УДК 550.341

ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ РАСПРОСТРАНЕНИЯ СЕЙСМИЧЕСКИХ ВОЛН В СРЕДАХ С ВЯЗКОУПРУГИМИ ВКЛЮЧЕНИЯМИ

Д. М. Вишневский¹, В. В. Лисица¹, Г. В. Решетова²

Поглощение сейсмической энергии является одним из наиболее важных физических явлений, вызванным различными геологическими факторами и требующим детального изучения его проявлений в регистрируемых волновых полях. В силу ряда обстоятельств сколько-нибудь заметное поглощение сосредоточено в сравнительно небольших подобластях изучаемой геологической среды, занимающих, как правило, порядка 10-20% общего объема. В то же время, широко используемые в настоящее время подходы для численного моделирования распространения сейсмических волн в таких средах требуют значительных вычислительных ресурсов, заметно превышающих нужные для идеально упругих сред. По этой причине их использование во всей расчетной области является неэффективным. В настоящей статье изложен подход к численному моделированию упругих волн, основанный на использовании уравнений вязкоупругости только там, где это действительно необходимо, что позволяет существенно сократить потребности в вычислительных ресурсах. Для этого расчетная область представляется в виде суперпозиции подобластей, заполненных вязко- и идеально упругой средами, в каждой из которых используется своя математическая модель и своя конечно-разностная схема. Особое внимание уделяется взаимосогласованию этих двух моделей и соответствующих им конечно-разностных схем и шаблонов, в том числе и для обеспечения приемлемого уровня артефактов при переходе от одного шаблона к другому. Для организации параллельных вычислений выполняется дополнительная декомпозиция каждой из этих подобластей, обеспечивающая возможность ее размещения на отдельном узле вычислительного кластера с организацией их взаимодействия посредством библиотеки MPI. Показано, что применение такого подхода комбинированной декомпозиции расчетной области снижает время вычислений примерно в 1.7 раза по сравнению с использованием вычислительных схем, ориентированных исключительно на вязкоупругие среды.

Ключевые слова: теория упругости, среды с поглощением, конечно-разностные схемы, расщепление по пространственным подобластям, параллельные алгоритмы.

1. Введение. В настоящее время численное моделирование волновых сейсмических процессов в реалистичных сложноустроенных средах широко используется как при изучении особенностей распространения волн в разномасштабных [2, 23, 24, 27], анизотропных [28, 32], вязкоупругих [11, 12, 20, 31], пороупругих средах [10, 13], так и при выполнении обработки данных сейсмических наблюдений, таких как миграция в обратном времени [17, 29, 33] и полное обращение волновых полей [7, 36]. Однако наибольшее распространение трехмерное моделирование сейсмических волн получило для изотропных идеально упругих сред. Главная причина — существенное возрастание необходимых вычислительных ресурсов при усложнении математической модели среды, учитывающей анизотропию, поглощение, пористость и т.д. В настоящей статье мы сосредоточимся на средах, в которых распространение волн описывается уравнениями вязкоупругости (среды с памятью), содержащими оператор типа свертки по времени [14]. Для их численного решения во временной области этот оператор обычно локализуется с использованием рациональной аппроксимации возникающих псевдодифференциальных операторов [4, 38]. Необходимо отметить, что такая аппроксимация существенно облегчается благодаря специфическому поведению добротности: для сейсмических волн и лабораторные, и полевые эксперименты дают добротность, не зависящую от частоты зондирующего сигнала [21]. Добротностью принято называть количество длин волн, на котором амплитуда распространяющейся волны убывает в e^{π} раз.

В результате получается система уравнений с дополнительными переменными — переменными памяти и уравнениями на них, известная также как обобщенная стандартная модель линейного твердого тела,

¹Институт нефтегазовой геологии и геофизики СО РАН, просп. Коптюга, 3, 630090, Новосибирск; Д. М. Вишневский, науч. сотр., e-mail: vishnevskydm@ipgg.sbras.ru; В. В. Лисица, зав. лабораторией, email: lisitsavv@ipgg.sbras.ru

 $^{^2}$ Институт вычислительной математики и математической геофизики СО РАН (ИВМиМГ СО РАН), просп. Лаврентьева, 6, 630090, г. Новосибирск; ст. науч. сотр., e-mail: kgv@sscc.nsc.ru

⁽с) Научно-исследовательский вычислительный центр МГУ им. М. В. Ломоносова

или GSLS (от английского Generalized Standard Linear Solid) [5]. Расчет волновых полей с использованием GSLS приводит к двукратному увеличению объема необходимой оперативной памяти и числа операций на точку сетки по сравнению с алгоритмами решения аналогичной задачи для идеально упругих сред. При этом в большинстве случаев сколько-нибудь значимое влияние поглощения сейсмической энергии на распространение волн проявляется лишь в относительно небольших частях модели: в верхней части разреза и донных отложениях в силу слабой консолидации породы, во флюидонасыщенных, особенно газонасыщенных, коллекторах и др. Поэтому использование GSLS во всей расчетной области приводит к необоснованному повышению ресурсоемкости алгоритма.

В нашей работе предлагается подход к моделированию волновых процессов в средах, содержащих вязкоупругие включения, основанный на локальном использовании обобщенной стандартной линейной модели твердого тела в подобластях, где поглощение сейсмической энергии существенно, в то время как в основной части расчетной области можно ограничиться идеальной упругостью. Различия указанных моделей и систем уравнений, их описывающих, приведены в разделе 2. Математическая постановка задачи совместного использования двух различных уравнений и их конечно-разностных аппроксимаций в рамках одного алгоритма представлена в разделе 3. Основное внимание в работе уделяется эффективности параллельной реализации гибридного алгоритма, описанной в разделе 4. В частности, показано, что оптимальным расщеплением расчетной области на подобласти является такое, которое обеспечивает отношение объемов подобластей для упругой и вязкоупругой частей модели равное трем, что приводит к почти двукратному ускорению гибридного алгоритма по сравнению с подходом, основанным исключительно на решении уравнений вязкоупругости. Численные эксперименты, подтверждающие теоретические результаты, приведены в разделе 5.

2. Среды с поглощением. Процесс распространения сейсмических волн в средах с поглощением описывается следующей системой уравнений [14]:

$$\rho \frac{\partial \boldsymbol{u}}{\partial t} = \nabla \cdot \boldsymbol{\sigma}, \quad \frac{\partial \varepsilon}{\partial t} = \frac{1}{2} \left(\nabla \boldsymbol{u} + \nabla \boldsymbol{u}^{\mathrm{T}} \right), \quad \boldsymbol{\sigma} = \boldsymbol{G} * \frac{\partial \varepsilon}{\partial t}, \tag{1}$$

где u — вектор скоростей смещений, σ и ε — тензоры напряжений и деформаций соответственно, ρ плотность, а G — зависящий от времени обобщенный тензор жесткости, или тензор релаксации [14, 12]. Звездочкой обозначается оператор типа свертки по времени:

$$f(t) * g(t) = \int_{0}^{t} f(t - \tau)g(\tau) \, d\tau.$$
(2)

Дальнейшие рассмотрения проводим для случая изотропной по ск

и μ — параметры Ламе.

Дисперсионное соотношение для данной системы уравнений имеет вид

$$D(\omega, \boldsymbol{k}) = \omega^9 \left(\omega^2 - \frac{\widehat{g}^P}{\rho} \|\boldsymbol{k}\|^2 \right) \left(\omega^2 - \frac{\widehat{g}^S}{\rho} \|\boldsymbol{k}\|^2 \right)^2,$$

где ω и k — круговая частота и волновой вектор. Параметры \widehat{g}^P и \widehat{g}^S — частотнозависимые комплекснозначные образы Фурье переменных g^P и g^S [9, 34].

Основным параметром, используемым при описании поглощающих свойств среды, является коэффициент добротности Q, который определяется как относительная диссипация энергии в единичном объеме за единичный цикл [37]. Следуя [5], удобно воспользоваться альтернативным определением, которое является приближением для больших значений коэффициента добротности: $Q^{-1} = \frac{\Im V^2}{\Re V^2}, V = \frac{\omega(k)}{\|k\|}$. Здесь V — комплекснозначная фазовая скорость. Как показано в работе [5], при $Q \ge 10$ данное представление достаточно точно — ошибка в норме L^2 не превосходит 5%.

Используя это определение, для системы уравнений теории упругости можно ввести следующее определение для коэффициента добротности (по одному для каждого типа волн): $Q_P^{-1} = \frac{\Im \widehat{g}^P}{\Re \widehat{g}^P}$, $Q_S^{-1} = \frac{\Im \widehat{g}^S}{\Re \widehat{g}^S}$.

2.1. Обобщенная стандартная линейная модель твердого тела и τ -метод. Использование нелокального по времени оператора типа свертки существенно усложняет численное решение подобного рода уравнений, поскольку требует хранения и использования результатов расчета на всех временны́х слоях, предшествующих текущему. Достаточно распространенным способом локализации таких операторов является построение рациональной аппроксимации каждой из компонент тензора G в частотной области. После этого переход во временну́ю область осуществляется с введением дополнительных переменных памяти и уравнений на них. Данный подход достаточно широко применяется, в частности, для построения поглощающих граничных условий [3, 18, 19], для построения идеально согласованных слоев на основе свертки [16, 22], для построения оптимальных условий третьего рода в методе декомпозиции расчетной области [1, 25, 30].

Поясним основную идею подхода на одномерном примере. Обобщенный закон Гука в частотной области в этом случае имеет вид: $\hat{\sigma}(\omega, x) = \hat{G}(\omega, x) \hat{\varepsilon}(\omega, x)$, где $\hat{G}(\omega, x) -$ комплекснозначная функция частоты.

Эта функция анпроксимируется рациональной, т.е. решается задача $\left\| \frac{\widehat{G}(\omega)}{\widehat{G}(0)} - \frac{P^L(\omega)}{Q^K(\omega)} \right\| \to \min$. Выбор нор-

мы и критерия оптимальности будут сформулированы ниже. В данных обозначениях $P^{L}(\omega)$ и $Q^{K}(\omega)$ – полиномы степени L и K соответственно. В частности, используется аппроксимация вида

$$\frac{P^L(\omega)}{Q^L(\omega)} = 1 - L + \sum_{l=1}^{L} \frac{1 + i\omega\tau_{\varepsilon l}}{1 + i\omega\tau_{\sigma l}} = 1 + \sum_{l=1}^{L} \frac{i\omega(\tau_{\varepsilon l} - \tau_{\sigma l})}{1 + i\omega\tau_{\sigma l}},$$

где $\tau_{\sigma l}$ и $\tau_{\varepsilon l}$ — времена релаксации. Получаемая на основе данной аппроксимации модель, как указывалось выше, называется обобщенной стандартной линейной моделью твердого тела, или GSLS [14, 6].

Применение GSLS предполагает использование 2L параметров $\tau_{\sigma l}$ и $\tau_{\varepsilon l}$, зависящих от пространственной переменной; как следствие, их необходимо хранить в каждой точке сетки. Для уменьшения количества параметров в работе [5] был предложен τ -метод, для построения которого вводятся переменные $\tau_l = \frac{\tau_{\varepsilon l}}{\tau_{\sigma l}} - 1$, и предполагается их равенство: $\tau = \tau_l$ для l = 1, ..., L. В этом случае обобщенный закон Гука

переписывается в виде: $\widehat{\sigma}(\omega, x) = \widehat{G}(0, x) \left(1 - \sum_{l=1}^{L} \frac{i\omega\tau\tau_{\sigma l}}{1 + i\omega\tau_{\sigma l}}\right) \widehat{\varepsilon}(\omega, x)$. Применяя обратное преобразование

Фурье и вводя переменные памяти r_l , можно получить локальные по времени уравнения, связывающие напряжения и деформации:

$$\frac{\partial \sigma}{\partial t} = \widehat{G}(0)(1+\tau L)\frac{\partial \varepsilon}{\partial t} + \sum_{l=1}^{L} r_l,
\frac{\partial r_l}{\partial t} = -\frac{1}{\tau_{\sigma,l}} \bigg[\tau \widehat{G}(0)\frac{\partial \varepsilon}{\partial t} + r_l \bigg].$$
(3)

2.2. Построение рациональной аппроксимации. Как было показано выше, для построения модели GSLS и применения τ -метода необходимо аппроксимировать тензор релаксации рациональной функцией. Аппроксимация самого тензора обычно не производится, вместо этого задача формулируется в терминах коэффициентов добротности, т.е. решается минимизационная задача

$$\min_{\tau,\tau_{\sigma,l}} \left\| Q^{-1}(\omega) - \widehat{Q}^{-1}(\omega,\tau,\tau_{\sigma l}) \right\|_{L^2([\omega_{\min},\omega_{\max}])},$$

где $\widehat{Q}(\omega, \tau, \tau_{\sigma l})$ — коэффициент добротности, соответствующий τ -методу. Этот коэффициент вычисляется по формуле $\widehat{Q}^{-1}(\omega, \tau, \tau_{\sigma l}) = \left(\sum_{l=1}^{L} \frac{\omega \tau_{\sigma l} \tau}{1 + \omega^2 \tau_{\sigma l}^2}\right) \left(1 + \sum_{l=1}^{L} \frac{\omega^2 \tau_{\sigma l}^2 \tau}{1 + \omega^2 \tau_{\sigma l}^2}\right)^{-1}$, а для малых значений поглощения $Q^{-1} \ll 1$ по формуле $\widehat{Q}^{-1}(\omega, \tau, \tau_{\sigma l}) \approx \sum_{l=1}^{L} \frac{\omega \tau_{\sigma l} \tau}{1 + \omega^2 \tau_{\sigma l}^2}$.

Следует отметить, что поведение коэффициента добротности для τ -метода как функции от частоты внутри заданного частотного диапазона [$\omega_{\min}, \omega_{\max}$] определяется параметрами $\tau_{\sigma l}$, в то время как τ определяет величину добротности. Данное свойство позволяет снизить число переменных, которые необходимо хранить при моделировании, — параметры $\tau_{\sigma l}$ задаются одинаковыми в каждой точке среды. Зависимость добротности от пространственных координат определяется одним параметром $\tau(x)$, определяемыми в каждой точке сетки. Детальное описание построения рациональных аппроксимаций для сред с поглощением и исследование свойств получаемых уравнений представлено в работах [5, 4, 38].

2.3. Трехмерная постановка. Используя дисперсионное соотношение (2) для системы уравнений динамической теории упругости (1) и применяя τ -метод (3), получим систему уравнений, аппроксимирующую (1):

0

$$\begin{split} \rho \frac{\partial u_1}{\partial t} &= \frac{\sigma_{11}}{\partial x_1} + \frac{\sigma_{12}}{\partial x_2} + \frac{\sigma_{13}}{\partial x_3}, \\ \rho \frac{\partial u_2}{\partial t} &= \frac{\sigma_{12}}{\partial x_1} + \frac{\sigma_{22}}{\partial x_2} + \frac{\sigma_{23}}{\partial x_3}, \\ \rho \frac{\partial u_3}{\partial t} &= \frac{\sigma_{13}}{\partial x_1} + \frac{\sigma_{23}}{\partial x_2} + \frac{\sigma_{33}}{\partial x_3}, \\ \frac{\partial u_1}{\partial t} &= \frac{\sigma_{13}}{\partial x_1} + \frac{\sigma_{23}}{\partial x_2} + \frac{\sigma_{33}}{\partial x_3}, \\ \frac{\partial u_2}{\partial x_2} \\ \frac{\partial u_3}{\partial x_3} \\ \frac{\partial u_2}{\partial x_3} \\ \frac{\partial u_2}{\partial x_3} + \frac{\partial u_3}{\partial x_2} \\ \frac{\partial u_3}{\partial x_1} + \frac{\partial u_1}{\partial x_1} \\ \frac{\partial u_1}{\partial x_1} + \frac{\partial u_2}{\partial x_2} + \frac{\partial u_2}{\partial x_1}, \\ \frac{\partial u_1}{\partial x_1} + \frac{\partial u_2}{\partial x_2} \\ \frac{\partial u_3}{\partial x_3} \\ \frac{\partial u_1}{\partial x_2} + \frac{\partial u_2}{\partial x_3} \\ \frac{\partial u_3}{\partial x_3} + \frac{\partial u_3}{\partial x_3} \\ \frac{\partial u_2}{\partial x_3} + \frac{\partial u_3}{\partial x_3} \\ \frac{\partial u_2}{\partial x_3} + \frac{\partial u_3}{\partial x_3} \\ \frac{\partial u_3}{\partial x_3} + \frac{\partial u_3}{\partial x_2} \\ \frac{\partial u_3}{\partial x_3} + \frac{\partial u_1}{\partial x_2} \\ \frac{\partial u_3}{\partial x_3} + \frac{\partial u_2}{\partial x_2} \\ \frac{\partial u_3}{\partial x_2} + \frac{\partial u_2}{\partial x_1} \\ \frac{\partial u_1}{\partial x_1} + \frac{\partial u_1}{\partial x_3} \\ \frac{\partial u_1}{\partial x_2} + \frac{\partial u_2}{\partial x_1} \\ \frac{\partial u_1}{\partial x_2} + \frac{\partial u_2}{\partial x_2} \\ \frac{\partial u_1}{\partial x_2} + \frac{\partial u_2$$

Здесь $r_{ij,l}$ — компоненты тензора переменных памяти, $l = 1, \ldots, L$ — номер механизма затухания, L — число таких механизмов (порядок рациональной аппроксимации), $\tau_{\sigma l}$ — релаксационные параметры, постоянные во всех точках среды и определяемые частотным диапазоном зондирующего сигнала. Матрицы P_1 и P_2 для изотропной вязкоупругой среды могут быть записаны в форме

$$P_m = \begin{pmatrix} p_m^P & p_m^P - 2p_m^S & p_m^P - 2p_m^S & 0 & 0 & 0 \\ p_m^P - 2p_m^S & p_m^P & p_m^P - 2p_m^S & 0 & 0 & 0 \\ p_m^P - 2p_m^S & p_m^P - 2p_m^S & p_m^P & 0 & 0 & 0 \\ 0 & 0 & 0 & p_m^S & 0 & 0 \\ 0 & 0 & 0 & 0 & p_m^S & 0 \\ 0 & 0 & 0 & 0 & 0 & p_m^S \end{pmatrix}$$

с элементами $p_1^P = (\lambda + 2\mu)(1 + L\tau^P), \ p_1^S = \mu(1 + L\tau^S), \ p_2^P = (\lambda + 2\mu)\tau^P, \ p_2^S = \mu\tau^S.$ В этой записи τ^P и τ^S — это параметры τ -метода, определяющие величины добротности для про-

В этой записи τ^{r} и τ^{s} — это параметры τ -метода, определяющие величины добротности для продольных и поперечных волн соответственно, λ и μ — коэффициенты Ламе.

Следует отметить важное свойство этой системы уравнений, связанное с условиями согласования на внутренних границах. На любой границе Г должно выполняться следующее условие:

$$[\boldsymbol{u}]\big|_{\Gamma} = 0, \quad [\boldsymbol{\sigma} \cdot \boldsymbol{n}]\big|_{\Gamma} = 0, \tag{7}$$

где n — вектор нормали к границе Г. Запись $[f]|_{\Gamma}$ обозначает скачок функции на границе. Эти условия совпадают с условиями на границах для системы уравнений динамической теории упругости при отсутствии поглощения. Переменные памяти не входят в равенства (7), т.е. на них не накладывается никаких дополнительных требований на границах разрыва коэффициентов. Это свойство используется ниже для построения гибридного алгоритма.

Отметим также, что если $\tau^P = \tau^S = 0$, то система (4)–(6) вырождается в систему уравнений динамической теории упругости без поглощения. В этом случае переменные памяти тождественно равны нулю вследствие нулевых начальных условий.

3. Конечно-разностная схема. Следуя работам [4, 6, 15], для аппроксимации системы уравнений (4) предлагается использовать стандартную схему на сдвинутых сетках [26, 28, 35]. Для построения схемы вводится сетка с целыми $(x_1)_i = ih_1$ и полуцелыми $(x_1)_{i+1/2} = (i+1/2)h_1$ узлами, где i — целое число и h_1 — шаг сетки по направлению x_1 . После этого компоненты вектора скорости определяются на целых слоях по времени, а компоненты тензора напряжений и переменные памяти — на полуцелых.

Пространственное расположение различных компонент поля представлено на рис. 1. Диагональные компоненты тензора напряжений и тензоров переменных памяти, а также параметры модели определены в центре ячейки — целых узлах по пространственным переменным (закрашенные круги). Параметры σ_{23} и r_{23}^l заданы в окружностях, σ_{13} и r_{13}^l — в ромбах, σ_{12} и r_{12}^l — в крестиках. Компоненты вектора скорости

Рис. 1. Элементарная ячейка сетки для схемы на сдвинутых сетках

определены в стрелках, которые указывают соответствующие направления.

Для построения конечно-разностной схемы вводятся следующие операторы:

$$D_{t}[f]_{I,J,K}^{N} = \frac{f_{I,J,K}^{N+1/2} - f_{I,J,K}^{N-1/2}}{\Delta t} = \frac{\partial f}{\partial t} \Big|_{I,J,K}^{N} + O(dt^{2}),$$

$$A_{t}[f]_{I,J,K}^{N} = \frac{f_{I,J,K}^{N+1/2} + f_{I,J,K}^{N-1/2}}{2} = f_{I,J,K}^{N} + O(dt^{2}),$$

$$D_{1}[f]_{I,J,K}^{N} = \sum_{m=1}^{M} \alpha_{m} \frac{f_{I+m-1/2,J,K}^{N} - f_{I-m+1/2,J,K}^{N}}{h_{1}} = \frac{\partial f}{\partial x_{1}} \Big|_{I,J,K}^{N} + O(h_{1}^{2m}).$$

Оператор D_t аппроксимирует производную по времени, а D_1 — производную по направлению x_1 . В этих обозначениях индексы, записанные заглавными буквами, могут быть как целыми, так и полуцелыми, Δt — шаг сетки по времени, h_1 , h_2 , h_3 — шаги сетки по пространству. Параметр M, определяющий размер шаблона, и коэффициенты α_m подбираются таким образом, чтобы обеспечить необходимей порядок аппроксимации.

Используя эти конечно-разностные операторы и введенную выше сдвинутую сетку, можно построить конечно-разностную схему, аппроксимирующую систему (4)–(6) со вторым порядком по времени и четным порядком по пространству.

Как уже отмечалось выше, требование равенства нулю параметров τ^P и τ^S приводит к вырождению уравнений (6) и самих переменных памяти. Однако с вычислительной точки зрения зануление этих параметров не приведет к повышению эффективности алгоритма, поскольку по-прежнему потребуется оперативная память компьютера для хранения переменных памяти и выполняются операции с плавающей

точкой для их вычисления на каждом слое по времени. Чтобы этого избежать, предлагается использовать схему, аппроксимирующую систему (4)–(6) только в областях с вязкоупругой средой, а в остальной части модели использовать схему без переменных памяти (4) и (5).

4. Гибридная схема. С математической точки зрения объединение конечно-разностных схем для упругости и вязкоупругости является достаточно простой задачей: в областях без поглощения можно не выделять оперативную память компьютера под хранение переменных, исключив вычисления, связанные с ними. Из условий сопряжения (7) следует, что на переменные не накладывается никаких условий на интерфейсах. Таким образом, сопряжение конечно-разностных схем для упругости с поглощением и без происходит автоматически и не требует дополнительных операций или интерполяции. Однако на практике моделирование трехмерных волновых процессов в настоящее время проводится на параллельных компьютерах с использованием метода декомпозиции расчетной области. При равномерном разбиении области на подобласти исключение переменных памяти в части подобластей приводит к разбалансировке загрузки процессоров. Загрузка тех из них, которые вычисляют решение в идеально упругой среде, будет существенно ниже, и, как следствие, часть времени эти процессоры будут простаивать. В результате общее необходимое для вычислений количество процессоров и время вычислений не уменьшится, поэтому целесообразно проводить независимую декомпозицию областей, чтобы минимизировать время работы алгоритма (процессорочасы).

4.1. Минимизация процессорного времени. Для постановки задачи минимизации расхода машинного времени необходимо ввести ряд обозначений.

1. Машинное время, требуемое для проведения моделирования: $T = tN^C$, где t — время работы алгоритма (в англоязычной литературе wall-clock time) и N^C — число вычислительных процессов. В наших рассмотрениях предполагается, что каждый вычислительный процесс исполняется на одном ядре многоядерного процессора, т.е. N^C равно также и числу задействованных процессорных ядер.

2. Общий объем модели V, объем вязкоупругой части $V^1 = \alpha V$ и объем идеально упругой части модели $V^2 = (1 - \alpha)V$, где $\alpha \in [0; 1]$.

3. Элементарный объем — это объем, решение в котором рассчитывается одним ядром; для вязкоупругой части обозначается через \tilde{V}^1 , для идеально упругой — через $\tilde{V}^2 = \beta \tilde{V}^1$, где $\beta \in (0, \infty)$.

4. Число ядер, необходимое для расчета решения в вязкоупругой части модели: $N^1 = \frac{V^1}{\widetilde{V}^1} = \alpha \frac{V}{\widetilde{V}^1}$; в идеально упругой части: $N^2 = \frac{V^2}{\widetilde{V}^2} = \frac{1-\alpha}{\beta} \frac{V}{\widetilde{V}^1}$; общее число ядер: $N^1 + N^2 = \left(\alpha + \frac{1-\alpha}{\beta}\right) \frac{V}{\widetilde{V}^1}$.

5. Время t_u , необходимое для расчета всех компонент вектора скорости в одной ячейке сетки и одинаковое для упругой и вязкоупругой частей модели; время для расчета тензора напряжений t_{σ}^1 и t_{σ}^2 для вязкоупругой и упругой частей модели. Будем считать, что используется однородная вычислительная система; как следствие — верны соотношения $t_{\sigma}^2 = \gamma t_{\sigma}^1$ и $t_u = \delta t_{\sigma}^1$, где $\gamma \in [0; 1]$ и $\delta \in [0; 1]$.

6. Время расчета скоростей смещений в элементарном объеме на одном шаге схемы по времени для упругой $T_u^2 = t_u \widetilde{V}^2 \varepsilon = \delta t_\sigma^1 \beta \widetilde{V}^1 \varepsilon$ и вязкоупругой $T_u^1 = t_u \widetilde{V}^1 \varepsilon = \delta t_\sigma^1 \widetilde{V}^1 \varepsilon$ частей модели; время расчета компонент тензора напряжений на одном шаге схемы по времени для упругой $T_\sigma^2 = \gamma t_\sigma^1 \beta \widetilde{V}^1 \varepsilon$ и вязкоупругой $T_\sigma^1 = t_\sigma^1 \widetilde{V}^1 \varepsilon$ частей модели. Здесь ограничиваемся рассмотрением сеток с постоянными шагами; как следствие, число ячеек сетки в заданном объеме пропорционально этому объему с коэффициентом ε .

Поскольку представленный алгоритм основан на явных конечно-разностных схемах на сдвинутых сетках, аппроксимирующих системы уравнений первого порядка, то он имеет два типа точек синхронизации: первый тип — моменты времени перед вычислением скоростей, второй — перед вычислением напряжений. Следовательно, общее машинное время, необходимое для проведения моделирования, можно записать в виде формулы $T = M \left[\max \left(T_u^1, T_u^2 \right) + \max \left(T_\sigma^1, T_\sigma^2 \right) \right] \left(N^1 + N^2 \right)$, где M — число шагов по времени, T_i^j — время расчета определенных частей волнового поля внутри элементарного объема на одном шаге по времени и N^j — число ядер, задействованных в расчете. Используя введенные выше обозначения, эту формулу можно упростить следующим образом:

$$T(\alpha,\beta) = M\varepsilon V t_{\sigma}^{v} \left[\delta \max\left(1,\beta\right) + \max(1,\gamma\beta)\right] \left(\alpha + \frac{1-\alpha}{\beta}\right).$$
(8)

Соответственно задача оптимальной декомпозиции расчетной области сводится к задаче минимизации: для заданного параметра α и фиксированных параметров γ и δ определить такой параметр β , чтобы достигался следующий минимум: $\min_{\beta \in (0,\infty)} T(\alpha, \beta)$.

Множитель $M \varepsilon V t_{\sigma}^v$ влияет на общее время вычислений, но не затрагивает решения задачи миними-

зации; следовательно, в последующих рассуждениях этот коэффициент можно считать равным единице. Напомним, что значения параметров γ и δ меньше единицы: $\gamma \in [0,1]$ и $\delta \in [0,1]$. Конкретные значения этих параметров для различных вариантов аппроксимации пространственных производных будут получены далее из численных экспериментов. На рис. 2 показана зависимость значения функции $T(\alpha, \beta)$ от β для нескольких значений α .

Поставленная задача минимизации решается аналитически. Результатом является следующее значение отношения элементарных объемов β :

$$\beta = \begin{cases} 1/\gamma, & \text{при} \quad \alpha \leqslant \frac{\gamma^2}{\delta + \gamma^2}, \\ \sqrt{\frac{1-\alpha}{\alpha\delta}}, & \text{при} \quad \frac{\gamma^2}{\delta + \gamma^2} < \alpha < \frac{1}{1+\delta}, \\ 1, & \text{при} \quad \alpha \geqslant \frac{1}{1+\delta}. \end{cases}$$
(9)

Первая строка соотношения (9) соответствует малому относительному объему вязкоупругой части модели α . В этом случае оптимальное значение β таково, что ядра, вычисляющие решение у упругой части модели, полностью загружены, а для ядер, отвечающих за расчет решения в вязкоупругой части, допускается время ожидания при синхронизации после вычисления скоростей смещений. Последняя строка соотношения (9) соответствует большому относительному объему вязкоупругой части модели, тогда оптимальным разбиением является равномерное с соотношением $\beta = 1$. В таком случае время ожидания допускается для ядер, вычисляющих решение в упругой части модели. В промежуточных случаях минимум машинного времени достигается при $\beta \in [1, 1/\gamma]$. Зависимость оптимального разбиения от относительного объема вязкоупругой части модели графически представлена на рис. 3 для схемы второго порядка аппроксимации по пространству с параметрами $\gamma = 0.327$ и $\delta = 0.3163$ и для схемы четвертого порядка аппроксимации с параметрами $\gamma = 0.4725$ и $\delta = 0.4455$.

Рис. 2. Зависимость полного процессорного времени от отношения элементарных объемов для упругой и вязкоупругой частей модели $\beta = \frac{\widetilde{V}^e}{\widetilde{V}^v}$ для различных значений α относительного объема вязкоупругой части модели

Рис. 3. Зависимость оптимального отношения упругого и вязкоупругого элементарных объемов β от относительного объема вязкоупругой части α для схем второго (сплошная линия) и четвертого (пунктирная линия) порядков аппроксимации

5. Численные эксперименты.

5.1. Оценка параметров γ и δ . В формуле оценки машинного времени (8) и в выражениях оптимальной декомпозиции расчетной области (9) имеются параметры γ и δ — отношения времени расчета тензора напряжений и вектора скоростей смещений в упругой части модели ко времени расчета тензора напряжений в вязкоупругой части модели на точку сетки. Теоретическая оценка этих параметров затруднительна, поскольку они сложным образом зависят от нескольких факторов: количества операций с плавающей точкой, количества операций обращения к памяти и др. Целью численных экспериментов является оценка этих параметров для двух наиболее распространенных типов конечно-разностных схем: схемы второго [35] и четвертого [26] порядков аппроксимации по пространству.

Чтобы оценить параметры γ и δ для конкретной реализации алгоритма, проведена серия численных экспериментов. В этих экспериментах размеры расчетной области составляют $1000 \times 300 \times 600$ точек, что

соответствует физической области $100 \times 30 \times 60$ длин волн по направлениям x_1, x_2 и x_3 . Область делится на 48 подобластей, каждой из которых соответствует один вычислительный процесс и ядро процессора. Точнее сказать, область делится на четыре части в направлении x_1 , на две — по x_2 и на шесть — по x_3 . Размеры подобластей по направлениям x1 и x2 были выбраны 250 и 150 точек соответственно, размеры подобластей по вертикали варьируются. Подобласти делятся на два типа. В первом используется конечноразностный алгоритм моделирования волновых процессов в вязкоупругих средах (4)-(6), подобластей такого типа 16. В остальных 32 подобластях используется конечно-разностная схема, аппроксимирующая уравнения для идеально упругой среды. Вязкоупругий слой располагается в середине модели и составляет 20 точек по направлению x₃. В экспериментах варьируется число точек по вертикали в первой и второй группах процессоров. В таблице приводятся следующие данные: число точек сетки, использованное в труппах процессоров. В тасчице призеднен сису пецет и и тензора подобластях; параметр $\beta = \frac{\tilde{V}^2}{\tilde{V}^1}$, который является отношением упругого и вязкоупругого элементарных объемов; параметры t_u^e, t_u^v, t_σ^e и t_σ^v — времена вычисления компонент вектора скоростей смещений и тензора напряжений для упругой и вязкоупругой частей модели; параметры $\gamma = \frac{t_\sigma^e}{t_\sigma^v} \frac{V^v}{V^e}, \, \delta^e = \frac{t_u^e}{t_\sigma^v} \frac{V^v}{V^e}$

и $\delta^v = \frac{t_u^v}{t^v}$. Для каждого эксперимента вычисляются 1000 временны́х шагов конечно-разностной схемы. Физическое время выполнения каждого полушага (для скоростей смещений и напряжений) измеряется,

а затем усредняется. Эти времена относятся только к вычислениям по конечно-разностным формулам и не включают в себя межпроцессорные обмены.

Времена расчета компонент решения на одном шаге по времени $t_u^e, t_u^v, t_\sigma^e, t_\sigma^v$ от числа точек N^e и N^v в элементарных объемах, соответствующих упругой и вязкоупругой частям модели. Три последних столбца — экспериментально полученные параметры γ и δ

	N^e	N^v	β	t_u^e	t_u^v	t^e_σ	t_{σ}^{v}	γ	δ^e	δ^v
эксп. 1	100	100	1.00	0.21	0.21	0.22	0.67	0.328	0.314	0.319
эксп. 2	105	90	1.17	0.22	0.19	0.23	0.60	0.326	0.312	0.315
эксп. 3	110	80	1.38	0.24	0.17	0.25	0.54	0.331	0.319	0.315
эксп. 4	115	70	1.64	0.25	0.15	0.25	0.47	0.326	0.317	0.317
эксп. 5	120	60	2.00	0.26	0.13	0.27	0.41	0.328	0.316	0.317
эксп. 6	125	50	2.5	0.27	0.11	0.28	0.34	0.327	0.315	0.321
эксп. 7	130	40	3.25	0.28	0.09	0.29	0.28	0.321	0.310	0.317
среднее								0.327	0.315	0.317

В результате мы получаем значения параметров γ и δ для конечно-разностной схемы второго порядка: $\gamma = 0.327$ и $\delta = 0.3162$. Аналогичные эксперименты для схемы четвертого порядка аппроксимации по пространству дают значения $\gamma = 0.4725$ и $\delta = 0.4455$. Использование этих данных позволяет оценить требуемое процессорное время.

5.2. Процессорное время. В этом разделе представлены эксперименты по верификации оценок машинного времени, полученных в предыдущем разделе. Как было показано выше, оптимальная деком-позиция области, т.е. выбор $\beta = \frac{V^e}{V^v}$, существенно зависит от относительного объема вязкоупругой части модели. Для подтверждения полученных теоретических результатов проводятся три серии численных экспериментов, в которых относительный объем вязкоупругой части α равен 10, 40 и 90%, т.е. рассматривается каждый из случаев, представленных в формуле (9). Вычисления проводятся для различных значений β . Для вычисления процессорного времени измеренное в ходе эксперимента физическое время умножается на количество задействованных ядер. Для сравнения результатов численных экспериментов с теоретическими оценками экспериментально полученные времена масштабируются так, чтобы они совпали с оценочными для $\beta = 1$. Результаты для схемы второго порядка представлены на рис. 4. Сходные результаты были получены и для схемы четвертого порядка. При сравнении видно достаточно хорошее совпадение теоретических и экспериментальных данных, подтверждающее теоретические оценки оптимального выбора декомпозиции области.

Полученные значения оптимального отношения элементарных объемов позволяют определить уско-

рение гибридного алгоритма в сравнении с алгоритмом, основанным исключительно на расчете решения для обобщенной стандартной линейной модели твердого тела. Это ускорение вычисляется как отношение машинного времени, необходимого для решения полной системы (4)–(6) во всей области, и процессорного времени, необходимого для работы гибридного алгоритма для различных значений α и оптимальных значений $\beta(\alpha)$. По графику ускорения в зависимости от α для схем второго и четвертого порядков (рис. 5) видно, что значение $\alpha = 0$, соответствующее чисто упругой модели, дает максимальное ускорение. Из теоретических оценок следует, что существует значение параметра $\alpha_0 = \frac{1}{\delta+1}$, такое, что для любого $\alpha > \alpha_0$ оптимальным значением будет $\beta = 1$. Это означает, что элементарные упругий и вязкоупругий объемы совпадают, т.е. нет необходимости использовать гибридный алгоритм, поскольку он не дает никакого ускорения расчетам. С другой стороны, для практически интересных моделей с вязкоупругой частью порядка 10% общего объема ускорение может достигать значения 1.7 (1.4 — для схемы четвертого порядка) относительно использования алгоритма, ориентированного на полную постановку.

Рис. 4. Теоретические оценки процессорного времени (линии) и результаты численных экспериментов (маркеры) в зависимости от отношения упругого и вязкоупругого элементарных объемов β в логарифмической шкале

Рис. 5. Ускорение гибридного алгоритма относительно алгоритма, ориентированного исключительно на решение задачи в полной постановке, в зависимости от доли вязкоупругой части модели α для схем второго и четвертого порядков

6. Заключение. В результате исследования разработан, теоретически и экспериментально обоснован новый алгоритм для численного моделирования распространения сейсмических волн в средах, содержащих вязкоупругие включения. Для моделирования волновых процессов в идеально упругой части модели используется конечно-разностная схема на сдвинутых сетках. Для моделирования в вязкоупругой части используется обобщенная модель стандартного линейного тела (GSLS) и конечно-разностная схема для этой системы уравнений. Исследования показали, что алгоритм, учитывающий поглощение в среде, требует существенно большей оперативной памяти и большего процессорного времени в сравнении с моделированием волновых процессов в идеально упругой среде. При этом в типичных, с геологической точки зрения, моделях вязкоупругость может проявляться в относительно небольшой, порядка 10%, части модели. В результате использование модели GSLS только в относительно небольшой части расчетной области, содержащей вязкоупругие включения, приводит к увеличению эффективности алгоритма при сохранении всех физических особенностей распространения волн.

С математической точки зрения сопряжение конечно-разностных схем для моделей идеально упругой и вязкоупругой среды не представляет сложности. Переменные памяти, содержащие информацию о вязкости, можно считать равными нулю в той части модели, где отсутствует поглощение. Граничные условия не содержат переменных памяти и не требуют дополнительных вычислений на границах раздела разных конечно-разностных схем. Однако моделирование распространения сейсмических волн в трехмерной постановке, требующее использования современных высокопроизводительных вычислительных систем с распределенной памятью, приводит к необходимости проведения независимой декомпозиции расчетной области в упругой и вязкоупругой частях модели для оптимизации загрузки вычислительных ядер. Для построения оптимальной декомпозиции области требуемое для численного решения задачи процессорное время определено теоретически в зависимости от отношения элементарных объемов упругой и вязкоупругой части модели, относящихся к одному ядру. Оно существенно зависит от отношения объема вязкоупругих включений к полному объему модели и от отношения времен вычисления компонент вектора скоростей смещений и тензора напряжений для упругой и вязкоупругой частей модели. Все эти параметры безразмерны и зависят от конкретной реализации алгоритма. Исследованием показано, что для схемы второго порядка и относительного объема вязкоупругой части модели α меньше 25% оптимальным будет отношение упругого и вязкоупругого элементарных объемов $\beta = \frac{V^e}{V^v} = 3.1$, а для $\alpha \ge 75\%$ оптимальным будет $\beta = 1$. Для промежуточных значений α получена формула для оптимального β . Показано также, что ускорение гибридного алгоритма относительно вязкоупругого моделирования может достигать двух. Точнее, для $\alpha = 10\%$ ускорение составляет 1.7, для $\alpha = 20\%$ ускорение 1.5. Однако при относительном объеме вязкоупругой части модели больше 75% ускорения нет вообще. Для схемы четвертого порядка получены следующие оценки: для $\alpha = 10\%$ ускорение 1.4, для $\alpha = 20\%$ ускорение 1.25, для $\alpha > 70\%$ — ускорения нет. Как известно, типичный объем вязкоупругих включений составляет 5–20% общего объема модели; таким образом, предложенный гибридный алгоритм дает заметное ускорение расчетов в реальных приложениях.

7. Выражение признательности. Работа выполнена при финансовой поддержке РФФИ (гранты 11–05–00947, 12–05–31008 и 13–05–00076), стипендии Президента РФ для молодых ученых, осуществляющих перспективные научные исследования и разработки по приоритетным направлениям модернизации российской экономики СП-150.2012.5, а также интеграционных проектов № 127 и 130 СО РАН. Вычисления проводились на кластерах НКС-30Т Сибирского Суперкомпьютерного центра, MBC-100K Московского Межведомственного Суперкомпьютерного центра РАН, а также СКИФ "Чебышев" и СКИФ "Ломоносов" МГУ.

СПИСОК ЛИТЕРАТУРЫ

- Белоносов М.А., Костов К., Решетова Г.В., Соловьёв С.А., Чеверда В.А. Организация параллельных вычислений для моделирования сейсмических волн с использованием аддитивного метода Шварца // Вычислительные методы и программирование. 2012. 13. 525–535.
- Костин В.И., Лисица В.В., Решетова Г.В., Чеверда В.А. Конечно-разностный метод численного моделирования распространения сейсмических волн в трехмерно-неоднородных разномасштабных средах // Вычислительные методы и программирование. 2011. 12. 321–329.
- Лисица В. Нерасщепленный идеально согласованный слой для системы уравнений динамической теории упругости // Сиб. журн. вычисл. матем. 2007. 10. 285–297.
- Asvadurov S., Knizhnerman L., Pabon J. Finite-difference modeling of viscoelastic materials with quality factors of arbitrary magnitude // Geophysics. 2005. 69. 817–824.
- Blanch J.O., Robertson A., Symes W.W. Modeling of a constant Q: methodology and algorithm for an efficient and optimally inexpensive viscoelastic technique // Geophysics. 1995. 60. 176–184.
- Bohlen T. Parallel 3D viscoelastic finite difference seismic modeling // Computers and Geosciences. 2002. 28. 887– 899.
- 7. Brossier R., Operto S., Virieux J. Seismic imaging of complex onshore structures by 2D elastic frequency-domain fullwaveform inversion // Geophysics. 2009. 74. WCC63–WCC76.
- 8. Carcione J.M. Seismic modeling in viscoelastic media // Geophysics. 1993. 58. 110-120.
- Carcione J.M., Cavallini F. A rheological model for inelastic anisotropic media with applications to seismic wave propagation // Geophys. J. Int. 1994. 119. 338–348.
- Carcione J.M., Gei D. Theory and numerical simulation of fluid-pressure diffusion in anisotropic porous media // Geophysics. 2009. 74. N31–N39.
- Carcione J.M., Kosloff D., Kosloff R. Wave propagation simulation in a linear viscoacoustic medium // Geophys. J. Roy. Astr. Soc. 1988. 93. 393–407.
- Carcione J.M., Kosloff D., Kosloff R. Wave propagation simulation in a linear viscoelastic medium // Geophysical J. 1988. 95. 597–611.
- Carcione J.M., Morency C., Santos J.E. Computational poroelasticity a review // Geophysics. 2010. 75. 75A229– 75A243.
- 14. Christensen R.M. Theory of viscoelasticity. An introduction. New York: Academic Press, 1971.
- 15. Dong Z., McMechan G.A. 3D viscoelastic anisotropic modeling of data from a multicomponent, multiazimuth seismic experiment in northeast Texas // Geophysics. 1995. 60. 1128–1138.
- Drossaert F.H., Giannopoulos A. A nonsplit complex frequency-shifted pml based on recursive integration for fdtd modeling of elastic waves // Geophysics. 2007. 72. T9–T17.
- Duveneck E., Bakker P.M. Stable P-wave modeling for reverse-time migration in tilted TI media // Geophysics. 2011. 76. S65–S75.
- Engquist B., Majda A. Absorbing boundary conditions for the numerical simulation of waves // Math. Comp. 1977. 31. 629–651.
- 19. Hagstrom T., Lau S. Radiation boundary conditions for Maxwell's equations: a review of accurate time-domain

formulations // J. Comput. Math. 2007. 25. 305–336.

- 20. Hestholm S., Ruud B. 3D free-boundary conditions for coordinate-transform finite-difference seismic modelling // Geophysical Prospecting. 2002. 50. 463–474.
- 21. Knopoff L. Q // Reviews of Geophysics. 1964. 2. 625–660.
- 22. Komatitsch D., Martin R. An unsplit convolutional perfectly matched layer improved at grazing incidence for the seismic wave equation // Geophysics. 2007. 72. SM155–SM167.
- Kostin V., Lisitsa V., Reshetova G., Tcheverda V. Simulation of seismic waves propagation in multiscale media: impact of cavernous/fractured reservoirs // Lecture Notes in Computer Science. Vol. 7133. Heidelberg: Springer, 2012. 54–64.
- 24. Kruger O.S., Saenger E.H., Oates S.J., Shapiro S.A. A numerical study on reflection coefficients of fractured media // Geophysics. 2007. 72. D61–D67.
- 25. Kwok F. Optimized additive Schwarz with harmonic extension as a discretization of the continuous parallel Schwarz method // SIAM J. on Numerical Analysis. 2011. 49. 1289–1316.
- 26. Levander A.R. Fourth-order finite-difference P-SV seismograms // Geophysics. 1988. 53. 1425–1436.
- Lisitsa V., Reshetova G., Tcheverda V. Finite-difference algorithm with local time-space grid refinement for simulation of waves // Computational Geosciences. 2012. 16. 39–54.
- Lisitsa V., Vishnevskiy D. Lebedev scheme for the numerical simulation of wave propagation in 3D anisotropic elasticity // Geophysical Prospecting. 2010. 58. 619–635.
- 29. Liu Y., Sen M.K. Acoustic VTI modeling with a time-space domain dispersion-relation-based finite-difference scheme // Geophysics. 2010. 75. A11–A17.
- 30. Magoules F., Putanowicz R. Optimal convergence of non-overlapping Schawarz methods for the Helmholtz equation // J. of Computational Acoustics. 2005. 13. 525–545.
- Moczo P., Bystricky E., Kristek J., Carcione J.M., Bouchon M. Hybrid modeling of P-SV seismic motion at inhomogeneous viscoelastic topographic structures // Bull. of the Seismological Society of America. 1997. 87. 1305– 1323.
- 32. Saenger E.H., Gold N., Shapiro S.A. Modeling the propagation of the elastic waves using a modified finite-difference grid // Wave Motion. 2000. 31. 77–92.
- 33. Suh S. Y., Yeh A., Wang B., Cai J., Yoon K., Li Z. Cluster programming for reverse time migration // The Leading Edge. 2010. 29. 94–97.
- 34. Vavrycuk V. Velocity, attenuation, and quality factor in anisotropic viscoelastic media: a perturbation approach // Geophysics. 2008. 73. D63–D73.
- Virieux J. P-SV wave propagation in heterogeneous media: velocity-stress finite-difference method // Geophysics. 1986. 51. 889–901.
- Virieux J., Operto S., Ben-Hadj-Ali H., Brossier R., Etienne V., Sourbier F., Giraud L., Haidar A. Seismic wave modeling for seismic imaging // The Leading Edge. 2009. 28. 538–544.
- 37. White R.E. The accuracy of estimating Q from seismic data // Geophysics. 1992. 57. 1508–1511.
- Zhang D., Lamoureux M., Margrave G., Cherkaev E. Rational approximation for estimation of quality q factor and phase velocity in linear, viscoelastic, isotropic media // Computational Geosciences. 2011. 15. 117–133.

Поступила в редакцию 25.02.2013