УДК 519.642.4

СТАЦИОНАРНОЕ РАСПРЕДЕЛЕНИЕ ДЛЯ УРАВНЕНИЯ ЯКОБИ С БОЛЬШИМ СЛУЧАЙНЫМ ПАРАМЕТРОМ КРИВИЗНЫ

E. A. Илларионов¹

Выполнено обобщение полученных ранее результатов для случая, когда параметр кривизны в уравнении Якоби является случайной величиной, распределенной на большом или бесконечном интервале. Реализация численного алгоритма, позволяющего в таких случаях находить стационарное распределение, имеет ряд особенностей, связанных, в первую очередь, с конечной точностью вычислений. Рассмотрены эти особенности и приведены графики найденных распределений. По полученным распределениям вычислены показатели Ляпунова и скорости роста моментов поля Якоби. Работа выполнена при частичной финансовой поддержке РФФИ (гранты 12–02–31128 и 12–02–00170).

Ключевые слова: стационарное распределение, произведение матриц, интегральное уравнение, уравнение Якоби.

1. Введение. Настоящая статья призвана обобщить результаты, полученные в [1]. Напомним постановку основной задачи. Нас интересует асимптотическое поведение решения уравнения Якоби

$$y''(x) + K(x)y(x) = 0,$$
(1)

в котором коэффициент K задается в виде случайного процесса с обновлением в целочисленных точках. А именно, мы полагаем $K(x) = K_n$ при $x \in [n - 1, n)$, где K_n — независимые одинаково распределенные случайные величины. В работе [1] величины K_n полагались равномерно распределенными на отрезке $[-K_{\max}, K_{\max}]$ и рассматривался случай малых значений K_{\max} . В данной работе мы рассмотрим поведение решений уравнения Якоби при больших значениях K_{\max} и перейдем к случаю, когда величины K_n имеют нормальное распределение. Заметим, что с вычислительной точки зрения большие значения коэффициента K создают дополнительные трудности и становится невозможным непосредственное применение описанного в [1] алгоритма. В частности, погрешность решения уравнений в ряде случаев становится больше того отрезка, на котором ищется корень, что приводит к накоплению значительной ошибки. Ниже будет предложен метод, позволяющий существенно распирить область возможных распределений коэффициента K.

2. Уравнение Якоби и теорема Ферстенберга. Изучать асимптотические свойства уравнения Якоби (1) удобно в терминах произведения случайных матриц (см., например, [2, 3]). К этому можно перейти следующим способом. Введем вектор-строку $z = (z_1, z_2)$ и перепишем уравнение Якоби в векторном виде, положив $z_1(x) = y(x), z_2(x) = y'(x)$:

$$(z'_1, z'_2) = (z_1, z_2) \begin{pmatrix} 0 & -K(x) \\ 1 & 0 \end{pmatrix}.$$

В качестве начальных условий положим $z_1(0) = 0, z_2(0) = 1.$

В силу определения K фундаментальной матрицей этой системы будет произведение случайных мат- $\begin{pmatrix} 0 & -K_n \end{pmatrix}$

риц вида
$$B(n-1,n) = \exp\begin{pmatrix} n \\ 1 & 0 \end{pmatrix}$$
. Явный вид этих матриц зависит от знака K_n :
если $K_n \ge 0$, то $B(n-1,n) = \begin{pmatrix} \cos\sqrt{K_n} & -\sqrt{K_n}\sin\sqrt{K_n} \\ \sin\sqrt{K_n}/\sqrt{K_n} & \cos\sqrt{K_n} \end{pmatrix}$;
если $K_n < 0$, то $B(n-1,n) = \begin{pmatrix} \cosh\sqrt{-K_n} & \sqrt{-K_n}\sinh\sqrt{-K_n} \\ \sinh\sqrt{-K_n}/\sqrt{-K_n} & \cosh\sqrt{-K_n} \end{pmatrix}$.

¹ Московский государственный университет им. М.В. Ломоносова, механико-математический факультет, Ленинские горы, 119899, Москва; студент, e-mail: egor.mypost@gmail.com

[©] Научно-исследовательский вычислительный центр МГУ им. М. В. Ломоносова

В дальнейшем для краткости будем обозначать $B_i = B(i-1,i)$. Произведение первых n таких матриц обозначим через B(n). Характер поведения произведения матриц определяется показателем Ляпунова λ : $\lambda = \lim_{n \to \infty} \frac{1}{n} \log \|xB(n)\|$, где x — любой ненулевой вектор и предел понимается с вероятностью 1.

Известна теорема Ферстенберга [4] и ее обобщения, которые утверждают, что (при некоторых условиях на закон распределение матриц) показатель Ляпунова строго положителен, т.е. норма произведения растет с экспоненциальной скоростью.

Важным для нас также является следующий результат, вытекающий из работ Ферстенберга. Обозначим через μ распределение любой из матриц B_i из произведения B(n) на группе матриц $G = SL(2, \mathbb{R})$. Пусть W — единичная окружность со склеенными диаметрально противоположными точками. Определим действие элемента $g \in G$ на W формулой $w \circ g = \frac{wg}{\|wg\|}$. В силу независимости B_i последовательность $B_1, B_2, \ldots, B_n, \ldots$ задает на W цепь Маркова. Согласно предельным теоремам [5], при достаточно общих ограничениях на распределение μ эта цепь Маркова является эргодической, т.е. существует стационарное распределение этой цепи (инвариантная мера).

В работе [1], по-видимому впервые, была численно получена искомая инвариантная мера. При этом рассмотрение ограничилось случаями, когда значения K распределены равномерно на достаточно малом отрезке вблизи нуля. Целью данной работы является обсуждение особенностей, возникающих при больших значениях K.

3. Переходная плотность. Следуя обозначениям, принятым в [1], будем обозначать положение точек на W с помощью углов $\phi \in [-\pi/2, \pi/2]$. Пусть $u = \operatorname{tg} \phi$. Пусть под действием матрицы B точка ϕ переходит в ψ , тогда соответствующие им точки на прямой обозначим через u и v. Пусть $\xi = \sqrt{|K|}$. Тогда u и v связаны выражениями (2) при $K \ge 0$ и (3) при K < 0:

$$v = \frac{u - \xi \operatorname{tg} \xi}{1 + u \operatorname{tg} \xi / \xi} = F_u(\xi), \tag{2}$$

$$v = \frac{u + \xi \mathrm{th}\,\xi}{1 + u \mathrm{th}\,\xi/\xi} = \widetilde{F}_u(\xi). \tag{3}$$

Плотность распределения v при фиксированном u является переходной плотностью марковской цепи, рассматриваемой уже на прямой. Обозначим эту плотность через p(u, v). Зная плотность ξ , можно выписать явное выражение для переходной плотности:

$$p(u,v) = \frac{1}{2} \frac{p_{\xi}(F_u^{-1}(v))}{\left|F'_u(F_u^{-1}(v))\right|} + \frac{1}{2} \frac{p_{\xi}(F_u^{-1}(v))}{\left|\widetilde{F}'_u(\widetilde{F}_u^{-1}(v))\right|}.$$
(4)

Заметим, что если для v существует несколько прообразов, то в формуле (4) предполагается суммирование по всем прообразам. Ситуация с несколькими прообразами в выражениях (2) и (3) возникает тогда, когда в них появляются вертикальные асимптоты (знаменатель обращается в нуль). Функция (2), вследствие периодичности тангенса, имеет бесконечное число асимптот, поэтому и прообразов, вообще говоря, может быть бесконечное число, если только носитель распределения ξ не ограничен сверху. Функция (3) может иметь асимптоту только при $u \leq -1$, притом единственную.

Рис. 1. Графики функций F и \widetilde{F} , возникающие при подсчете переходной плотности: а) F при $u \neq -1$, б) \widetilde{F} при u > -1, в) \widetilde{F} при u < -1

На рис. 1 приведены примеры графиков функций (2), (3) в зависимости от и.

В [1] подробно разбиралось нахождение переходной плотности при малых K_{max} , в частности, при $K_{\text{max}} = 1, 0.1, 0.01$. Поэтому сейчас мы ограничимся описанием особенностей, возникающих при больших K_{max} , для некоторых из которых будут построены графики стационарной плотности и посчитаны показатели Ляпунова. Случай больших K_{max} представляет интерес с той точки зрения, что если мы захотим рассматривать распределения K, сосредоточенные на всей прямой, то вычислительные ограничения приводят к необходимости рассматривать эти распределения на большом, но конечном отрезке.

В случае функции F необходимо искать решения уравнения $v = F_u^{-1}(\xi)$ на каждом из отрезков, разделенных вертикальными асимптотами. При этом на первом отрезке решение существует, если $v \leq u/(1+u)$, на всех последующих отрезках решение существует для всех v, кроме, быть может, последнего отрезка, ограниченного справа максимальным допустимым значением $\xi = \sqrt{K_{\text{max}}}$. Кроме того, с ростом номера отрезка графики функции F постепенно отжимаются от асимптот, что повышает точность решения. Таким образом, в этом случае большое число отрезков, на которых ищется решение, не вызывает принципиальных затруднений.

В случае функции \tilde{F} начинают сказываться особенности, связанные с тем, что в условиях машинной арифметики гиперболический тангенс быстро становится равным единице. В нашей реализации для переменной типа double языка Си это происходит уже при $\xi \simeq 20$. Заметим, что если подставить th $\xi = 1$ в (3), то \tilde{F} превратится в тождественную функцию. Заметим также, что при $th \xi \simeq 1$ асимптота (нуль знаменателя функции \tilde{F}) находится в точке $\xi \simeq -u$. Следующая качественная оценка показывает, что уже при небольших значениях |u| мера области вблизи асипмтоты, на которой функция \tilde{F} значительно отличается от ξ , крайне мала и быстро уменьшается с ростом |u|. Воспользуемся тем, что th $\xi = 1 - \frac{2}{\exp(2\xi) + 1} \sim 1 - \frac{2}{\exp(2\xi)}$ уже для небольших значений ξ . Пусть $\xi - (-u) = \xi + u = \delta$, где δ

мало. Рассмотрим разность $|\tilde{F} - \xi|$ вблизи асимптоты при u = -20, т.е. в окрестности точки $\xi \simeq 20$. Тогда

$$\left|\widetilde{F}(\xi) - \xi\right| = \left|\frac{\xi(u + \xi \operatorname{th} \xi)}{\xi + u \operatorname{th} \xi} - \xi\right| = \left|\frac{(1 - th\xi)(u\xi - \xi^2)}{\xi + u \operatorname{th} \xi}\right| = \left|\frac{2\xi(u - \xi)}{\exp(2\xi)(\xi + u) - 2u}\right| \sim \left|\frac{2\xi(u - \xi)}{\delta \exp(2\xi)}\right|.$$

Заметим, что числитель имеет порядок 10^3 . Тогда если мы потребуем, чтобы \tilde{F} отличалась от ξ хотя бы на $\varepsilon = 0.1$ (именно таким числом в дальнейшем будет оценено расстояние между узлами сетки вблизи точки 20), то потребуется взять $\delta \sim 10^4 \exp(-40) \simeq 10^{-13}$. Таким образом, корни уравнения $\tilde{F}_u(\xi) = v$, которые соответствуют скачку функции \tilde{F}_u , лежат в крайне малой области ширины $\sim 10^{-13}$ вблизи точки асимптоты (рис. 2).

Теперь обратимся к формуле (4). В знаменателе стоит производная функции \tilde{F} от прообраза v. Ясно, что когда прообраз лежит вблизи асимптоты, то производная по модулю велика, а поскольку значение плотности в данной точке конечно и обычно мало, то вклад от этой точки должен быть почти нулевым. С другой стороны, поскольку мы находим положение асимптоты и прообраз точки v лишь с некоторой

Рис. 2. График функции F вблизи асимптоты при больших |u|, вертикальная линия не показана

погрешностью (в нашем случае погрешность метода деления пополам бралась равной 10^{-10}), то, решая соответствующие уравнения, когда v принадлежит скачку функции \tilde{F} , мы на порядок промахиваемся мимо области скачка и попадаем вне ее, где сама функция близка к тождественной, а производная, соответственно, близка к 1. В итоге в формулу (4) вносится большая погрешность, что сильно сказывается на конечном результате.

Понятно, что с ростом |u| ситуация только усугубляется и ее нельзя исправить, например, повышая точность метода нахождения корней. Чтобы избавиться от этой ошибки, связанной только с вычислительной погрешностью, приходится полагать, что $\tilde{F}(x)$ не имеет особенностей в области $x > x_0$. Конкретное значение x_0 будет определено далее. Как было отмечено, те решения, которые мы при этом теряем, не должны давать существенного вклада в ответ.

4. Стационарная плотность. Стационарная плотность π ищется как решение следующего интегрального уравнения, в которое входит переходная плотность:

$$\int_{-\pi/2}^{\pi/2} p(\phi,\psi)\pi(\phi) \, d\phi = \pi(\psi).$$

Решение ищется методом итераций. В качестве нулевого приближения полагаем $\pi_0(\psi) \equiv 1$. Затем производится нормировка плотности, полученной на предыдущем шаге: $\pi_{n-1}(\psi) = \frac{\pi_{n-1}(\psi)}{\|\pi_{n-1}(\psi)\|_{L_1[-\pi/2,\pi/2]}}$.

Новая плотность $\pi_n(\psi)$ находится по формуле $\pi_n(\psi) = \int_{-\pi/2}^{\pi/2} p(\phi, \psi) \pi_{n-1}(\phi) \, d\phi.$

Процесс останавливается, когда $\|\pi_n - \pi_{n-1}\|_{L_1[-\pi/2,\pi/2]} < \varepsilon$, где ε – заданная точность. Всюду далее мы полагаем $\varepsilon = 10^{-6}$.

Вычисление интегралов производится по составной формуле средних прямоугольников с разбиением отрезка $[-\pi/2, \pi/2]$ на $N = 10^4$, 2×10^4 и 3×10^4 узлов. В [1] необходимость в большом разбиении объяснялась тем, что при малых K_{max} становится малой область определения обратного отображения и в нее попадает недостаточное количество узлов, что влияет на точность вычисления показателей Ляпунова. В случае больших K_{max} сказывается то, что при отображении сетки при помощи функции тангенса с отрезка $[-\pi/2, \pi/2]$ на прямую, сетка перестает быть равномерной. Например, при $N = 10^4$ расстояние между соседними узлами в окрестности точки 20 уже становится больше 0.1, а расстояние между двумя крайними узлами приблизительно равно 1500. Чтобы проверить влияние этой особенности на точность решения, результаты сравниваются с большим разбиением $N = 3 \times 10^4$. В качестве дополнительного контроля точности решения интегрального уравнения мы рассматриваем максимальную по модулю разность Δ между левой и правой частями интегрального уравнения по всем узлам разбиения.

Вычисления при $N \ge 10^4$ и больших значениях K_{max} оказались невыполнимыми на обычном компьютере за приемлемое время, а потому были проведены на суперкомпьютере СКИФ МГУ.

Обратимся к вопросу выбора параметра x_0 . С одной стороны, при фиксированном разбиении можно выбирать его так, чтобы минимизировать ошибку Δ . При $K_{\text{max}} = 2.5 \times 10^3$ и $N = 10^4$ минимум Δ достигается при $x_0 = 28$. С другой стороны, если при выбранном x_0 увеличить разбиение, то за счет большего числа точек погрешность накопится раньше и итоговая ошибка будет больше. Поэтому для большего разбиения необходимо выбирать меньшее x_0 .

Таблица	1
Точность решения задачи в зависимости	
эт числа точек разбиения: $K_{\rm max} = 2.5 \times 10^3$,	
${ m n}-$ число итераций, $\ \pi_n\ -$ норма	
приближения на последнем шаге	

Критерий	$N = 10^{4}$	$N=2\times 10^4$	$N=3\times 10^4$
Δ	0.2896	0.1225	0.0151
n	5	5	5
$\ \pi_n\ $	0.9944	1.0023	0.9997
λ	16.5730	16.5712	16.5718

Чтобы определить единое значение x_0 для всех рассматриваемых нами разбиений, представляется разумным положить x_0 равным наибольшему из таких, что при увеличении разбиения в случае $K_{\text{max}} = x_0^2$ не происходит роста ошибки. Такое x_0 оказывается равным 15.

Построим графики стационарной плотности для равномерного распределения на большом отрезке $[-K_{\max}, K_{\max}]$ при $K_{\max} = 10^2, 2.5 \times 10^3$ и 10^4 . В табл. 1 приведены параметры точности решения при различных N для значения $K_{\max} = 2.5 \times 10^3$. Заметим, что выбор сетки сказывается также и на точности вычисления показателя Ляпунова λ .

Рис. 3. Графики стационарной плотности для равномерного распределения (логарифмический масштаб): а) $K_{\rm max}=10^2,\,6)~K_{\rm max}=2.5\times10^3,\,{\rm B})~K_{\rm max}=10^4$

В качестве решения мы принимаем графики, полученные по сетке из 3×10^4 узлов. Соответствующие

графики для различных K_{max} приведены на рис. 3 в логарифмическом масштабе.

В работе [1] было показано, что при малых K_{max} графики имеют максимум вблизи нуля. Из рис. 3 видно, что при увеличении K_{max} максимум смещается вправо и графики прижимаются к границам. Следует также учитывать, что точки $\pm \pi/2$ на самом деле отождествлены, поэтому графики замыкаются через значения на концах. Порейдем к сличеро корда К

— <i>V</i>	\mathbf{r}	
Γ	$\sim N(0) \sigma^2$ (1) σ^2	
точноств решения задачи с п	$\sim 1000000000000000000000000000000000000$	

Перейдем к случаю, когда Kимеет нормальное распределение с нулевым средним и дисперсией σ^2 . Распределение $\xi = \sqrt{|K|}$ выражается через распределение K следующим образом: $p_{\xi}(x) = 4xp_K(x^2)$ при $x \ge 0$. Плотность нормального распределения убывает по закону $\exp(-x^2/2\sigma^2)$, тогда плотность

Критерий	$\sigma^2=0.01$	$\sigma^2 = 1$	$\sigma^2 = 100$	$\sigma^2 = 100^2$		
Δ	2.03×10^{-6}	2.09×10^{-7}	1.46×10^{-8}	1.11×10^{-5}		
n	71	17	5	3		
$\ \pi_n\ $	1	1	1	0.999998		

 ξ убывает еще быстрее: $x \exp(-x^4/2\sigma^2)$. Чтобы не выходить за предел точности переменной типа double (эта точность приблизительно равна 2.2×10^{-308}), нужно ограничить максимальное значение $x = x_{\text{max}}$. Например, при не слишком маленьких дисперсиях подойдет такая оценка: $x_{\text{max}} \leq 6\sqrt{\sigma}$. Для нормального распределения N(0,1) получаем $x_{\text{max}} = 6$, т.е. достаточно малый отрезок. При $\sigma^2 = 100$ полагаем $x_{\text{max}} = 60$. Случай $\sigma^2 = 0.01$ формально не относится к задаче с большим параметром кривизны, тем не менее мы включили его в таблицы для полноты картины.

Рис. 4. Графики стационарной плотности для $K \sim N(0, \sigma^2)$ (обыкновенный масштаб): а) $\sigma^2 = 1, 6$) $\sigma^2 = 100, в$) $\sigma^2 = 100^2$

В табл. 2 представлены параметры погрешности счета. Для нормального распределения оказалось достаточным рассматривать разбиение на $N = 10^4$ узлов. Получившиеся при этом графики стационарной плотности показаны на рис. 4. Из этого рисунка видно, что, как и в случае равномерного распределения, при небольших σ^2 графики имеют максимум, расположенный ближе к нулю, затем при увеличении дисперсии σ^2 распределения K максимум смещается к правой границе, становясь более резким.

На рис. 5 в случа
е $K \sim N(0,1)$ показана функция распределения, которая вычисляется по найденной стационарной плотности по форму-

ле
$$F(\psi) = \int_{-\pi/2}^{\psi} \pi(\phi) \, d\phi.$$

5. Показатель Ляпунова. Вычислим с помощью стационарной плотности показатели Ляпунова произведения случайных матриц и моменты старших порядков, используя соотношения из работы [1]: $\lambda = E \log \|wB\|$ и $\gamma_p = \frac{1}{p} \log E \|wB\|^p$, где $\|\cdot\|$ — евклидова норма.

Первые шесть скоростей роста целочисленных моментов приведены в табл. 3 при различных распределениях K. Из табл. 3 видно, что, как это и предсказывается теорией [6], γ_p увеличивается с ростом p.

Рис. 5. Функция распределения при
 $K \sim N(0,1)$

6. Заключение. На примере уравнения Якоби (1) был предложен метод нахождения инвариантной меры для широкого класса распределений параметра кривизны K. Показано, что в случае когда K сосредоточено на большом или бесконечном интервале, возникает ряд технических трудностей, связанных с конечной погрешностью вычислений, которые необходимо учитывать при решении данной задачи. Большой

$K \sim$	λ	γ_1	γ_2	γ_3	γ_4	γ_5	γ_6
$U[-10^2, 10^2]$	3.2459	7.8962	9.0192	9.5855	9.9473	10.1986	10.3821
$U[-2.5 \times 10^3, 2.5 \times 10^3]$	16.5718	46.7126	48.9701	50.0871	50.7362	51.1552	51.4482
$U[-10^4, 10^4]$	33.2358	96.1447	98.9634	100.3193	101.0847	101.5728	101.9117
N(0, 0.01)	0.0645	0.0866	0.1071	0.1263	0.1444	0.1616	0.1770
N(0,1)	0.3137	0.4323	0.5619	0.6932	0.8165	0.9277	1.0271
N(0, 100)	1.2184	2.6765	3.7468	4.4674	5.0260	5.4891	5.8871
$N(0, 100^2)$	4.03173	13.3097	17.2554	19.9976	22.1421	23.9193	25.4490

Показатели Ляпунова и скорости роста моментов

объем вычислений требует привлечения методов параллельного программирования. Вычисления проводились на суперкомпьютере СКИФ МГУ с использованием стандарта МРІ. В результате удалось построить рассматриваемую меру при различных распределениях K, и на ее основе были вычислены показатели Ляпунова и скорости роста моментов поля Якоби. Для контроля получаемых значений было проведено прямое численное моделирование решений уравнения Якоби, аналогичное тому, что было предложено в работе [7]. В результате оказалось, что при большом числе реализаций удается с хорошей точностью воспроизвести показатели Ляпунова при всех распределениях K, в то же время моменты старших порядков сильно недотягивали до приведенных в табл. З значений. Этот вопрос требует отдельного изучения.

Автор благодарен Соколову Д.Д. и Тутубалину В.Н. за полезные обсуждения.

СПИСОК ЛИТЕРАТУРЫ

- 1. Илларионов Е.А., Соколов Д.Д., Тутубалин В.Н. Стационарное распределение произведения матриц со случайными коэффициентами // Вычислительные методы и программирование. 2012. 13. 218–225.
- Bougerol P., Lacroix J. Product of random matrices with application to Schrödinger operators // Progress in Probability and Statistics. 1985. 8. 1–283.
- Comtet A., Texier C., Tourigny Y. Products of random matrices and generalized quantum point scatterers // Journal of Statistical Physics. 2010. 140. 427–466.
- 4. Furstenberg H. Noncommuting random products // Trans. Amer. Math. Soc. 1963. 108. 377-428.
- Tutubalin V.N. A central limit theorem for products of random matrices and some of its applications // Symposia Mathematica. 1977. XXI. 101–116.
- Zeldovich Ya.B., Ruzmaikin A.A., Molchanov S.A., Sokoloff D.D. Kinematic dynamo problem in a linear velocity field // J. Fluid Mech. 1984. 144. 1–11.
- Михайлов Е.А., Соколов Д.Д., Тутубалин В.Н. Фундаментальная матрица для уравнений Якоби со случайными коэффициентами // Вычислительные методы и программирование. 2010. 11. 261–268.

Поступила в редакцию 10.01.2013

Таблица 3