УДК 519.6

О ПРИБЛИЖЕННЫХ УСЛОВИЯХ НА ОТКРЫТОЙ ГРАНИЦЕ ДЛЯ УРАВНЕНИЯ КЛЕЙНА–ГОРДОНА И ИХ ЭФФЕКТИВНОСТИ НА БОЛЬШИХ ВРЕМЕННЫХ ИНТЕРВАЛАХ

A. P. Maйкob¹

Вопросы построения условий на открытой границе для уравнения Клейна–Гордона обсуждаются на примере модельной начально-краевой задачи в четверти плоскости. Предложен подход, применение которого при численном решении задачи позволяет обеспечить высокую точность на сколь угодно больших временны́х интервалах. Приводятся результаты численных экспериментов, иллюстрирующие эффективность данного подхода.

Ключевые слова: уравнение Клейна–Гордона, начально-краевые задачи в пространственно-неограниченных областях, условия на открытой границе, нестационарные условия излучения.

Введение. При численном моделировании нестационарных процессов различной природы в пространственнонеограниченных областях в ряде случаев для сокращения вычислительных затрат применяется следующий прием. Пусть исходная задача — будем называть ее задачей I — поставлена в неограниченной области Ω . Сначала из Ω выделяется некоторая ограниченная подобласть Ω_{int} (см. рис. 1). Затем на поверхности $S_{open} := \partial \Omega_{int} \setminus \partial \Omega$ — обычно ее называют открытой, или фиктивной, или искусственной, или прозрачной границей — каким-либо образом ставятся граничные условия; последние вместе с уравнениями исходной задачи и ее граничными условиями на $\partial \Omega_{int} \setminus S_{open}$ составляют новую начально-краевую задачу в Ω_{int} . Эта новая задача — назовем ее задачей II — и решается численно вместо задачи I.

Точные условия на открытой границе (т.е. условия, обеспечивающие совпадение в $\Omega_{\rm int}$ решений задач I и II), как правило, нелокальны как по пространственным переменным, так и по времени, и поэтому их непосредственное использование в задаче II оказывается неэкономичным. В настоящее время развиваются несколько подходов к получению эффективных приближенных условий на открытой границе (см., например, [1–5]). Один из таких подходов основан на идее аппроксимации ядер интегральных операторов, входящих в точные условия [1, 3].

Хотя имеется целый ряд численных и аналитических результатов, подтверждающих продуктивность этой идеи, некоторые принципиальные вопросы, относящиеся к ее реализации, пока не изучены достаточно полно. К их числу относится проблема построения аппроксимаций, при которых отклонения решений за-

Рис. 1. Выделение ограниченной подобласти $\Omega_{\rm int}$ из исходной неограниченной области Ω

дачи II от соответствующих решений задачи I были бы гарантированно малы на сколь угодно больших временны́х интервалах.

В настоящей статье речь будет идти именно об этой проблеме. Мы ограничимся обсуждением возможных способов ее решения на примере пространственно-одномерной задачи, которая может служить моделью для более сложных дву- и трехмерных задач, связанных с нестационарными волновыми процессами в средах с дисперсией и без дисперсии. Эта модельная задача будет подробно сформулирована в разделах 1 (п. 1.1) и 2 (пп. 2.1 и 2.2). Конструкция приближенных условий на открытой границе рассматривается в п. 1.2, а вопросы их корректности и эффективности при решении модельной задачи на полупрямой t > 0 — в разделах 2 и 3. В разделе 4 обсуждаются результаты численного тестирования предлагаемого метода построения приближенных условий.

 $^{^1}$ Московский государственный университет им. М.В. Ломоносова, физический факультет, Ленинские горы, д. 1, стр. 2, 119991, Москва; доцент, e-mail: a_maikov@phys.msu.ru

[©] Научно-исследовательский вычислительный центр МГУ им. М.В. Ломоносова

1. Модельная задача. Условия на открытой границе

1.1. Под L_x и L будем понимать операторы вида

$$L_x \eta := \frac{\partial}{\partial x} \left(k(x) \frac{\partial \eta}{\partial x} \right) - q(x)\eta, \tag{1.1}$$

$$L\eta := \rho(x) \frac{\partial^2 \eta}{\partial t^2} - L_x \eta, \qquad (1.2)$$

где $k(x), q(x), \rho(x)$ — функции $x \in [0, \infty)$, такие, что для некоторого $x_1 < \infty$ выполняются условия

$$\rho(x)\big|_{x>x_1} = k(x)\big|_{x>x_1} = q(x)\big|_{x>x_1} \equiv 1.$$
(1.3)

Пусть $0 < T < \infty.$ Рассмотрим начально-краевую задачу

$$Lu = f(x, t) (x_0 < x < \infty, 0 < t < T), (1.4)$$

$$u(x,0) = u_0(x), \quad \frac{\partial u}{\partial t}(x,0) = u_1(x) \qquad (x_0 < x < \infty), \tag{1.5}$$

$$u(x_0, t) = g(t) (0 < t < T) (1.6)$$

с данными, удовлетворяющими условиям

$$f(x,t)\big|_{x \ge x_1} = u_0(x)\big|_{x \ge x_1} = u_1(x)\big|_{x \ge x_1} = 0.$$
(1.7)

Из (1.3) и (1.7) видно, что вне отрезка $[0, x_1]$ уравнение (1.4) принимает вид

$$\frac{\partial^2 u}{\partial t^2} - \frac{\partial^2 u}{\partial x^2} + u = 0, \tag{1.8}$$

причем этот же отрезок содержит и начальные возмущения. Отсюда нетрудно получить (см., например, [3, 5]), что достаточно гладкие решения (1.4)–(1.6) удовлетворяют равенству

$$\frac{\partial u}{\partial t}(x_1,t) + \frac{\partial u}{\partial x}(x_1,t) + \int_0^t \mathcal{K}(t-\tau) u(x_1,\tau) d\tau = 0, \qquad (1.9)$$

где

$$\mathcal{K}(t) := t^{-1} J_1(t) \tag{1.10}$$

(через $J_1(t)$ обозначена функция Бесселя порядка 1).

Задача (1.4)–(1.6) с условиями (1.3) и (1.7) представляет собой простейший пример задачи I, о которой говорилось выше. В данном случае области Ω соответствует полупрямая (0, ∞), области Ω_{int} — интервал (0, x_1), открытой границе S_{open} — единственная точка x_1 , а точному условию на S_{open} — равенства (1.9) и (1.10).

1.2. Поскольку (1.9) включает в себя интеграл с областью интегрирования (0, t), непосредственная численная реализация этого точного условия приводит при больших t к высоким вычислительным затратам, в значительной мере обесценивающим выигрыш от сведения исходной задачи к задаче на отрезке $[0, x_1]$. Радикально сократить эти затраты можно, если воспользоваться идеей аппроксимации ядра точных условий приближенным ядром специального вида [1, 3], допускающим локализацию условия (1.9) по времени. Пусть

$$\widetilde{\mathcal{K}}_{T}(t) = \sum_{n=1}^{N} c_n e^{-\sigma_n t}, \qquad (1.11)$$

где $N < \infty$, а c_n и σ_n — комплексные константы, которые могут, вообще говоря, зависеть от T. В результате получим задачу II вида

$$L\tilde{u}_{T} = f(x,t) \qquad (x_0 < x < x_1, 0 < t < T), \qquad (1.12)$$

$$\widetilde{u}_T(x,0) = u_0(x), \quad \frac{\partial \widetilde{u}_T}{\partial t}(x,0) = u_1(x) \qquad (x_0 < x < x_1), \tag{1.13}$$

$$\widetilde{u}_{T}(x_{0}, t) = g(t)$$
(0 < t < T), (1.14)

$$\frac{\partial \widetilde{u}_T}{\partial t}(x_1, t) + \frac{\partial \widetilde{u}_T}{\partial x}(x_1, t) + \int_0^t \widetilde{\mathcal{K}}_T(t - \tau) \widetilde{u}_T(x_1, \tau) \tau = 0 \qquad (0 < t < T).$$
(1.15)

Условие (1.15) с ядром (1.11) эквивалентно системе

$$\frac{\partial \widetilde{u}_T}{\partial t}(x_1, t) + \frac{\partial \widetilde{u}_T}{\partial x}(x_1, t) + \sum_{n=1}^N I_n(t) = 0, \qquad (1.16)$$

$$\frac{dI_n}{dt} + \sigma_n I_n = c_n \tilde{u}_T(x_1, t), \tag{1.17}$$

$$I_n(0) = 0. (1.18)$$

Чтобы убедиться в этом, достаточно положить $I_n(t) = c_n \int_0^t e^{-\sigma_n(t-\tau)} \widetilde{u}_T(x_1,\tau) d\tau$. Таким образом, заме-

на точного ядра (1.10) приближенным (1.11) позволяет локализовать по времени условия на открытой границе. Эффективность локализации зависит от соотношения между N и отклонением \tilde{u}_{τ} от u.

Замечание 1. Для подобной локализации используются также ядра более сложной структуры; ядро вида (1.11) представляет собой их частный случай [1, 3, 6, 7].

Действуя аналогичным образом, можно получить приближенные локальные по времени условия на открытой границе и для широкого класса задач в пространственно-двумерных и трехмерных областях. Это относится, например, к некоторым задачам распространения и генерации акустических, электромагнитных волн, волн в мелкой воде и волн в разреженной плазме. Для численной реализации таких условий важное значение имеют вопросы корректности и эффективности перехода к приближенному ядру. Лучшему пониманию этих вопросов могут помочь обсуждаемые ниже результаты, которые относятся к существованию, единственности и гладкости решений задачи (1.12)–(1.15) (раздел 2) и оптимальному выбору констант в (1.11) (раздел 3).

2. Корректность приближенных условий. Равномерные по T оценки отклонения приближенного решения от точного. В данном разделе мы рассмотрим некоторые свойства решений задачи (1.12)–(1.15) с ядрами, удовлетворяющими условию $\widetilde{\mathcal{K}}_T \in L^1(0,T)$, а в остальном произвольными. Ядра вида (1.11) этому условию, очевидно, удовлетворяют; отметим, что условие выполнено также и для ядер, о которых упоминалось в замечании 1.

2.1. Пусть $l, n \in \mathbb{N}, 1 \leq r \leq \infty$ и V — некоторая область в \mathbb{R}^n . Через $W_r^l(V)$ будем обозначать пространство Соболева, состоящее из всех измеримых функций в V, которые вместе со своими частными производными до порядка l включительно принадлежат $L^r(V)$. Под $W_r^0(V)$ будем понимать само пространство $L^r(V)$, при этом $\|w\|_{W_r^l(V)} = \sum_{|\alpha| \leq l} \|D^{\alpha}w\|_{L^r(V)}$.

Сформулируем условия, которые всюду в этом разделе будут налагаться на данные задачи (1.4)–(1.6) и коэффициенты оператора L. Во-первых, потребуем, чтобы было выполнено следующее:

$$f(x,t) \in L^{\infty}((0,\infty) \times (0,T)), \quad g(t) \in C([0,T]), \quad u_0(x) \in C^1([0,\infty)), \quad u_1(x) \in C([0,\infty)),$$
(2.1)

$$\rho(x), k(x) \in C^2([0,\infty)), \quad q(x) \in C([0,\infty)),$$
(2.2)

$$\inf_{x \in (0,x_1)} k(x) > 0, \quad \inf_{x \in (0,x_1)} \rho(x) > 0.$$
(2.3)

Далее, рассмотрим на отрезке $[0, x_1]$ задачу Коши

$$(L_x + \lambda \rho(x)) y(x, \lambda) = 0, \quad y(0, \lambda) = 0, \quad \frac{dy}{dx} (0, \lambda) = 1,$$

где L_x — оператор вида (1.1), $\lambda \in \mathbb{R}$. Отметим, что классическое решение $y(x, \lambda)$ этой задачи Коши заведомо существует для всех $\lambda \in \mathbb{R}$ в силу (2.2) и (2.3). Добавим еще одно условие, налагаемое на $\rho(x)$, k(x) и q(x):

$$\frac{\partial y}{\partial x}(x_1,\lambda) + \sqrt{1-\lambda} y(x_1,\lambda) \neq 0$$
 при $\lambda \in (-\infty,1].$ (2.4)

Замечание 2. Физический смысл условия (2.4) может быть выражен требованием отсутствия резонансов в системе, описываемой уравнением (1.4) и граничным условием (1.6) (подробнее об условии (2.4) см. [7, 8]).

Кроме всего перечисленного будем по-прежнему требовать выполнения (1.3) и (1.7).

2.2. Под решением задачи (1.3)–(1.7) будем понимать функцию $u(x,t) \in W_p^m((0,\infty) \times (0,T))$, где $2 \leq m \in \mathbb{N}$ и p = 2 либо $p = \infty$, для которой равенства (1.4)–(1.6) выполнены почти всюду на соответствующих множествах [9]. Из (1.3), (1.7) и конечности скорости распространения возмущений для

решений гиперболических уравнений видно, что носитель u(x,t) компактен для любого $T < \infty$, поэтому из $u \in W^2_{\infty}((0,\infty) \times (0,T))$ следует, что $u \in W^2_2((0,\infty) \times (0,T))$. Таким образом, из всех классов решений (1.3)–(1.7), о которых будет идти речь, наиболее общим является W^2_2 . Решение (1.3)–(1.7) единственно в $W^2_2((0,\infty) \times (0,T))$ [9]; следовательно, решение единственно и в остальных классах.

Аналогично, при таких же m и p функцию $\tilde{u}_{T}(x,t) \in W_{p}^{m}((0,x_{1}) \times (0,T))$ будем называть решением задачи (1.12)–(1.15), если она удовлетворяет этим равенствам почти всюду. Оказывается, справедливо следующее утверждение.

Теорема. Пусть $m \ge 2$, p = 2 либо $p = \infty$ и выполнены условия (2.1)–(2.3) и (2.4), а при $m \ge 3$ — также и условия $\rho(x)$, $q(x) \in W_{\infty}^{m-2}(0, x_1)$, $k(x) \in W_{\infty}^{m-1}(0, x_1)$. Тогда

1) если решение $u \in W_p^m((0,x_1) \times (0,T))$ задачи (1.4)–(1.6) существует², то $\forall \widetilde{\mathcal{K}}_T(t) \in L^1(0,T)$ решение \widetilde{u}_T соответствующей задачи (1.12)–(1.15) существует и единственно в $W_p^m((0,x_1) \times (0,T))$, причем эта задача не имеет в $W_2^2((0,x_1) \times (0,T))$ решений, отличных от \widetilde{u}_T ;

2) при $\|\widetilde{\mathcal{K}}_{T} - \mathcal{K}\|_{L^{1}(0,T)} \to 0$ имеет место оценка

$$\sup_{u \neq 0} \frac{\|\widetilde{u}_{T} - u\|_{W_{p}^{m}((0,x_{1})\times(0,T))}}{\|u\|_{W_{p}^{m}((0,\infty)\times(0,T))}} = O\Big(\|\widetilde{\mathcal{K}}_{T} - \mathcal{K}\|_{L^{1}(0,T)}\Big).$$
(2.5)

Оценка (2.5) является равномерной относительно $T \in (0, \infty)$.

Утверждения теоремы представляют собой, по существу, частные случаи результатов, полученных в [8, 11] для начально-краевых задач более общего вида, чем (1.4)–(1.6).

Из этой теоремы можно сделать два вывода, существенных для численной реализации приближенных условий на открытой границе.

(A) В условиях теоремы решение задачи (1.12)–(1.15) имеет ту же гладкость, что и решение исходной задачи (1.4)–(1.6). Поэтому дискретизация уравнения (1.12), начальных условий (1.13) и граничного условия (1.14) может без потери эффективности осуществляться теми же способами, что и при численном решении задачи (1.4)–(1.6). Выбор оптимального способа дискретизации приближенных условий (1.15) и — что более важно на практике — любых эквивалентных им соотношений (в частности, (1.16)–(1.18)) упрощается благодаря тому, что гладкость $\tilde{u}_{T}(x_1, t)$ известна.

(В) Выше шла речь об общей проблеме использования приближенных условий на открытой границе — проблеме построения таких приближенных ядер, что отклонения решений задачи II от соответствующих решений задачи I были бы гарантированно малы на сколь угодно больших временны́х интервалах. Равномерный по T характер оценки (2.5) указывает на возможный подход к решению этой проблемы в случае (1.1)–(1.7). В самом деле, заметим прежде всего, что $\mathcal{K}(t) \equiv \frac{1}{t} J_1(t) \in L^1(0,\infty)$. Далее, пусть $\tilde{\mathcal{K}}(t)$ — функции из шара $\|\tilde{\mathcal{K}} - \mathcal{K}\|_{L^1(0,\infty)} < \delta$ достаточно малого радиуса δ . Рассмотрим всевозможные ядра $\tilde{\mathcal{K}}_T$ вида

$$\widetilde{\mathcal{K}}_{T}(t) = \widetilde{\mathcal{K}}(t) \tag{2.6}$$

и соответствующие им решения $\widetilde{u}_{\scriptscriptstyle T}$ задачи (1.12)–(1.15). Положим

$$J(\widetilde{\mathcal{K}}) := \sup_{\substack{T \in (0,\infty), \\ u \neq 0}} \frac{\left\| \widetilde{u}_{T} - u \right\|_{W_{p}^{m}((0,x_{1}) \times (0,T))}}{\| u \|_{W_{p}^{m}((0,x_{1}) \times (0,T))}} \,.$$
(2.7)

Тогда, как следует из (2.5),

$$J(\widetilde{\mathcal{K}}) \leqslant C \|\widetilde{\mathcal{K}} - \mathcal{K}\|_{L^1(0,\infty)},\tag{2.8}$$

где C — некоторая константа, не зависящая от $\widetilde{\mathcal{K}}$.

3. Построение ядра приближенных условий на открытой границе

3.1. В этом и следующем разделах будем рассматривать только приближенные ядра вида (2.6), где

$$\widetilde{\mathcal{K}}(t) = 2 \operatorname{Re} \sum_{m=1}^{M} c_m \, \psi_m(t), \tag{3.1}$$

$$\psi_m(t) := e^{-\sigma_m t} \quad (\text{Re } \sigma_m > 0, \quad \text{Im } \sigma_m \ge 0).$$
(3.2)

²О достаточных условиях существования таких решений см. [9, 10].

Действительнозначные функции, заданные равенствами (3.1), (3.2), представляют собой частный случай ядер вида (1.11) и, следовательно, допускают локализацию приближенных условий (1.15) в форме (1.16)–(1.18). Мерой эффективности такой локализации может служить, например, соотношение между величинами M и $J(\tilde{\mathcal{K}})$.

Неравенство (2.8) дает для $J(\tilde{\mathcal{K}})$ лишь оценку сверху, но какой-либо заведомо лучшей оценки $J(\tilde{\mathcal{K}})$ пока не найдено. Поэтому с точки зрения эффективности условий (1.16)–(1.18) использование при каждом M того массива коэффициентов $\{c_m, \sigma_m\}_{m=1}^M$, который минимизирует $\|\tilde{\mathcal{K}} - \mathcal{K}\|_{L^1(0,\infty)}$, было бы оправданным. Соответствующая задача оптимизации оказывается, однако, достаточно сложной. Вместо того чтобы решать ее, мы используем для получения $\{c_m, \sigma_m\}_{m=1}^M$ более простой для реализации способ, который излагается в пп. 3.2 и 3.3.

3.2. Прежде всего сформулируем вспомогательное утверждение, которое является очевидным следствием неравенства Коши–Буняковского.

Лемма. Пусть $\eta(t)$ — непрерывная на $[0,\infty)$ положительная функция, удовлетворяющая условию $\eta(t) \sim bt^{\alpha} \ (t \to +\infty) \ c$ некоторыми константами b > 0 и $\alpha \in (1,2)$, и H(t) — такая измеримая функция на $(0,\infty)$, что $\sqrt{\eta} \ H \in L^2(0,\infty)$.

$$Torda \ \eta^{-1} \in L^1(0,\infty), \ H(t) \in L^1(0,\infty) \ u \ \|H\|_{L^1(0,\infty)} \leqslant \|\eta^{-1}\|_{L^1(0,\infty)}^{1/2} \|\sqrt{\eta} \ H\|_{L^2(0,\infty)} \leq \sum_{m=1}^{\infty} \|\eta^{-1}\|_{L^1(0,\infty)}^{1/2} \|\sqrt{\eta} \ H\|_{L^2(0,\infty)} \leq \|\eta^{-1}\|_{L^1(0,\infty)}^{1/2} \|\sqrt{\eta} \ H\|_{L^2(0,\infty)}^{1/2} \leq \|\eta^{-1}\|_{L^1(0,\infty)}^{1/2} \|\sqrt{\eta} \ H\|_{L^2(0,\infty)}^{1/2} \leq \|\eta^{-1}\|_{L^1(0,\infty)}^{1/2} \|\sqrt{\eta} \ H\|_{L^2(0,\infty)}^{1/2} \leq \|\eta^{-1}\|_{L^2(0,\infty)}^{1/2} \|\sqrt{\eta} \ H\|_{L^2(0,\infty)}^{1/2} \leq \|\eta^{-1}\|_{L^2(0,\infty)}^{1/2} \leq \|\eta^{-1$$

Нетрудно проверить, что функция $H = \tilde{\mathcal{K}} - \mathcal{K}$, где \mathcal{K} и $\tilde{\mathcal{K}}$ заданы равенствами (1.10) и (3.1), (3.2) соответственно, условиям леммы удовлетворяет. Поэтому

$$\|\widetilde{\mathcal{K}} - \mathcal{K}\|_{L^{1}(0,\infty)} \leq \|\eta^{-1}\|_{L^{1}(0,\infty)}^{1/2} I_{\eta},$$
(3.3)

где

$$I_{\eta} := \left\| \sqrt{\eta} \left(\widetilde{\mathcal{K}} - \mathcal{K} \right) \right\|_{L^{2}(0,\infty)}, \tag{3.4}$$

и, как видно из (3.1),

$$I_{\eta}^{2} = 2 \operatorname{Re} \sum_{m,n=1}^{M} \left[\overline{c}_{m} c_{n}(\eta \psi_{m}, \psi_{n}) + c_{m} c_{n} \left(\eta \, \overline{\psi}_{m}, \psi_{n} \right) \right] - 4 \operatorname{Re} \sum_{m=1}^{M} c_{m} \left(\eta \, \overline{\psi}_{m}, \mathcal{K} \right) + (\eta \mathcal{K}, \mathcal{K}).$$
(3.5)

Здесь и далее верхняя черта обозначает операцию комплексного сопряжения.

3.3. Функцию $\eta(t)$ можно подобрать таким образом, что структура I_{η} как функции 2M комплексных переменных c_m , σ_m станет достаточно простой. Это позволяет использовать в случае I_{η} многие методы оптимизации, применение которых непосредственно к $\|\tilde{\mathcal{K}} - \mathcal{K}\|_{L^1(0,\infty)}$ было бы или невозможно, или существенно затруднено. Пусть, например, $\eta(t)$ имеет вид

$$\eta(t) := 1 + bt^{\alpha},\tag{3.6}$$

где b и α — такие же, как в формулировке леммы. Тогда все скалярные произведения в (3.5) могут быть выражены аналитически через значения b, α , c_m и σ_m : $(\eta\psi_m, \psi_n)$ и $(\eta \overline{\psi}_m, \psi_n)$ — с помощью равенства

$$\int_{0}^{\infty} t^{\mu} e^{-pt} dt = \frac{1}{p^{\mu+1}} \Gamma(\mu+1),$$

а $\left(\eta \,\overline{\psi}_m, \mathcal{K}\right)$ и $(\eta \,\mathcal{K}, \mathcal{K}) - \mathrm{c}$ помощью равенств

$$\int_{0}^{\infty} t^{\mu} e^{-pt} J_{1}(t) dt = \frac{2^{\mu}}{\sqrt{\pi}} \Gamma\left(\frac{\mu}{2} + 1\right) \Gamma\left(\frac{\mu + 3}{2}\right) (1 + p^{2})^{-\mu/2 - 1} {}_{2}F_{1}\left(\frac{\mu}{2} + 1, \frac{1 - \mu}{2}; 2; \frac{1}{1 + p^{2}}\right),$$

$$\int_{0}^{\infty} t^{\mu} [J_{1}(t)]^{2} dt = \frac{1}{2\sqrt{\pi}} \Gamma\left(-\frac{\mu}{2}\right) \Gamma\left(\frac{\mu + 3}{2}\right) \left[\Gamma\left(\frac{1 - \mu}{2}\right) \Gamma\left(\frac{3 - \mu}{2}\right)\right]^{-1},$$

где $\Gamma(...)$ — гамма-функция и $_2F_1(...)$ — гипергеометрическая функция [12, 13].

Аналогичным образом могут быть получены и аналитические выражения для градиента I_{η} , ее гессиана и т.п., если используется метод оптимизации, требующий этого. Замечание 3. Использование $\left\|\sqrt{\eta}\left(\tilde{\mathcal{K}}-\mathcal{K}\right)\right\|_{L^{2}(0,\infty)}$ вместо $\|\tilde{\mathcal{K}}-\mathcal{K}\|_{L^{1}(0,\infty)}$ для построения массива коэффициентов $\{c_m, \sigma_m\}_{m=1}^{M}$ может приводить к ухудшению соотношения между M и $J(\tilde{K})$ и, тем самым, к снижению эффективности условий (1.16)–(1.18). В самом деле, неравенство (3.3) позволяет предположить, что первая из этих норм дает менее точную оценку $J(\tilde{K})$, чем вторая. Вопрос о том, насколько существенным на практике оказывается такое снижение эффективности, требует дополнительного исследования. Однако в любом случае, если массивы $\{c_m, \sigma_m\}_{m=1}^{M}$ минимизируют при каждом фиксированном M величину $\left\|\sqrt{\eta}\left(\tilde{\mathcal{K}}-\mathcal{K}\right)\right\|_{L^{2}(0,\infty)}$, то $\lim_{M\to\infty} \|\tilde{\mathcal{K}}-\mathcal{K}\|_{L^{1}(0,\infty)} = 0$ (сказанное следует из полноты системы функций $\{\sqrt{\eta(t)} \ e^{-\sigma t}\}_{\text{Re}\,\sigma>0}$ в $L^{2}(0,\infty)$ [14], а также из неравенства (3.3)). Тогда в условиях теоремы $J(\tilde{K}) \to 0$ при $M \to \infty$ и, как следствие этого, для любого точного решения u(x,t) имеет место сходимость $\tilde{u}_{T}(x,t)$ к u(x,t) в норме соответствующего пространства (см. (2.5)).

m	Re $c_m^{(1)}$	Im $c_m^{(1)}$	Re $\sigma_m^{(1)}$	${\rm Im}\;\sigma_m^{(1)}$
1	0.17557694652172143	0.3869415331357389	1.119504606130292	0.09451744630181996
2	0.09220583510095288	0.16119546025388637	0.7380089090038154	0.6072327057796283
3	0.005570785939946191	0.08631151121160041	0.45408006101923193	0.8526569839500089
4	-0.00959554364479028	0.03601192460165333	0.26129103182503716	0.9526335922897992
5	-0.007890108551493363	0.013808999753746231	0.14174424942281552	0.9871803831453384
6	-0.0038422485728281846	0.004968094173423592	0.07077714814473794	0.9966824043786086
7	-0.0014306922784043043	0.0016317610750309537	0.0323911563607187	0.9991853089778198
8	-0.0004469559598469192	0.0004768558063634649	0.013515395299641905	0.9998323674403502
9	-0.0001173913023902246	0.00012072946130370166	0.005091807735150226	0.9999729128072369
10	-0.00002576470705891221	0.000026035069239103458	0.0017227761954491342	0.9999966256640664
11	4.7402103014805946e-6	4.756070796461805e-6	0.0005228307858773254	0.9999996752894327
12	7.330304056757128e-7	7.337067100799748e-7	0.00014156878215090888	0.999999975863642
13	9.396472662032607e-8	9.398533876973572e-8	0.000033596205753699555	0.9999999986381304
14	9.496421973831766e-9	9.496838703379063e-9	6.681272984482503e-6	0.9999999999455372
15	6.735240690331145e-10	6.735287117756717e-10	1.0144285818218873e-6	0.999999999998687
16	2.493715859986014e-11	2.4937176067910596e-11	9.261837046192702e-8	0.99999999999999875

4. Результаты численного тестирования приближенных условий

4.1. Рассмотрим результаты численного решения задачи вида (1.12)–(1.14), (1.16)–(1.18), полученные для двух массивов коэффициентов $\left\{c_m^{(1)}, \sigma_m^{(1)}\right\}_{m=1}^M$ и $\left\{c_m^{(2)}, \sigma_m^{(2)}\right\}_{m=1}^M$. В обоих случаях M = 16, однако способы получения этих массивов различаются принципиально.

Один из способов был описан в разделе 3. Численные значения коэффициентов $c_m^{(1)}$ и $\sigma_m^{(1)}$, найденные исходя из (3.3), (3.4) и (3.6) для $\alpha = 1.1$ и b = 0.0004 даны в приведенной выше таблице.

Другой способ основан на применении метода аппроксимации Чебышева–Паде к преобразованию Фурье точного ядра (1.10) [15]. Этот подход с успехом использовался при получении эффективных приближенных условий на открытой границе для широкого класса задач, включающего в себя как простые задачи, аналогичные (1.1)–(1.7), так и значительно более сложные. Данный подход, однако, не ориентирован на получение приближенных условий, обеспечивающих близость приближенного решения к точному на сколь угодно больших временны́х интервалах.

Приближенные ядра, отвечающие массивам коэффициентов $\left\{c_m^{(1)}, \sigma_m^{(1)}\right\}$ и $\left\{c_m^{(2)}, \sigma_m^{(2)}\right\}$, обозначим через $\widetilde{\mathcal{K}}^{(1)}(t)$ и $\widetilde{\mathcal{K}}^{(2)}(t)$ соответственно. Характер зависимости $\|\widetilde{\mathcal{K}}^{(1)} - \mathcal{K}\|_{L^1(0,t)}$ и $\|\widetilde{\mathcal{K}}^{(2)} - \mathcal{K}\|_{L^1(0,t)}$ от t виден из рис. 2.

Значение t, начиная с которого устанавливается неравенство $\|\widetilde{\mathcal{K}}^{(1)} - \mathcal{K}\|_{L^1(0,t)} \leq \|\widetilde{\mathcal{K}}^{(2)} - \mathcal{K}\|_{L^1(0,t)}$, условимся далее обозначать через t_{cr} .

4.2. В качестве теста для массивов $\left\{c_m^{(1)}, \sigma_m^{(1)}\right\}$ и $\left\{c_m^{(2)}, \sigma_m^{(2)}\right\}$ был использован простейший частный

случай задачи (1.1)–(1.7) — начально-краевая задача

U

$$\frac{\partial^2 u}{\partial t^2} - \frac{\partial^2 u}{\partial x^2} + u = 0 \qquad (x_0 < x < \infty, 0 < t < T), \tag{4.1}$$

$$u(x,0) = \frac{\partial u}{\partial t}(x,0) = 0 \qquad (x_0 < x < \infty), \tag{4.2}$$

$$(x_0, t) = g(t) (0 < t < T) (4.3)$$

с функцией g(t) вида

$$g(t) = g_0(\omega t), \tag{4.4}$$

где ω — действительная константа, а $g_0(t)$ — функция со следующими свойствами:

$$g_0(t) = -\cos t \quad (t \ge \pi), \quad g_0(t) \equiv 0 \quad (t \le 0), \tag{4.5}$$

$$g_0(t) \in C^4(\mathbb{R}). \tag{4.6}$$

Благодаря (4.4), (4.5) зависимость решения u(x, t) от t при больших t становится близкой к гармонической. Это помогает, в частности, выявить важную для приложений связь между точностью, обеспечиваемой приближенными условиями, и частотным диапазоном, в котором они применяются.

Пусть
$$t_j := \frac{2\pi j}{\omega}$$
 $(j = 1, 2, ...)$ и $U(t_j) := \|u(x_1, t)\|_{L^{\infty}(t_{j-1}, t_j)}$. Для тех j , при которых $U(t_j) \neq 0$, поло- $\|\widetilde{u}_T(x_1, t) - u(x_1, t)\|_{L^{\infty}(t_{j-1}, t_j)}$

жим $V(t_j) := \frac{||^{\omega_T (w_1, v_j)} - u(w_1, v_j)||_{L^{\infty}(t_{j-1}, t_j)}}{U(t_j)}$. Как видно из определения, значения $V(t_j)$ характеризуют относительные величины отклонений приближенного решения от точного при $x = x_1$ на отрезках времени длиной в один период установившихся колебаний частоты ω .

Замечание 4. В отличие (см. (2.7)) от выражения

$$\frac{\|\widetilde{u}_{T} - u\|_{W_{p}^{m}((0,x_{1})\times(0,T))}}{\|u\|_{W_{p}^{m}((0,x_{1})\times(0,T))}} \quad (m = 2, 3, \dots; \quad p = 2 \quad \text{или} \quad p = \infty),$$

$$(4.7)$$

выражение для $V(t_i)$ учитывает значения \widetilde{u}_{τ} и u только в точке $x = x_1$ и не включает в себя производных этих функций. Можно, однако, показать, используя, например, рассуждения, аналогичные приведенным в [11], что для функции g(t) вида (4.4), (4.5) между величинами (4.7), рассматриваемыми как функционалы от $\widetilde{\mathcal{K}} - \mathcal{K}$, и величиной $\max_{t_j \in [0,T]} V(t_j)$ при больших T устанавливается зависимость, близкая к линейной.

При этом $U(t_j)$ и $V(t_j)$ дают более наглядное представление о том, как отклонение $\widetilde{u}_{_T}$ от u изменяется во времени.

4.3. В тесте задача (4.1)–(4.4) решалась численно для $\omega = 0.5$, $\omega = 1$ и $\omega = 2$. Данные частоты были выбраны по следующей причине. Частота $\omega = 1$ является для среды, описываемой уравнением (1.8), критической в том смысле, что монохроматические волны с меньшими частотами в такой среде являются, очевидно, экспоненциально затухающими (в отличие от волн с частотами $\omega > 1$). Поэтому характер решений задачи (1.1)–(1.7), (4.4), (4.5) в случаях $\omega < 1$, $\omega = 1$ и $\omega > 1$ качественно различен (что хорошо видно из рис. 3, 6 и 9), и эффективность приближенных условий на открытой границе должна быть проверена во всех этих случаях. Значение x_1 принималось равным 8 для всех трех значений частоты.

При численном решении задачи (1.12)-(1.14), (1.16)-(1.18), отвечающей (4.1)-(4.5), использовались разностные схемы второго порядка точности на равномерных сетках (нужная гладкость решений \widetilde{u}_{τ} обеспечивается выполнением условия (4.6)). Шаги пространственной и временной сеток будем далее обозначать через h_x и h_t соответственно; под h_0 будем понимать константу $x_1/4096 \approx 0.002$. Значения h_x выбирались согласованными с ω — либо $h_x = h_0 \omega^{-1}$, либо $h_x = h_0 (4\omega)^{-1}$, а h_t — равным $h_x/2$.

Значения $V(t_j)$, полученные в результате численного решения (1.12)–(1.14) и (1.16)–(1.18) с $c_m = c_m^{(k)}$ и $\sigma_m = \sigma_m^{(k)} \ (k=1,2),$ будем обозначать через $V^{(k)}(t_j);$ на рис. 4, 5, 7, 8, 10 и 11 они показаны соединенными сплошными линиями.

Из результатов расчетов видно, что если $t_j > 1500$, то $V^{(1)}(t_j)$ и $V^{(2)}(t_j)$ принимают наибольшие значения при $\omega = 1$, причем для этой частоты $\frac{V^{(1)}(t_j)}{V^{(2)}(t_j)} \approx \frac{F^{(1)}(t_j)}{F^{(2)}(t_j)}$, где функция $F^{(k)}(t) = \|\widetilde{\mathcal{K}}^{(k)} - \mathcal{K}\|_{L^1(0,t)}$.

Поэтому, учитывая замечание 3, можно сказать, что для ядер $\widetilde{\mathcal{K}} = \widetilde{\mathcal{K}}^{\,(k)}$ величина

$$J_{\text{sel}}(\widetilde{\mathcal{K}}, T) := \max_{\omega=0.5, 1, 2} \frac{\|\widetilde{u}_T - u\|_{W_p^m((0, x_1) \times (0, T))}}{\|u\|_{W_p^m((0, x_1) \times (0, T))}}$$

ш

при больших T пропорциональна $\|\tilde{\mathcal{K}} - \mathcal{K}\|_{L^1(0,T)}$. Это полностью согласуется с оценками (2.5) и подтверждает связь между $\|\tilde{\mathcal{K}} - \mathcal{K}\|_{L^1(0,T)}$ и точностью приближенных условий на открытой границе для больших временны́х интервалов; дополнительным подтверждением может служить и то, что для всех частот и всех шагов сеток, использованных в расчетах, неравенство $V^{(1)}(t_j) \leq V^{(2)}(t_j)$ устанавливается начиная с $t \approx t_{\rm cr}$ (см. п. 4.1).

Итак, если в качестве меры точности приближенных условий принята величина $J(\tilde{\mathcal{K}})$, определенная в (2.7), то результаты численных расчетов свидетельствуют в пользу намеченного в п. 2.2 (В) подхода к построению эффективных условий на открытой границе — поиска коэффициентов $\{c_m, \sigma_m\}$, минимизирующих $\|\tilde{\mathcal{K}} - \mathcal{K}\|_{L^1(0,\infty)}$.

В то же время необходимо отметить, что изменение $\|\widetilde{\mathcal{K}} - \mathcal{K}\|_{L^1(0,\infty)}$ сказывается на отклонении \widetilde{u}_T от u в различной мере для различных частот. Так, например, при переходе от $\widetilde{\mathcal{K}}^{(2)}$ к $\widetilde{\mathcal{K}}^{(1)}$ значение $\max_{t_j>1500} V^{(k)}(t_j)$ изменяется более чем на три порядка для $\omega = 1$, на два — для $\omega = 0.5$ и менее, чем на два, — для $\omega = 2$. **4.4.** Напомним, что коэффициенты $\left\{c_m^{(1)}, \sigma_m^{(1)}\right\}_{m=1}^M$ для ядра $\widetilde{\mathcal{K}}^{(1)}$ были найдены путем минимизации функционала (3.4) с $\eta(t) = 1 + bt^{\alpha}$, где $\alpha = 1.1, b = 0.0004$; при этом M было взято равным 16. Использование алгоритма с той же $\eta(t)$ позволяет существенно повысить точность приближенных условий за счет увеличения M. Не приводя здесь подробных результатов, подтверждающих сказанное, ограничимся лишь сравнением $\|\widetilde{\mathcal{K}} - \mathcal{K}\|_{L^1(0,t)}$ для M = 16 и M = 32 (см. рис. 12).

По-видимому, точность приближенных условий может быть увеличена в рамках описанного в п. 3.2 подхода за счет более удачного выбора b и α , использования функций $\eta(t)$ более общего вида (например, $\eta(t) = 1 + b_1 t^{\alpha_1} + b_2 t^{\alpha_2}$), допускающих аналитические выражения для $(\eta \psi_m, \psi_n)$, $(\eta \overline{\psi}_m, \psi_n)$ и $(\eta \overline{\psi}_m, \mathcal{K})$, или функций, требующих численных методов для нахождения значений этих скалярных произведений. Все эти возможности требуют дальнейшего исследования.

Заключение. На примере пространственно-одномерной задачи рассмотрены вопросы получения эффективных приближенных условий на открытой границе для численного решения уравнения Клейна– Гордона на больших временны́х интервалах. Один из подходов к получению таких условий, как видно из результатов аналитического исследования и численного эксперимента, состоит в построении аппроксима-

ции ядра $\mathcal{K}(t)$ точных условий суммами вида $\widetilde{\mathcal{K}}(t) = \sum_{n=1}^{N} c_n e^{-\sigma_n t}$ в пространстве $L^1(0,\infty)$.

При этом результаты численного моделирования установления стационарного режима в различных областях частотного спектра позволяют предположить существование и иных подходов, использующих приближенные ядра $\tilde{\mathcal{K}}(t)$ того же вида, но способных обеспечить более высокую эффективность. В частности, удачной альтернативой аппроксимации \mathcal{K} в $L^1(0,T)$ могут оказаться способы получения приближенного ядра, основанные на аппроксимации преобразования Фурье $\mathcal{K}(t)$; доводом в пользу этого служит утверждение теоремы 4 из [8].

Автор пользуется возможностью выразить свою глубокую признательность А. Г. Свешникову за постоянное внимание к работе, полезные обсуждения и ряд важных замечаний.

СПИСОК ЛИТЕРАТУРЫ

- Sofronov I.L. Non-reflecting inflow and outflow in wind tunnel for transonic time-accurate simulation // J. Math. Anal. Appl. 1998. 221. 92–115.
- 2. Бобылев Ю.В., Кузелев М.В., Рухадзе А.А., Свешников А.Г. Нестационарные парциальные условия излучения в задачах релятивистской сильноточной плазменной СВЧ-электроники // Физика плазмы. 1999. **25**, № 7. 615–620.
- 3. *Hagstrom T.* New results on absorbing layers and radiation boundary conditions // Lect. Notes Comput. Sci. Eng. 2003. **31**. 1–42.
- 4. Сиренко К.Ю., Сиренко Ю.К. Точные "поглощающие" условия в начально-краевых задачах теории открытых систем // Ж. вычислит. матем. и матем. физики. 2005. **45**, № 3. 490–506.
- Hagstrom T. Radiation boundary conditions for Maxwell's equations: a review of accurate time-domain formulations // J. Comput. Math. 2007. 25. 305–336.
- Lubich C., Schädle M. Fast convolution for non-reflecting boundary conditions // SIAM J. Sci. Comput. 2002. 24. 161–182.
- Maikov A.R., Sveshnikov A.G. On rigorous and approximate nonstationary partial radiation conditions // J. of Communications Technology and Electronics. 2000. 45, Suppl. 2. S196–S211.
- Майков А.Р. О приближенных условиях на открытой границе для одного класса гиперболических уравнений // Ж. вычислит. матем. и матем. физики. 2006. 46, № 6. 1058–1073.
- 9. Ладыженская О.А. Краевые задачи математической физики. М.: Наука, 1973.
- 10. Ладыженская О.А. Смешанная задача для гиперболического уравнения. М.: ГИТТЛ, 1953.
- Майков А.Р. О приближенных условиях на открытой границе для волнового уравнения и уравнения Клейна– Гордона // Вычислительные методы и программирование. 2005. 6. 290–303.
- 12. Корн Г., Корн Т. Справочник по математике. М.: Наука, 1978.
- 13. Диткин В.А., Прудников А.П. Интегральные преобразования и операционное исчисление. М.: Наука, 1971.
- 14. Ахиезер Н.И. Лекции по теории аппроксимации. М.: Наука, 1965.
- Podgornova O.V., Sofronov I.L. Transparent boundary conditions for the elastic homogeneous anisotropic VTIMedia: axial-symmetric case // Proc. of the Int. Conf. on Mathematical Methods in Geophysics "MMG-2008" (http://www.sscc.ru/Conf/mmg2008/papers/Podgornova.pdf).

Поступила в редакцию 26.12.2011