications and specify
the abstract scheme (2.8) for these functions. Note that in the case of ill-posed equation (2.1) we are interested
in 0 € (A4). Consequently, for bounds of the segment [My, M] D o(A) we have My < 0, M > 0.

Example 2.1. Let My = 0. Then the function

O\, a)=A+a)! (2.17)

satisfies (2.7) for all pg € (0,1]. A practical implementation of scheme (2.8) with generating function (2.17) is
equivalent to solving the equation

(A+aF)e,=aé+ f
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with the continuously invertible operator A + o E. Method (2.8), (2.17) is known as the method of M. M. Lav-
rent’ev.
Example 2.2. Choose an arbitrary N € N, N def {1,2,...} and assume that My = 0. Then the function

O\ a) = 1{1 (o )N} (2.18)
DY Afa '
satisfies (2.7) for all pg € (0, N]. We see that function (2.17) belongs to family (2.18) with N = 1. The
computation of the approximation z, from (2.8) can practically be performed by the following finite iterative
process [8, p. 19]:

2o =V (2.19)
where
¢V =¢ (A4aB) et =az® 4 k=0,1,... N1 (2.20)

Method (2.19), (2.20) is known as the iterated method of M. M. Lavrent’ev.
An analog of the family of generating functions (2.18) for not selfadjoint operators A looks like as follows.
Example 2.3. The function

o= [ () oo

satisfies (2.7) for all pg € (0, N] and My < 0. Method (2.8), (2.21) can be implemented similarly to (2.19) and
(2.20) [8, p. 22]: x4 = 28" with

eV =¢ (A4 aiB) 2 =ai® +f, k=0,1,... . N-1
Simple calculations prove that the upper bounds on py indicated in Examples 2.1 2.3 cannot in general be

relaxed. This means that Theorems 2.1 and 2.2 do not guarantee the convergence of approximations =, with

estimates (2.12) and (2.16) involving an exponent p 4+ ¢ > pg even if the value of p in representations (2.11)

and (2.15) is arbitrarily large. This effect is known as the saturation phenomenon [4, 8, 13]. Hence, the rate of

convergence of saturating methods increases with the exponent p until an appropriate threshold value is reached

and, then, remains constant when p increases. Here are some examples of methods (2.8) free of the saturation.
Example 2.4. Assume that My = 0. Then the function

1
X(l—e‘”“), AZ£0
O\ a) = ] (2.22)
=, A=0
a
satisfies (2.7) for all pg > 0. Procedure (2.8), (2.22) can be implemented as follows [8, p. 27]:
o =u(a ), ae(0,a] (2.23)
where u = u(t) is the solution for the Cauchy problem
du
I +Au=f u(0)=¢ (2.24)

Example 2.5. Let My = 0 and the function g¢: [0, M] — R be Borel measurable, bounded, and continuous
at the point A = 0. Also suppose that

sup |[1—=Ag(N)| <1 Vee (0,M)

AE[e,M]

Then the function

1 /X

T = =20D] " A#0

O\ o) = (0) (2.25)
A2 A=0
o

defined on the discrete set of regularization parameters o = 1, %, cey %, ... satisfies (2.7) for all py > 0. The

above-obtained procedure (2.8), (2.25) can be implemented as a finite iterative process [8, p. 37]: if & = %, then

2o =) (2.26)
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where

20 = ¢ gD = k) —9(4) (Ax(k) — f) , k=0,1,...,n—1 (2.27)

The simplest examples of the functions g(A) that meet the above-mentioned conditions are the following: g(A\) =
po € (0, 57) and g(A) = (A + po) ™", pio > 0.

Since the functions of Examples 2.4 and 2.5 satisfy Assumption 1.1 without any upper bounds on py,
regularization procedures (2.23), (2.24) and (2.26), (2.27) are actually not saturating. Specifications of (2.13)
for generating the functions from Examples 1 -5 can be easily written with A* A and A* f in place of A and f,
respectively.

We now dwell briefly on the case of noisy datain (2.1) with a general not selfadjoint operator A € L(X1, X2).
Assume that in place of the original data (A, f) in (2.1) only approximations (A, f;,) € L(X1, X2) x X are
available such that

lAn = Allex, x2) < hy fy = fllx. < (2.28)

Following (2.13), we construct an approximation for a quasisolution #* as
el = (B = (5 A, alh,m) 434, ) €+ O(A; A, alh, ) A7,

Without loss of generality, let (A} Ap),o0(A*A) C [0, M]. The next assertion establishes a possible way of
coordination of the regularization parameter a and the levels of errors § = (h, n) that guarantee the convergence

(hym)

of approximations z_ ) to z* as h,np — 0.
Theorem 2.3. [4, p. 39; 8, p. 97]. Suppose Assumption 1.1 is valid and

sup  |O(N, @) < eza™t Va € (0, ag]
xe[0,M]

lim sup A1 =0O(A a)A|=0
OC_>0>\E[0,M]

Let the reqularization parameter be coordinated with the levels of errors such that

h
lim a(h, ) =0, Rkl

=0
B.n—0 h,$—>0 alh,n)

Then, uniformly in the choice of (Ap, f,) within conditions (2.28) we have

with the quasisolution x* defined by (2.14).
Moreover, if the initial discrepancy possesses representation (2.15) and the regularization parameter is

chosen such that a(h,n) = ca(h + 77)#, then

4 S es(h + ) 7T

The latter estimate is unimprovable on the class of equations (2.1) with solutions possessing representation (2.15).

We refer to [3—6, 8] for further examples of rules for the regularization parameter choice.

3. Necessary conditions of convergence of regularization methods for linear equations in
Hilbert spaces. In this section we prove under some appropriate assumptions on the generating functions
O(A, «) that sourcewise representations (2.11) and (2.15) are very close to necessary conditions for methods (2.8)
and (2.13) to converge with estimates (2.12) and (2.16). In addition to Assumption 2.1, we impose the following
condition on O(A, a).

Assumption 3.1. Borel measurable functions ©(A, «) satisfy Assumption 2.1, and there exists a constant
cg = cg(7) > 0 such that

/a_27_1|1 — O\, )M da >

0

YA € [Mo, MI\{0} ¥r € (0, po) (3.1)

Theorem 3.1. Suppose Assumption 3.1 is satisfied. For a fized triplet A, f, & and given p, q such that
p>0,¢>0, p+q€(0,po], we assume that

[A% (@0 — 2%)|lx < cra?* Vo € (0, a0] (3.2)
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with x, and * defined by (2.8) and (2.10), respectively. Then, for each £ € (0,p) the following inclusion holds:

r* — € € R(AP™F) (3.3)

Proof. From (2.8) and (3.2) with the use of the equality f = Az*, we obtain
490 — 27| = [AY(E - ©(4,a) 4) (2" = &)|[x < era®PT) (3.4)

By (2.4) and (3.4), for each w € (0, 2p) we have

2040t APl - @0, )P d (" — Ol < era” T Ya € (0,0
[Mo,M\{0}
Integrating the both sides with respect to a € (0, ag], we get
SRR P — O, @) AP || Ex(e® = €)|[k dor < o0
0 [Mo,MI\{0}

Since the integrand is nonnegative, it follows from the Fubini theorem [19, p. 318] that

/ﬁ |Aﬁq(/}f4@+®_1+wﬂ——@(A¢nAﬁda)dHEA@f——5”@»<cm (3.5)
(Mo, 311\ {0} 0

Taking 7 = p+ ¢ — % in (3.1), for the internal integral in (3.5) we obtain the estimate

Xo

C
/a—Z(p+q)—1+w|1 — O\, )\ da > W VA € [Mo, M]\{0}

0

Now by (2.10), * — ¢ L N(A) and, hence, the function ||E(z* — &)||% is continuous at A = 0. Therefore, the
corresponding Lebesgue-Stieltjes measure of the singleton {0} equals to zero and by (3.5) we have

M
[ e - = [ WD dlEG - ol <o
[Mo,M]\{0}

By (2.6), 2* —¢ € R(AP~%). Since w € (0, 2p) may be chosen arbitrarily small, for each ¢ € (0, p) inclusion (3.3)
holds. This completes the proof.

Example 3.1. Direct calculations prove that estimate (3.1) is valid for the generating functions from
Examples 2.1, 2.2 and 2.4 if My = 0. The functions from Example 2.3 satisfy (3.1) for all My < 0.

We now turn to iterative methods (2.26), (2.27). Suppose the following assumption is satisfied.

Assumption 3.2. The function g(A) satisfies the conditions of Example 2.5 and there exists a constant
cg = cg(7) > 0 such that

Z#Tm Ag(V)]*" > T—WemM]W>O (3.6)

Theorem 3.2. Suppose Assumption 3.2 is satisfied. For a fized triplet A, f, & and given p, q such that
p>0,¢>0, p+q€(0,po], we assume that

|A9 (2" — 2*)||x < con™ T ¥YneN (3.7)

with ") = x, and x* defined by (2.26), (2.27), and (2.10), respectively. Then, for each £ € (0,p), inclusion (3.3)
holds.
Proof. Using (3.7), we get for all n € N that

M
1AL (2 — )% = |AY(E — Ag(A))" (" = &)k = /Vm “ AN BN = Ol € 5y 39)
0
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The next arguing follows from the proof of Theorem 3.1 with the summation over all n € N in place of the
integration with respect to « € (0, ag]. From (3.8) it follows that

Co

n?UHOZI=A L= NG dl | Bx (2" = Ik < 3

O\E

for each w € (0, 2p). Summing up the above-obtained inequalities, we get

Z/nz PHO=I=AM) T — Ag (V)] d| Ex(z™ = )|k < o0

n=1 0

The application of Levi’s theorem [19, p. 305] with 7 =p+ ¢ — % in (3.6) yields

0o M
Z/””” TITONML = Ag(N)[d] Ea (2 = ©)Ik
0

n=1
M 00 M

= [ n O A dBA = Ol 3 s [ A d B - )l
0 n=1

0

Now, by (2.6), * — & € R(A?~°) ¥e € (0,p). This completes the proof.

Remark 3.1. Theorem 3.2 remains true if inequality (3.6) is satisfied only for A € (0, M) with M, € (0, M].
This note is useful for practical verification of Assumption 3.2.

Example 3.2. Tt can easily be checked that Assumption 3.2 is satisfied for the functions g(A) = puo,
Ho € (0, %), and g(A) = (A + po) ™1, po > 0, introduced in Example 2.5.

Remark 3.2. Examples from [6, 19] prove that Theorems 3.1 and 3.2 with the equality ¢ = 0 in place of
the inclusion ¢ € (0, p) are not true in general. At the same time, they remain valid with £ = 0 in the case when
p = pg, where pf is a maximum of all py such that Assumption 2.1 holds (see [6]). The value of p§ is called the
qualification of method (2.8) or (2.13). According to Section 1, functions (2.18) and (2.21) generate methods
with the qualification p§ = N, whereas functions (2.22) and (2.25) yield methods with p§ =

When the operator A € L(X7, X2) is not selfadjoint, similar results can easily be formulated and proved
with A*A and A* f in place of A and f.

To conclude this section, we note that the unimprovability of estimates for rates of convergence of meth-
ods (2.8) and (2.13) subject to conditions (2.11) and (2.15) uniformly in input data (A, f) and an initial guess £
have been established by many authors [3, 4, 8, 21]. Contrary to these results, Theorems 3.1 and 3.2 deal
with individual equations with a fixed initial guess £ rather than with classes of problems. They show that
the guaranteed order of rate of convergence completely depends on a priori information on the exponent in the
sourcewise representation of a solution or quasisolution. The above formalism of deducing necessary conditions
for qualified convergence of procedures (2.8) and (2.13) develops the technique of [20, Ch. I, §9]. For the case
when ¢ = 0, the conclusions of these theorems have been obtained earlier in [6] by other means.

4. A class of methods for solving linear equations in Banach spaces. Suppose X is a complex
Banach space. Given A € L(X) and f € X, consider a linear equation

Az =f, ze X (4.1)

Assume that the solution set X* of (4.1) is nonempty. An immediate extension of the Hilbert space technique
presented above for Banach spaces turns out to be difficult mainly because of the lack of suitable generalization
of the spectral decomposition formalism and of the corresponding operator calculus for sufficiently broad classes
of operators A € L(X). The use of Riesz—Dunford operator calculus seems to be the most convenient way of
extension of the previous results for Banach spaces. Suppose I 1s a positively oriented contour on the complex
plane C such that T' surrounds the spectrum o(A). Let the function ¢(A) be analytic on an open neighborhood
D D o(A), where T' C D. Then, the function ¢(A) of an operator A can be defined by the Riesz—Dunford
formula [17, p. 455]

p() = 5 [ PVROA)dr (1.2)

where the integral exists in Bochner’s sense.
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n [10, 11], the following extension of the process (2.8) for equation (4.1) in the Banach space X was
proposed:
o =(F—0(Aa)A)E+0(A,0) f, a€(0,aq) (4.3)

with ©(A, ) defined by (4.2). The meaning of the element £ € X in (4.3) is the same as in (2.8). Under
appropriate assumptions on the operator A and under condition (2.11) with p = 1, it was established in [10, 11]
that approximations #, converge to the solution z* from (2.11) as o — 0; the case of a noisy right-hand side f
in (4.1) was also investigated (see [4, pp. 50— 54; 12]). We emphasize that the assumption of analiticity on the
generating functions O(A, ) do not lead in practice to the loss of generality as compared with the Hilbert case,
since the most useful schemes (4.3) are generated by analytic functions ©(A, &) (see Examples 2.1-2.5). The
aim of Sections 46 is to continue the study of regularization scheme (4.3) and to obtain analogs of the above
results concerning methods (2.8) for processes (4.3). We shall first prove estimates for the rate of convergence
of approximations z, to #* as @ — 0 for arbitrary exponents p > 0 in the sourcewise representation. Then,
regularization properties of methods (4.3) for the case of both the operator and right-hand side available with
errors will be established. Finally, we shall prove analogs of Theorems 3.1 and 3.2 for (4.3). Note that in

the most interesting case of ill-posed equation (4.1) we have 0 € o(A). Therefore, the power AP cannot be

defined directly by (4.2) except for exponents p € N, N ef {1,2,.. .}, since the function AP is not analytic in a

neighborhood of A = 0. For the definition and properties of fractlonal powers AP, p > 0, of operators A € L(X)
with 0 € o(A) we refer to [22; 23, p. 156].
Asin [4, p. 51; 10, 11], we restrict ourselves to the operators A that satisfy the following condition.
Assumption 4.1. There is ¢y € (0, 7) such that

o(A) C K(po), Klpo)E {he C:larg A < po} (4.4)

and
C10

1B Al < [f YA€ CVK (o) (4.5)

Fix a constant Ro > ||A]|L(x). It is easy to show that o(A) C K(Ro, o) with

K(Ro, o) & K(po) N S(Ry), S E (AeC:]A<r), r>0

Moreover, we obviously have an estimate similar to (4.5) with the sector K(Rg, ¢o) in place of the cone K(g).
Let us recall necessary definitions from the theory of fractional powers of linear operators. Given a natural
p, the power AP is defined in the usual way, i.e., AP = A--- A (p times). For an operator A satisfying Assumption
4.1 and an arbitrary noninteger p > 0, we define AP as follows.
Definition 4.1 [22; 23, p. 156]. For each p € (0,1)

sin

A /t“ L(tE + A)~ ' Adt (4.6)
0

Let p > 0 and m € N be such that p € (m,m+ 1). Then

AP g g = grmme g

Note that by (4.5) the integral in (4.6) exists in Bochner’s sense and represents an operator A* € L(X).
Given an operator A € L(X), consider its regularization A = A+ ¢F. Let Assumption 4.1 be satisfied. Then,
forall e > 0 and p > 0 the power A? can be defined by formula (4.2) with ¢(A) = AP provided that the contour
surrounds the spectrum o(A.) = {/\ +e: X €0(A)} and does not include the point A = 0.

Lemma 4.1 [23, p. 155]. Let an operator A € L(X) satisfy Assumption 4.1. Then, for each p € (0,1)

AP = AP||p(x) < cas? Ve >0 (4.7)

with a constant c11 that depends on A and p only.
Let us now specify the class of generating functions ©(A, &) that will be used in subsequent examinations.
Suppose the following assumption is satisfied.
Assumption 4.2. For each o € (0, ap] the function ©(A, &) is analytic in A on an open subset D, C C
such that
[{Q(Ro, do, QD()) Cc D, (48)
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with et
Ko(Ro,do, p0) = K(Ro,0) U Smin{Ro,dya} (0)

and a fixed constant dg € (0, 1).

If needed, in the course of our examinations we shall impose additional conditions on ©(A, «). By int G and
frG = clG\int G we denote the interior and the boundary of a subset G C C, respectively; cl G is the closure
of GG. We put

ya:fr[(a(Ro,do,goo), a >0

It follows from (4.4) and (4.8) that the operator ©(A, «) admits representation (4.2) with () = O(A, «) if
' =T, is taken in such a way that 'y, C D and 7, lies inside the contour I';, with both the contours oriented
positively. In other words, we have the representation

O(A,a) = %/@(A,a)R(/\,A) d\,  a e (0, aq] (4.9)

with I', chosen as outlined above. In addition, assume that the contour I',, does not surround the point
A= —dia (dy > dp) Vo € (0, ap]. The application of Assumption 4.2 yields that such families of contours T',
a € (0, ap] do exist.

Suppose the initial discrepancy possesses the sourcewise representation

f—¢é=Av, veX zzeX*, p>0 (4.10)
Then, from (4.3) for each ¢ > 0 we have
Al(xy —2*) = —(F — O(4A,a) A) APty (4.11)

Denote by m = [p+4] and g = p+¢ —m the integer and fractional parts of p+ ¢, respectively. By the definition
given above, APT4 = A™ . A# By (4.11), for each £ > 0 we get

4% (za — 2)[[x <[|(E = O(A, ) A) A™ (A + e E)ol[x + ||(E — O(A, o) )A™ [(A+ e E) — A'Jof[x (4.12)

Let us put ¢ = ci9cr and estimate the summands in the right-hand side of inequality (4.12). From (4.2) we
obtain
1
(£ = 0(4, a) ) A" (A+ cE)vllx < 5 [lvllx / [1= O, a)AA™ A+ e[*[|R(A, A)l|Lx) [dA]
te (4.13)
<esllollx - [ 1= O a)A[ (AT + ok A7) [dA
PN

Having this in mind, we now impose one more restriction on the generating functions ©(A, a) (compare with
Assumption 2.1).
Assumption 4.3. There exists a constant ¢14 independent of « such that for all p € [0, po] (po > 0)

/ |1 — O\, a)AAPTHdA € craa? Vo € (0, aq) (4.14)

s

Suppose Assumption 4.3 is valid and p+¢ € (0, pg]. Then, by (4.13) and (4.14) with the use of the estimate
|A] > doae VA € T, we obtain

[[(E—O(A a) A) AT (A 4+ cE)o|lx < cusllv]|xaf VYo € (0, ag) (4.15)
By (4.5) and (4.7), for the second term in the right-hand side of (4.12) we get
(B = O(A, a) AT [(A + e E)* — AMul|x < enllvllxe[[(E - O(A, a) A)A™||L(x)

C

<P ollxe” [ 11 OO AN IR, Ay [N < cxelollxa Vo€ (0.0 (4100
Lo

Estimates (4.12), (4.15), and (4.16) yield

[|[AY(xe — 7)||x < cr7l|v]|xa? Ve € (0, aq]. (4.17)
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Hence, we have proved the following statement.

Theorem 4.1. Suppose Assumptions 4.1 — —4.3 are satisfied and sourcewise representation (4.10) with

>0, p+q € (0,po], holds. Then, estimate (4.17) is valid with the solution * from (4.10).

Remark 4.1. It follows from Theorem 4.1 that the solution #* to (4.1) which satisfies (4.10) is unique.

Remark 4.2. The conclusion of Theorem 4.1 remains valid in a slightly more general situation when the
cone K(pg) in Assumption 4.1 is replaced by f((goo) ={A € C:largA — Ag| < @o}, Ao € (0,2m). Tt is easy to
see that the multiplication of both sides of equation (4.1) by e~%*¢ reduces this case to the above-studied one.

Concluding this section, we note that Assumption 4.1 is satisfied with an appropriate ¢g € (0, ) for the
classes of operators A listed below.

i) Selfadjoint nonnegative operators A* = A > 0 in a Hilbert space X. Assumption 4.1 holds with ¢10 = 1,
wo € (0, ).

ii) Accretive operators in a Hilbert space, i.e., the operators that satisfy [24, p. 350]

Re(Az,2) >0 VYeeX

Assumption 4.1 is valid for each ¢o € (F, 7).

iil) Spectral operators of the scalar type in a Banach space with a spectrum from the cone K (¢g), o € (0, 7)
(see [25, p. 41]). A value of ¢y € (g, 7) is arbitrary.

iv) Operators A in a Banach space X such that o(A) C K (), ¢ € (0,7), and

[R(—t, Al x \—8, cis>1 VE>0

[
In this case, Assumption 4.1 is valid for all pg € (¢, 7) with

1
W = max{wo, T — arcsin—
€18
5. A class of regularization algorithms for linear equations in Banach spaces. Suppose now
that the input data in (4.1) are available with errors, i.e., instead of the original operators A and f their
approximations (Ap, f;) € F, F = L(X) x X are given such that

lAn — Allxy <, 1y = fllx <9 (5.1)

An upper estimate § = (h,n) for errors in input data is also assumed to be given. Following (4.3), we shall
construct an approximation for a solution of (4.1) as

2 = (B — ©(An, a(h,n)) An) € + O(An, a(h, ) f, (5.2)

The regularization parameter o« = «(h,n) in (5.2) should appropriately be coordinated with the levels of
errors h, i in order to guarantee the regularization property

lim ||z — =
hyn_ﬂ) Of(hyﬂ)

=0 (28 €X%) (5.3)

X

uniformly in (A4, f;) € F subject to (5.1).
To justify (5.2), we first prove that the function @(Ay, a) of the approximate operator A, can be defined
by (4.9). For this purpose, we recall the following well-known proposition.
Lemma 5.1 [23, p. 185; 26, p. 141]. Let A € p(A), A € L(X), and B € L(X).
1) Suppose ||BR(A, A)||L y < 1. Then, A € p(A+ B) and the following representation holds:

R\ A+ B) = Z BR(\, A)) (5.4)

2) Suppose ||[R(A, A)Bl|Lxy < 1. Then, A € p(A + B) and

oQ

R\ A+ B) = Z FR(\, A) (5.5)

The series in (5.4) and (5.5) converge absolutely with respect to the norm of L(X).
The next lemma establishes conditions sufficient for the contour T, (see (4.9)) to surround the spec-
trum o(Aj) along with the spectrum o(A).
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Lemma 5.2. Suppose
Cloh

doa < Wo (56)

with a constant wy € (0,1). Then, the contour Ty surrounds the spectrum o(Ap). Hence, for the opera-
tor O(Ap, a) representation (4.9) holds.

Proof. By construction of K, (R, do, o), for each A € C\int K (Ro, do, po) we have |A| > dpa. Taking
B=A, — Ain Lemma 5.1, with the use of (5.1) and (5.6) we obtain

Cth Cth
SIS doa

IBR(A, AllLx

Therefore, A € p(Ap) and the contour T'y contains all the points of the spectrum o(Ap). This completes the
proof.

Throughout this section, we suppose that condition (5.6) is satisfied.

Let a solution #* € X* possesses sourcewise representation (4.10). Note that

a7 — 2 = (E = O(An, a)An) (€ — 27) + O(An, ) [(f — ) + (A — Ap)a”] (5.7)
From (4.10), (5.1), and (5.7) it follows that
28" — 2% |lx < 11©(An, @)lleex) (0 + ][ x k) + |(E = ©(An, a) Ap) APv]|x (5.8)

Let us estimate each summand in the right-hand side of (5.8).

By (5.6), (5.1), and (5.4), we have

C10
IR, An)llLxy <R A)ox ZH (An = A)RN, A)IE x m VA€, a€(0,a]

From (4.9) we obtain

040l cx / OO ) 1RO A1) 4] < exs / BEAN o vae ol 69)

In addition to Assumptions 4.2 and 4.3, we now impose the following condition on the generating functions
O\, o).
Assumption 5.1. For each « € (0, ag],

[100all gy o
Y 2

By (5.9) and Assumption 5.1, we get
1O, @)llzix) < 2 Vo€ (0,0 (5.10)
For the second term in the right-hand side of (5.8), we have the estimate
I(E = ©(An, a) An) A70llx < II(E — O(4, ) 4) APvlx + [[(O(An, a) Ar — O(A,a) A) AP0y (5.11)
As in the proof of Theorem 4.1, from (4.14) we come to the inequality
[|(E —O(A, a) A) APv||x < cazl|lv]|xaf Ve € (0, ag] (5.12)
Denote m = [p], u = p — m, € = ¢age. Then

[[(©(An, a)Ap — O(A, ) A)APv||x < |[(O(An, a)Ap — O(A, ) A)A™ (A + e E)Ho||x (5.13)
+|[(O(An, ) Ap — O(A, a) A)A™[(A + e E)* — A*)v||x .
For the first term in (5.13) we have
1(O(An, a)An — O(A, ) A)A™ (A + )] x

1
< o vl / 1= O a)Al- [[(R(A, A) = R(A, Ap))A™ (A + e E)H||Lx) [dA]

s
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The application of Lemma 5.1 (see (5.5)) and (5.6) yields
I(R(A, A) = RO, AR)A™ (A + 2B ix) < DR, A)llpooh) FIRO, A)A™ (i) (A + 2 B)H|l1x)
k=1

624]7, m
< mHR(A,A)A ||L(X) YA e Fa, o € (0,0[0]
The equality R(A, A)A = —F 4+ AR(A, A) implies that
|IR(A, A)A™ |1 (x) < c2sAp(|A])
with

atr |71 [p]=0,
N MO

Therefore,
[[(©(An, a)Ap — O(A4, o) A) AT (A + e EYul|x < easllv]|x Ap(a)h Ve € (0, avg] (5.14)
In a similar way, for the second term in (5.13) with the use of Assumption 4.1 and Lemma 5.1 we obtain
(O (An, ) A — O(A, @) AYA™[(A+ < E)F — A¥]o][x
<ezrlollxa® [ 1= OO, @R A) = BN A A i) [N < cxsllellx Ap(e)arn (B19)
PN

Combining (5.8) and (5.10) - (5.15), we finally get

The following statement is a direct consequence of the previous examinations.

Theorem 5.1. Suppose Assumptions 4.1 — —4.3 and 5.1 are satisfied. Let the initial discrepancy ™ — ¢
possess sourcewise representation (4.10) and the regularization parameter o = «(h,n) be coordinated with the
levels of errors h, 1 in such a way that (5.6) holds and

h+n

h,n *
2 g

e (A ()h + a?)ollx) (5.16)

h
a(h,n) € (0, g, lim a(h,n) = lim Rl

=0 5.17
h,n—0 hn—0 a(h,n) (5.17)

Then (5.16) and (5.3) hold.

We conclude this section with a brief discussion of how one can relax condition (4.10), which seems to be
the most restrictive among the hypotheses of Theorems 4.1 and 5.1 (along with Assumption 4.1). Assume that
for a given approximate operator A there exist an element v, € X and an exponent p € N such that

e —E&=AVvp +wp,  wp|lx <V (5.18)

The value v in (5.18) is an estimate for the error in the sourcewise representation of the discrepancy z* — ¢ with
the use of the available operator Aj. Suppose v is small enough along with A, 5. By (5.2), we get

25— 2"||x < eaoll®(An, )l iy (b + 1) + I1(E — ©(An, o) An) Afwillx + || B — O(An, @) Anl|zxyv

Then, as in the proof of Theorem 5.1, we obtain

|z — 2% x <631(h+n +Oép||vh||x+1/) (5.19)
Therefore, we have proved the following assertion.

Theorem 5.2. Suppose Assumptions 4.1 -4.3 and 5.1 are satisfied. Let the wnitial discrepancy &* —¢& possess
the approrimate sourcewise representation (5.18) with an exponent p € N and the regularization parameter
a = a(h,n) be consistent with the levels of errors h, n such that o € (0, ag] and (5.6) holds. Then, estimate (5.19)
15 valid.

Corollary. Suppose (5.17) and the hypotheses of Theorem 5.2 are satisfied. Assume that sup ||vp||x < 0.

h

Then,

)

(o) — 2¥||x < esiv (5.20)

lim ||x
n—

)
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Inequality (5.20) means that regularization algorithm (5.2) is stable with respect to errors in sourcewise
representation (4.10).

As one more application of Theorem 5.2, let us prove the convergence of approximations x(( )) defined
n (5.2) without additional assumptions on the initial discrepancy. Suppose X is a reflexive Banach space.
By [27, p. 637] and Assumption 4.1, the direct decomposition X = cl R(A4) @& N(A) holds. Therefore, each
element » € X possesses a unique representation in the form # = y 4+ z with y € cl R(A4) and z € N(A4).
Consequently, for each & € X there exists a unique element z* € X* such that z* — ¢ € cl R(A) and for
arbitrarily small € > 0 there exist elements v, and w, such that #* —& = Av, +w,., ||w.|]|x < e. Takingin (5.19)
v = h||v:||x + €, we obtain

If we combine this inequality with (5.17), we get hm ||x

(a4

* h+
) - HX < 631(

+ (a4 A)Jeelx + )

)

(o) — z*||x < e316. Since £ > 0 can be chosen

arbitrarily small, we come to the following result.

Theorem 5.3. Let X be a reflexive Banach space, Assumptions 4.1-4.3 and 5.1 and condition (4.14)
with p = 1 be satisfied. Then, approzimations x(h( )) generated by (5.2) and an element ¥ € X such that
z* — & € cl R(A) satisfy (5.3).

6. On the necessity of sourcewise representation conditions. In this section, we consider the ques-
tion of whether condition (4.10) is necessary for the power rate of convergence (4.17). For simplicity, let ¢ = 0.
We shall prove that representation (4.10), which is sufficient for (4.17), actually appears to be very close to a nec-
essary one, so that under appropriate additional conditions on the generating functions @(A, a) estimate (4.17)
implies

et —E € R(AP™F) Ye e (0,p) (6.1)
(compare with Theorems 3.1 and 3.2 for ¢ = 0).
From the technical point of view, it will be convenient to assume that the generating functions ©(A, &) are

defined for all positive values of the regularization parameter o € (0,00). Assumption 4.2, then, implies that
the operator

O(A,a) = %/@(A,a)R(A,A) d\ (6.2)

is defined for all a € (0,00). By (4.3) and (6.2) and with the use of the equality Az* = f, we obtain
1
vy — 2" =(F—0(A a)d) (€ —2") = 7 /(1 — O\ a)A) R(AA) (€ — %) dA (6.3)
i
Yo

Suppose the following Assumptions 6.1 and 6.2 are satisfied.
Assumption 6.1. For all » € (0, 7g]

1- a)A
sup / | |/\| ) |[dA] < o0 (6.4)

a€lag,00

Inequality (6.4) is a weakened variant of Assumption 4.3 with p = 0 written for « € [ag, 00). We denote
D(Ro, dOa QDO) = {(Aa Oé): A € [(OC(ROa dOa goo), o€ (Oa OO)}
Assumption 6.2. There exists 9 > 0 such that the function ©(A, ) is continuous in (A, ) on the set
D(Rg + €, do, o).
Assume that there exists a constant Iy > 0 such that

£ — 2¥||x < oo (p > 0) Va € (0,aq] (6.5)

From Assumption 6.2 and representation (6.2) we conclude that the element 2, depends on a € (0, 0)
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continuously. Besides, by (4.5) and (6.3)-(6.5), for all k, 0 < & < min{%p, 2ro} we have

%] g %]

/Of_p_HKHxa —z¥||xda = /Of_p_HKH% —2%||xdo + / QTP le — || xda <
0 0 o
< lo/a_l'l'“doz + /a‘p+1+“||E —O(A, a)AllLx)lz" =[x da (6.6)
lo/a_l‘l'“d 4 o C10 || _€||X /a p— 1+3/€/2 —n/Z/% |d/\|) da < oo
0 o
Therefore, the formula
w, = /a‘p‘“’“(x* — 2.) do (6.7)

0

defines an element w, € X (here the integral exists in Bochner’s sense).
The plan of our further examinations looks like as follows. Apart from the operator A, we shall consider
its regularization A, = A+ ¢F, ¢ > 0, and define the element

ul) = /a—p—w (O(A,0)A — O(A,, a)A,) (2" — &) da (6.8)

We shall prove the convergence of the integral in (6.8) and establish an upper estimate for the norm ||u,(f)||X.
This will imply the convergence of the integral

/a—p—w (E — O(A:, a)A.) (z* — &) da = ul®) + w, & w (6.9)
0
with the estimate ||w,(f) —w||lx = ||u,(f)||X. At the final stage, by direct calculation we shall establish the
equality
Al = Clp, ) — ) (6.10)

with a constant C'(p, k) > 0. On the other hand, with the use of the above-mentioned estimate we shall prove
that A’a’_“wff) = AP~ "w, for a sufficiently small £ = £, — 0. This will give us the desired representation (6.1)
immediately.

Suppose the next assumption is satisfied.

Assumption 6.3. For all « € (0, 00),

— O\ a)A £0 YA€ Ku(Ro,do, o)

By the spectral mapping theorem [28, p. 220] and Assumption 6.3, the operator £ — ©(A, a)A possesses
a continuous inverse for all a € (0, 00). Therefore,

oQ

ul) = /a—p—w U(A a,¢) (E — O(A,a) A) (z* — &) da (6.11)

0

where O\, a)A — O\ +&,a)(A+¢)
def L)X — g, €
vihae) = 0\, o)\

From Assumptions 6.2 and 6.3 it follows that for each ¢ € (0,¢¢] the function ¥(A, «, €) is continuous in (A, &) on
D(Ry, dg, po). Therefore, the operator ¢(A, o, ¢) depends on a continuously with respect to the norm of L(X)
for o € (0, 00). To prove the convergence of Bochner’s integral in (6.11), it suffices to establish the existence of
the Lebesgue integral in the right-hand side of the inequality

oQ oQ

[ et (- 0 ) 4) (7 = llx da < [ @ (A a,) aon oo — o7l da (612)
0 0
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y (4.5),

(A
ot /w A s IR, Al 03] < 22 / EReay ey

Let us supplement the previous conditions on ©(A, &) by the following one.
Assumption 6.4. There exist constants £; € (0,£¢] and sy > 0 such that for all £ € (0, ;] the following
inequality holds:

(A e
/W’ |A‘r€||dA|df (o) < o (6.14)
Moreover, for all s € (0, sg]
sup (e*M(o,e))+ sup (o *M(a,2)) < (6.15)
a€(0,a0] a€fag,00)

and
&1

M
sup (ozs / Mdg) + sup /
a€(0,a0] . € a€lag,00

0

< 00 (6.16)

Estimates (6.4)—(6.6) and (6.12)—(6.15) prove that the integral in (6.11) exists for each ¢ € (0,£;] and
0< k< min{%p, 2rg, 250}, since

oQ

[T e a e lew — o7l da <

0
agp %]

< ‘;1—72(/ o P M (0, €)||2 — 27| xdor + / o P M (0, €| — x*||Xdoz)
0 o
< 621—0(10/0[_1"'“/2 (a“/zM(a,E)) da —|—/a_p_1+3“/2 (a_“/zM(a,E)) 2o — l‘*HXdoz) < 00
T
0 g

Therefore, for each £ € (0, 1] the integral in (6.9) is well defined and represents an element wl) € X. By (6.11),
(6.13), and (6.14) and with the use of the Fubini theorem [19, p. 318], we obtain

€1 (a)_ €1 N
/||w,.; Ew,QIIX dE:/a_p_H,@ lV(A, o, e)llLix) 2o — 2| dar <
0

- ~
0
Qg €1M
< ‘31_0(/ QPR 2| | (wﬂ/ﬁd
2w €
0 0
co El]\4 1
+/a—p—1+3fc/2||xa _ $*||X . (a—f@/Q/ MCZE)CZOZ), 0< k< min{§p, 27“0,280}
9
og 0

Now, by (6.5), (6.6), and (6.16),

el
/ M de < oo (6.17)

Inequality (6.17) implies that there exists a sequence {e,}, €5 > 0, £, — 0, such that lim ||w,(f") —wg|lx = 0.
n—r 00

In fact, suppose there exists ¢z > 0 such that

o) =] > em Vee0.el e e

Then contrary to (6.17), we get

€

€1 2
||wff) — wyl|x €32
/7d62/—d6:oo
£ £
0

0
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Let & > 0 be small enough. Choose arbitrarily m € N such that p — k € (m, m + 1). By Definition 4.1,

AP—F (_1)m siIlﬂ'(p_K?) //tp—n—m—l(tE+A€)—1Ag@+1 dt
0 0

¢ T
Therefore, from (6.9)

A’;_“wff)

_ ()" sin(p — r) //tp‘“‘m‘la‘p‘“’“(tE—l—Aa)_lATH(E— O(A., a)A)(z" — &) da dt (6:18)
0 0

T

Given 7, r1, 72 > 0 and z, 21, 22 € C such that 1 < 72, 2 £ 0, argz; < argz2, we define the contours
Ly(21,22) ={C € C:[{| = r,argz; < arg( < arg 23}

Doy () = {C € iy < [¢] < ra,arg € = arg 2}
Let
n(Ata)=(t+ /\)_1/\m+1(1 — O\ a)A)

Note that the operator n(A.,t, o) admits representation (4.2) with the positively oriented contour
(€755, €95) U gy (€70, €9%) U Tg, 1 (69°) U T, (7599)

Indeed, it can easily be checked that the contour I'€) surrounds the spectrum o(A:) ={A+eA€c(A)} and
for all ¢, € (0,00) lies in the domain where the function n(A, ¢, ) is analytic in A. By (4.2) and (6.18), we
obtain the representation

oQ

Ap‘“wff):D(p,fc)// / a PmlERgp=r=m=lg L )T (L — Q(\, a)A) RO, Al ) (2 — &) dhdardt (6.19)
0 0

€

()

with D(p, k) = % To transform (6.19) with the use of the Fubini theorem (see [29, p. 354]), we
need to prove that

g%t / (//a‘p‘1+“tp‘“‘m‘1|t+/\|‘1|/\|m+1|1—@(/\,a)/\|||R(/\,A€)(x*—£)||X dadt)|dA| < 0o (6.20)
0 0

()

Since for each ¢ € (0, 4]
def

sup ||[R(A, Ac) (2" = llx = E(e) <o
A€ (=)
the following estimate is valid:
J< E(e) - / AL (/ a PR |1 — O\, a) )| da) (/tp—“—m—lu + /\|‘1dt)|d/\| (6.21)
=) 0 0

Suppose the functions O(A, «) satisfy the following additional condition.

Assumption 6.5. The function g(¢) def 1—0(X, A) A does not depend on A when A € K (¢g)\{0}. Besides,

9(0) =1 - ©(), A) A is analytic on Dy O K ()\{0} and for all ¢ € (0, p)

sup /T_t_1|g(ew7')| dr N(t) < o0 (6.22)
lel<eo
0
S _
i [ =0 (6.23)

Dy (e=%0 ei%0)
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lim Rt~ / 19()] dc] = 0 (6.24)

R—oo
Tr(e=iv0,civ0)

Let us analyze each of the internal integrals in (6.21). Using the change of variables o = |A|7, ¢ = |A|7 and
inequality (6.22), we get the estimates
/ a™PT (L= (A, a)A| da = AP / TP g (T [ dr < N (p— k)N (6.25)
0 0
/tp—“—m—lu + A" tdt = |Apprmmt /Tp—“—m—wr + AT T < P(p, g)APTETTE VA e TE) (6.26)
0 0

where P(p, &) is an absolute constant that does not depend on A, 0 < £ < min{ %p, 270, 250,10}, The desired
relation (6.20) follows from (6.21), (6.25), and (6.26) immediately. Changing the order of integrals in (6.19), we
obtain

ARl
= D(p, &) / \mtl (7Q_P—1+n(1 — 0\ a))) da) (ftp—n—m—l(t i A)_ldt)R(/\,Aa)(x* — 6 (6.27)
() 0 0

Given z € C, denote A(z) def { e C: ¢ =1tz,t >0} Asusual, z is the complex conjugate for z € C. The
change of variables & = A( allows us to transform the first of the internal integrals in (6.27) as

oQ

/ aTPTIFE (1~ O(), @) A) da = ATFEE / (TP G(¢) d¢ (6.28)
0 A(X)

where the integration over A()) is performed from ¢ = 0 to { = c0. We claim that the value G(p, k) of the
integral in the right-hand side of (6.28) does not depend on A € I'®). Indeed, choose Ay, Ao € T'®) such that
arg A1 < arg A» and construct the positively oriented contour

Loy (A, A2) = Tr(A1, A2) UTR(AL, A2) UT(, gy(A1) UL my (A2)
with 0 < 7 < R. Since ¢(¢) is analytic on K (¢0)\{0} D F(T,R)(;\la A2), we have
[ omrga= [ omroas [+ [
Tir,ry(A1,A2) T'r(X1,A2) Tr(A1,22)  Tory(d1) T ry(A2)
Passing to limits as r = 0, R — oo and using (6.23) and (6.24), we obtain
/ C—P—1+ng(c) dc — / C—p—1+ng(c) dc
A(X) A(Xz2)

In a similar way, for the second of the internal integrals in (6.27) we get

oQ

/t”‘“"”‘l(zt+A)‘1cht:A”‘“_m_1 / ¢TI () TG (6.29)

0 A(R)
Note that the value H(p, &) of the integral in the right-hand side of (6.29) does not depend on A € T*). By
(6.27) - (6.29), for each ¢ € (0, 1] we have
AP~ wlE) = D(p, k) G(p, k) H(p, %) / R\ AL)(z* =€) d) = C(p, k) (2" =€)
NG

where C'(p, k) = 2miD(p, k)G(p, k) H (p, &) # 0. Therefore, we have proved equality (6.10).
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The main result of this section is the following.
Theorem 6.1. Assume that approzimations ©, satisfy (6.5). Let Assumptions 4.1 -4.3 and 6.2-6.5 be
valid. Then, for each £ € (0,p) the initial discrepancy x* — £ possesses the sourcewise representation x* — £ €

R(AP~*).

Proof. We claim that A’a’;“wff") = AP *w, with wy and {e,} defined above, g, > 0, lim ¢, = 0,
n—r 00
nh_}n(}o ||w,(f") —wgllx =0. Let m=[p—kK], 4 =p— &k —m be such that p— x = m+ p, p € (0,1). We see that
HA;;;nwl(fU — AP F,||x = ||Agl+uw£f") . Am+uwn||X (6.30)
Az — A o™ A A k™ — L
It can easily be checked that
[AZH = A" o <AL = A™ oo llA o) + 1A T 1AE, = A¥lleex) (6.31)
and
||A£n — AmHL(X) < e33¢ Ve € (0,61] (6.32)
From Lemma 4.1 it follows
||Ag — ANHL(X) < 6116u Ve S (0,61] (633)

Note that the constants ¢11 and esg in (6.32) and (6.33) depend on A, p, and x only. Combining (6.30) - (6.33),
we obtain

lim || AP~ %wlEn) — AP~ Ry
n—oo En r e

=0 (6.34)

From (6.10) we see that the element A’;_“wff) does not depend on e. Therefore, (6.34) implies AP *w,, =
C(p, k)(z* — €). Consequently, for an element v, = C(p, k)~ tw, we have

APy, = 2" = ¢

and for a sufficiently small £ > 0 we have z* — ¢ € R(AP~%). Since AP1tPz = APrAPz p, ps > 0, for each
£ € (0,p) we get * — € € R(AP~¢). This completes the proof.
In conclusion, we consider some examples of procedures (4.3) that satisfy the assumptions listed above.
Example 6.1. Function (2.17) satisfies Assumption 4.2 with D, = C\{—a}. Assumptions 4.3 and 5.1 can
easily be verified with the family of contours [4, p. 53]

To = f1(Sk, (O\S(1—doya(—0)), @ >0 (6.35)

Simple calculations prove that inequality (4.14) holds for all pg € (0, 1]. Assumptions 6.1-6.5 are also satisfied.

Example 6.2. Assumption 4.2 is valid for function (2.18) with D, = C\{—a}. Direct calculations prove
that Assumptions 4.3 and 5.1 are satisfied for all py € (0, N] if the contour T'y is constructed as in (6.35).
Verification of Assumption 6.1-6.5 is immediate.

Example 6.3. Function (2.22) is analytic on the entire complex plane C. In this case, it is convenient
to choose Ty = 74, @ > 0. Examinations similar to those from [4, pp. 51-53] show that Assumption 4.3 is
satisfied for each pg > 0 provided that Assumption 4.1 is valid with ¢o € (0, 5). Assumption 5.1 and 6.1-6.5
are also satisfied.

Example 6.4. Function (2.25) with g(A) = po is analytic everywhere in C. Suppose Assumption 4.1 is
satisfied with some ¢o € (0, §). In addition assume that 0 < po < ||A||Z(1X)\/W2goo. As in Example 6.3, we
set T'y, = ¥4, @ > 0. Following the scheme of arguing from [4, pp. 51-52] one can verify that Assumptions 4.3
and 5.1 are valid for each py > 0.

Remark 6.1. Procedures (4.3) and (5.2) for the functions ©(\, «) from Examples 6.1-6.4 can practically
be implemented as in Examples 2.1, 2.2, 2.4, and 2.5.

Remark 6.2. Since Assumption 4.3 in Examples 6.3 and 6.4 is valid without upper bounds on pg, the
corresponding procedures (4.3) are free of the saturation phenomenon.

The work of the first author was partially supported by the Russian Foundation for Basic Research (99—
01-00055).
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