
вычислительные методы и программирование. 2010. Т. 11 299

УДК 519.6

СРАВНЕНИЕ МЕТОДА ВЕРЛЕТ ТАБЛИЦЫ И МЕТОДА СВЯЗАННЫХ

ЯЧЕЕК ДЛЯ ПОСЛЕДОВАТЕЛЬНОЙ, ВЕКТОРИЗОВАННОЙ И

МНОГОПОТОЧНОЙ РЕАЛИЗАЦИЙ

Э. С. Фомин1

Алгоритмы поиска ближайших соседей широко используются в молекулярной динамике для
расчетов короткодействующих межатомных потенциалов. Эти алгоритмы основываются на ме-
тодах Верлет таблицы и связанных ячеек. Дан анализ особенностей указанных методов и по-
казано, что для плотных систем, таких как вода, метод связанных ячеек требует значительно
меньшего объема необходимой памяти и количества операций чтения данных по сравнению
с методом Верлет таблицы и может эффективно использоваться в параллельных реализаци-
ях. Новая техника для параллелизации расчета короткодействующих потенциалов, названная
динамической пространственной декомпозицией, предложена для метода связанных ячеек. По-
казано, что в параллельной SIMD-версии этот метод превосходит метод Верлет таблицы на
40% и более, несмотря на большое количество излишних расчетов межатомных расстояний.
Эффективность обусловлена тем, что данный метод более приспособлен для современных мно-
гоядерных SIMD-процессоров. Все методы тестировались на пакете MOLKERN.

Ключевые слова: метод Верлет таблицы, метод связанных ячеек, поиск ближайших соседей, SIMD,
многопоточность.

Introduction. The calculation of forces produced by pairwise non-bonded (Coulomb and van der Waals)
interactions is a common bottleneck of molecular dynamics programs. These calculations involve the evaluation
of the total inter-atomic potential energy Vtotal of N atoms and the forces acting on every atom of the molecular
system. Since the total potential energy of the whole system is the sum of pairwise interactions over all atoms,

Vtotal =
1

2

∑

V (rij), the direct calculation requires O(N2) steps.

Redundant calculations of inter-atomic potentials can be reduced by using a cutoff distance rcut in potential
functions and by assuming that both the potential functions and the forces beyond the cutoff distance are zero.
In this way, the number of calculation steps is reduced from O(N2) to O(N).

The determination of all atom pairs whose atoms are within the cutoff distance is most commonly done
by using the improved Verlet table (IVT) algorithm. This approach combines the following two methods: the
conventional Verlet table (VT) algorithm and the cell-linked list (CLL) algorithm. On the average, for a low
density system, such as the gas state of argon [2], the IVT outperforms both the VT and the CLL algorithms by
a factor of more than two in both serial and parallel programs. This method is used in most modern molecular
dynamics programs.

Nevertheless, a comprehensive analysis of the algorithms under discussion and of the ways in which they
can be implemented in parallel calculations shows that the point is somewhat questionable. There are some
differences to consider, since these methods are differently applicable on parallel platforms, and different degrees
of efficiency can be achieved.

1. Neighbor search algorithms.
1.1. Cell-linked list method. In this approach [1] the simulation domain is partitioned into cubic cells

with edges equal at least to rcut, and every atom is assigned to one of these cells according to their coordinates.
The neighboring atoms of an atom can be listed by enumerating all atoms in all the 26 adjacent cells and the cell
under consideration itself. Since the adjacent cells of each cell are known and they will not change during the
simulation, the cell neighbor list table is usually constructed at the beginning of the simulation. The assignment
of each atom to the cells is updated before each potential and force evaluation step.

It should be noted that the operation of assigning an atom to the cells has the constant O(1) complexity.

For example, the assignment can be defined as
{

nx, ny, nz

}

=
{

[

x/rcut
]

,
[

y/rcut
]

,
[

z/rcut
]

}

, where
{

nx, ny, nz

}

is the three-dimensional index of a cell, {x, y, z} are the atom coordinates, and [x] is the floor function, i.e., the

1 Институт цитологии и генетики СО РАН, просп. акад. Лаврентьева, 10, 630090, г. Новосибирск; ст.
науч. сотр., e-mail: fomin@bionet.nsc.ru

c© Научно-исследовательский вычислительный центр МГУ им. М. В. Ломоносова



300 вычислительные методы и программирование. 2010. Т. 11

largest integer less than or equal to x. Thus, it takes O(N) steps to update the atom lists for all cells. So, an
efficient atom list update is one of the advantages of the CLL method. The total number of pairs that can be
constructed for an atom by using all neighboring atoms is equal to 27ρr3cut, where ρ is the atom density, and
only

(

4π/3
)

ρr3
cut

of them have atoms within the cutoff distance. The CLL method, which generates a number
of pairs about 81/4π = 6.45 times greater than necessary, therefore performs a large number of unnecessary
interparticle distance calculations.

1.2. Verlet table method. The idea of the Verlet table (VT) method [1] is to construct and maintain
a list of neighboring atoms for every atom in the system. In this method, the cutoff sphere of radius rcut is
surrounded by a larger “skin” sphere of radius rskin. An atom is considered to be a “neighbor” if the distance
between the two atoms is shorter than rskin. Each atom is assumed to interact only with those in its neighbor
list, and this neighbor list should be updated periodically for a fixed interval or reconstructed automatically
whenever some atoms move too much and the list will be out-of-date.

In the conventional VT method, the construction/update of the neighbor table requires O(N2) steps of
interatomic distance evaluation, which is the major drawback of the method. Another shortcoming is that, as
the number of atoms and/or rskin increases, the memory demand for the neighbor table becomes unreasonable.

Every row of the table requires
(

4π/3
)

ρr3
skin

elements, and for a typical calculation with ρ = 0.1 A
◦

−3 and

rskin = 10 A
◦

this value approaches 500 elements. Due to the storage of all atoms inside a larger “skin” sphere

instead of the cutoff sphere, the Verlet table contains about
(

rskin/rcut
)3

times more pairs than necessary. For
calculation with rskin/rcut = 1.1, this table contains slightly more than 75.1% of the particle pairs for which
pairwise distances are within rcut.

The VT method has been proven to be efficient when the atoms of the entire system move slowly. As the
atoms move more quickly, either the “skin” radius or the frequency of reconstructing the Verlet table should be
increased. Both of these requirements cause a dramatic increase in the CPU time used to maintain the Verlet
table, and the whole simulation becomes inefficient.

1.3. Improved Verlet table method. The improved Verlet table method (IVT) [2] combines the
advantages of the VT and the CLL. Like the CLL method, the whole simulation domain is partitioned into
cubic cells with edges equal to rskin and all atoms are assigned to the corresponding cells according to their
coordinates. Then the neighbor list table is constructed, but only atoms in the neighbor cells rather than all the
atoms in the system are considered in the evaluation of interatomic distances. Since the IVT method eliminates
the major drawback of the VT method, i.e., the construction of the table in O(N2) steps, its efficiency is very
high in comparison with the conventional VT method. However, the second shortcoming of the VT method, the
high memory demand, still remains.

1.4. Improved cell-linked list method. The cell-linked list method improved by P. Gonnet [3] and
hereafter referred as the improved cell-linked list method (ICLL) reduces the number of unnecessary interparticle
distance calculations by sorting particles along the cell pair axis and by selecting two particles if their distance
along the axis is smaller than the cutoff distance. For sorting particles along the cell pair axis, the quicksort
algorithm is used, which scales as O(N logN). According to [3], the neighbor list of the ICLL method contains
≈ 59.4% of the particle pairs for which the pairwise distance is within rcut vs. ≈ 16% in the CLL method,
i.e., four times better. The ICLL method is better than other methods [4] that employ the partitioning of the
domain into cells of edge lengths smaller than rcut. The number of spurious distance pairs in the IVT and ICLL
methods is almost the same for typical calculations, which means that they are, in this respect, equally efficient.

2. Implementation of the methods.
2.1. Algorithms of feature analysis. Usually, the efficiency of serial and parallel implementations

are influenced by both the choice of the algorithms and by the processor features. The more features of the
target processor architecture an algorithm takes into account, the higher efficiency can be achieved. The best
performance is achieved when the algorithm is flexible enough to be most closely adapted to the target processor
architecture.

For both Verlet table algorithms, it is natural to choose an integer holding the atom index as an element
of the Verlet table. We have no other choice due to the memory requirements for the table. As mentioned
above, the Verlet table has to store

(

4π/3
)

ρr3
skin

N elements, and under typical simulation conditions the factor
(

4π/3
)

ρr3
skin

is up to 500 entries. In the case of simulation of a large system containing about 106 atoms,
therefore, the Verlet table must hold nothing but integers. The shortcoming of such index storing appears at
the time of data transfer between memory and processing units. Due to the fact that a Verlet table stores
nonsequential atom indices, the memory access to the atoms has to be performed one by one and the total
number of atom data transfer operations has the same order of magnitude as the table size, i.e.,

(

4π/3
)

ρr3
skin

N .
For cell-linked list methods, the memory requirement to the number of elements of cell atom lists is N ,



вычислительные методы и программирование. 2010. Т. 11 301

i.e., the number of atoms of the whole system. Thus, it allows any moderate data structures but not only array
indices to be stored in cell atom lists. Also, the total number of data transfer operations between memory
and processing units can be estimated as 27ρr3cutNcell, where Ncell is the number of cells, or as 27N , because
ρr3

cut
Ncell is equal to N . The factor 27 appears due to the fact that every cell should be used in calculations

alone and in combination with all adjacent cells. As a result, the CLL methods reduce both memory size and
the number of data transfer operations significantly. The gain can be as large as

(

4π/3
)

ρr3
skin

in memory size

and
(

4π/3
)

ρr3
skin

/27 in transfer operations. The freedom in choosing the table element type is also essential. It
allows atom copies to be stored in cell atom lists instead of array indices. The elements of these atom copies can
be formatted as 4-element arrays and aligned to 16-byte memory boundaries to be efficiently used by Streaming
SIMD Extensions (SSE). Also, they can be accessed through direct memory access (DMA) instructions not
only individually but also in groups. The last possibility is essential for specialized high-performance processor
architectures, such as the Cell Broadband Engine Architecture (CBEA) [5] and General-Purpose Graphics
Processing Units (GP GPU) [6].

The second drawback of the Verlet table is the asymmetrical “master–slave” atom pair storage. The row
index refers to a “master” atom and the row elements indicate all “slave” atoms, i.e., the atoms located within
the cutoff distance of the “master” atom. According to the usual practice, the table stores no doublets, i.e.,
the nth row saves atom indices with values k > n and ignores the indices with values k < n. In this way, the
table size is reduced by a factor of two and the uniqueness of each atom pair is ensured. Thus, the full energy
can be efficiently calculated as the total sum over the pairs in either serial or parallel programs without any
inconvenience. However, the total force cannot be calculated in such a simple way. For instance, we can write

the force acting on the nth atom as Fn =
∑

k<n

Fnk +
∑

k>n

Fnk, where Fnk is the force acting on the nth atom by

the kth atom. Due to the fact that the nth row of the table contains the atom indices with k > n, the second
sum can easily be calculated and the result can be sent to the computer memory cell accumulating Fn. However,
all terms in the first sum should be calculated and sent to Fn individually. That can be done efficiently in serial
programs but not in parallel programs due to potential memory contentions. The Verlet table enlargement does
not remove all difficulties. The insertion of all atoms located within the cutoff distance of a “master” atom into
the “master” row allows an efficient summation of the forces but doubles the amount of computation.

The cell-linked list methods store atoms without any asymmetry in the cell atoms lists. It is sufficiently
easy to share calculations between threads without memory contentions. A technique by which it can be done is
proposed below. It is named the dynamic spatial decomposition and will be explained in the following section.

Thus, the shortcomings of the Verlet table methods inevitably complicate the parallel implementation and
lower the efficiency. By contrast, the cell-linked list methods are free of these shortcomings and allow efficient
parallel implementations.

2.2. Dynamic spatial decomposition. The efficiency of any parallel implementation is greatly dependent
on the technique used. The most commonly used techniques for parallelizing short-range interactions in molecular
systems are known as the replicated data (RD) [7], spatial decomposition (SD), and index decomposition (ID)
methods [8]. In the RD method, each running thread stores a copy of all atom data needed in the simulation.
This technique allows avoiding memory contentions by creating many replicas of output data, one per running
thread, and merging all replicas after every calculation step. The drawback of RD is that its memory and
communication cost scales as N ∗K, where N is the number of atoms and K is the number of running threads.
Thus, this technique is efficient only for few running threads. In the SD technique, the simulation domain is
broken into pieces, one per running thread. Each running thread computes the forces acting on only the atoms
in its subdomain, thereby avoiding memory contentions. The SD technique scales optimally as N/K, since each
running thread demands only information from threads that own neighboring subdomains. The shortcoming
of this technique is that the calculation burden doubles for all the pairs whose atoms are assigned to adjacent
subdomains. In the ID technique, the atom array is broken into pieces of about equal sizes, with every piece being
assigned to a running thread. This technique has the same shortcomings as the SD, but it is more convenient
for code implementation.

In the implementation of the CLL methods, we propose a new technique referred to as the dynamic
spatial decomposition. It avoids the shortcomings of both the replicated data and spatial/index decomposition
techniques. In this technique, all the spatial cells of the simulation domain are grouped in couples. An example is
shown in the figure, part a. All short-range interactions between atoms are calculated only for coupled adjacent
cells, and the results are accumulated. At the next step, the spatial cells are regrouped into other couples, for
example, as shown in the figure, part b, and the calculation is repeated. Then the spatial cells are regrouped
again, for example, as shown in the figure, part c, and so on. It takes at least 26 such steps to calculate all the



302 вычислительные методы и программирование. 2010. Т. 11

short-range interactions between the atoms of all coupled adjacent cells according to the number of neighbors
of any spatial cell. The calculation of the interactions inside the spatial cells themselves is carried out at the
final 27th step.

Any two cell couples are independent of each other with regard to the data, and every cell couple and/or
the spatial cell itself can be sent to a separate thread of execution. As for the computation of short range
interactions, the dynamic spatial decomposition scheme affords the use of up to Ncell/2 simultaneously running
threads, where Ncell is the number of spatial cells of the simulation domain. For example, a simulation of water

in a 320× 320× 320 A
◦

3 box, which contains 1.07 million water molecules, can employ up to 16384 threads.

Different examples of cell coupling

An efficient well-balanced parallel
implementation code can be obtained
under the next two conditions. First, the
simulation domain should be divided into
couples without a remainder, which is
possible, for example, in the case of even
numbers of cells in every dimension. Second,
the number of threads should be a divisor
of Ncell/2 to maintain equal numbers of
coupled cells per running thread. With
these two conditions, a code can be written
in a way that would minimize the delays
resulting from thread synchronization.

2.3. Implementation and tests. All the IVT, CLL, and ICLL methods were implemented in the frame-
work of the MOLKERN simulation software [9]. The following three implementations were developed for each
method:

1) serial C++ code,
2) vectorized C++ code,
3) multithreaded vectorized C++ code.

The vectorized codes were written by using the SSE and SSE2 intrinsics. The multithreaded versions were
constructed with the help of the boost thread library [10].

In the IVT method, the Verlet table stores the atom identifiers only due to the shortcomings mentioned
above. For the sake of memory saving, the Verlet table stores the atom pairs without any doublets. In the
multithreaded versions, SD was used for the energy and forces accumulation and RD to avoid memory contentions
during resulting force storage. The latter demands only K ∗O(N) extra steps for merging the resulting forces,
where K is number of threads used. So, it is very efficient for small numbers of threads, the time overhead being
no more than 1% of the calculation time.

As for the CLL and ICLL methods, the spatial cells of the simulation domain store the atom identifiers
as well as the copies of all data required for calculations. Additionally, the data of the CLL were formatted as
4-element arrays and aligned to 16 byte memory boundaries to be efficiently used by the SSE instructions. The
dynamic spatial decomposition scheme was used for parallelization.

We used simulations consisting of 2.1, 16.8, 134.1 thousand and 1.07 million SPC water molecules in an

L×L×L A
◦

3 box, where L = {40, 80, 160, 320}A
◦

, respectively, at 300 K with all interactions truncated at 10 A
◦

.

The Coulomb 1/r, Lennard–Jones
(

ε/4
)

[

(

σ/r
)12 −

(

σ/r
)6
]

, and the short-range Coulomb erfc
(√

π r/rcut
)

/r

potentials were employed. The performance is measured in
(

atoms ∗ step / second
)

and its value can be calculated
as the product of the number of atoms by the number of molecular dynamic steps divided by the whole simulation
time, i.e., the number of atoms per second. The time required for the calculation of the valent O–H bonds and
the valent H–O–H angles was excluded. All simulations were run on a single node of the HP ProLiant BL2x220c
G5 blade server [11], where each blade node includes two Intel Quad-Core Xeon E5450, 3 GHz processors.

3. Numerical results.
3.1. Serial version. The performances of different algorithms for molecular dynamics simulation are

compared in Table 1 (the Coulomb 1/r potential) and Table 2 (the short-range Coulomb erfc
(√

π r/rcut
)

/r

potential). The simulations were done for SPC water molecules in an L×L×L box with L = {40, 80, 160, 320}A
◦

and with all interactions truncated at 10 A
◦

. We compared the IVT, CLL, and ICLL methods. The last two
columns show the ratios of performances of the cell-linked list methods and the improved Verlet table.

To compare the results, we wanted to demonstrate how the aforementioned features of methods affect the
efficiency of these methods. For this purpose, we set preferences for the IVT. First, we eliminated all spurious



вычислительные методы и программирование. 2010. Т. 11 303

Table 1
Comparison of three algorithms for spatial domains of different
sizes in the serial running mode. The Coulomb 1/r potential

is used

Spatial domain, A
◦

3 IVT CLL ICLL CLL/IVT ICLL/IVT

40× 40× 40 63690 35382 57900 0.55 0.91
80× 80× 80 87225 48645 79050 0.56 0.91

160× 160× 160 84885 47394 78432 0.56 0.92
320× 320× 320 85161 47634 78573 0.56 0.92

Table 2
Comparison of three algorithms for spatial domains of different

sizes in the serial running mode. The short-range Coulomb
erfc

(√
π r/rcut

)

/r potential is used

Spatial domain, A
◦

3 IVT CLL ICLL CLL/IVT ICLL/IVT

40× 40× 40 15165 12999 14811 0.86 0.99
80× 80× 80 15567 13176 15102 0.85 0.97

160× 160× 160 15534 13191 14958 0.85 0.96
320× 320× 320 14226 13284 14865 0.93 1.04

distance pairs from the table by assuming the skin radius to be equal to the cutoff radius and transferring the
pair sifting code to the Verlet table update step. Second, we excluded the time for the neighbor atom table
creation/update from the results at all. With both these assumptions, the best performance of the method is
achieved, which cannot be reached in actual calculations. Without them, the IVT method may lose more than
10% of its performance.

No such preferences were done for the CLL methods. Both CLL methods demand atom pair sifting, and
the time of this process was included into the results. It should to be mentioned that the pair sifting process
includes the following two steps:

1) removal of all the pairs with distances between the atoms exceeding the cutoff radius,
2) removal of the pairs whose atoms belong to the same molecule and are chemically bonded to each other.
The data presented in Table 1 indicate that in the case of a simple potential, such as Coulomb 1/r, the

CLL method is significantly, about twofold, less efficient than the IVT. As to the more complicated short-range
Coulomb erfc

(√
π r/rcut

)

/r potential, the speed-down of the CLL methods in comparison with the IVT is less,
no more than 15%. This can be explained by the change in the relative fraction of the potential calculation time
with regard to the time of spurious distance pair sifting.

The performance of the ICLL method in comparison with the IVT method is insignificantly worse, the loss
being within 10%. So, with regard to the conditions of our tests, it means that the IVT and ICLL methods are
almost equally efficient in real calculations for serial runs.

3.2. Vectorized version. The comparison of algorithm performances for the vectorized versions is shown

in Table 3. The Coulomb 1/r and Lennard–Jones
(

ε/4
)

[

(

σ/r
)12−

(

σ/r
)6
]

potentials were used in combination.

Simulations were done for SPC water molecules under the same conditions as used above.

Table 3
Comparison of three algorithms for spatial domains of different sizes in

the vectorized running mode. The Coulomb 1/r and Lennard–Jones
(

ε/4
)

[

(

σ/r
)12 −

(

σ/r
)6
]

potentials are used in combination

Spatial domain, A
◦

3 IVT CLL ICLL CLL/IVT ICLL/IVT

40× 40× 40 142164 149508 204135 1.05 1.44

80× 80× 80 126480 133137 175059 1.05 1.38
160× 160× 160 130638 137700 166956 1.05 1.28
320× 320× 320 130299 135582 166005 1.04 1.27



304 вычислительные методы и программирование. 2010. Т. 11

Table 3 shows that the performance of the CLL method is slightly better than that of the IVT method for
vectorized implementations and the performance of the ICLL method is much better, by about 30%. The main
cause of the fact that the IVT method is inferior to the CLL and ICLL methods, as follows from the analysis of
different modifications of the code, is connected to its “master–slave” data storage, which causes some difficulties
in the aforementioned accumulation of the forces. The exclusion of force accumulation was found to decrease
the ratio of performance to 0.95 in the case of CLL/IVT and to 1.2 in the case of ICLL/IVT.

3.3. Multithreaded vectorized version. The comparison of performances of multithreaded vectorized
versions of the algorithms is presented in Table 4 and Table 5. The results are shown as functions of the number
of threads used. Simulations were done for SPC water molecules (Table 4) and for uniformly distributed argon

atoms with the same density (Table 5) in a 320 × 320 × 320 A
◦

3 box. The Coulomb 1/r and Lennard–Jones
(

ε/4
)

[

(

σ/r
)12 −

(

σ/r
)6
]

potentials were used in combination for SPC water molecules and only the Lennard–

Jones
(

ε/4
)

[

(

σ/r
)12 −

(

σ/r
)6
]

potential for argon atoms. All interactions were truncated at 10 A
◦

.

Table 4
Comparison of three algorithms for different numbers of threads
in the multithreaded vectorized running mode. Simulations were

done for SPC water molecules in a 320× 320× 320 A
◦

3 box.

The Coulomb 1/r and Lennard–Jones
(

ε/4
)

[

(

σ/r
)12 −

(

σ/r
)6
]

potentials are used in combination

threads IVT CLL ICLL CLL/IVT ICLL/IVT

2 253596 256434 328614 1.01 1.29
4 477048 493170 602352 1.03 1.26
8 812796 884448 1084644 1.08 1.33

Table 5
Comparison of three algorithms for different numbers of threads
in the multithreaded vectorized running mode. Simulations were
done for argon atoms randomly and uniformly distributed over a

320× 320× 320 A
◦

3 box. The Lennard–Jones
(

ε/4
)

[

(

σ/r)12 −
(

σ/r
)6
]

potential is used.

threads IVT CLL ICLL CLL/IVT ICLL/IVT
2 268440 326276 379768 1.21 1.41
4 502748 574956 690590 1.14 1.37
8 868420 1074482 1177320 1.23 1.36

Here is the main difference between the two cases. In the first case (Table 4), there are many pairs whose
atoms are bonded. They include all pairs whose O and H atoms belong to the same water molecules. All these
pairs must be selected to avoid calculations of the Coulomb and Lennard–Jones potentials between them. In the
second case (Table 5), no pair has chemically bonded atoms. Therefore, the sifting of bonded atoms is avoided
and the efficiency of calculations increases.

The simulation results once more confirm the superiority of the CLL methods over the IVT. As can be seen,
the CLL outperforms the IVT by up to 10% for calculations of molecules and by up to 20% for calculations of
chemically nonbonded atoms. The ICLL method outperforms the IVT by one-fourth and one-third, respectively.

4. Conclusions. We present a comparison of the efficiencies of a set of top methods, such as the improved
Verlet table, the cell-linked list and improved cell-linked list approaches employed for substantial speed-up of
molecular dynamics simulations with short-ranged pairwise potentials. We have analyzed the features of the
methods and have found that the CLL methods reduce both the memory size and the number of data transfer
operations significantly in comparison with the VT methods. The gain can be as large as

(

4π/3
)

ρr3
skin

in memory

size and
(

4π/3
)

ρr3
skin

/27 in data transfer operations. We have made an implementation of the CLL methods that
utilizes this gain and have achieved a very good efficiency for parallel running. A new technique for parallelizing
short-range interaction calculations, the dynamic spatial decomposition, is proposed for the CLL approach. For



вычислительные методы и программирование. 2010. Т. 11 305

this technique, an efficient well-balanced parallel implementation code can be obtained under the conditions of
even numbers of cells in every dimension and of thread numbers being divisors of Ncell/2, where Ncell is the
number of cells in the simulation domain.

We have implemented the IVT, CLL, and ICLL methods in the MOLKERN simulation software by using the
same approaches for data storage, extraction and processing. We also used the same procedures for calculations
of short-range interactions. Thus, an appropriate comparison of different methods can be performed. We made
the efficiency measurements under conditions that are preferential for the IVT but not for the CLL. It has been
shown that, even with these preferences for the IVT, the CLL method, especially as improved by P. Gonnet,
outperforms the improved VT method by up to 40% or more in spite of a large number of unnecessary inter-
particle distance calculations. Thus, it is expected that the CLL methods will outperform the IVT in actual
calculations even more.

5. Acknowledgements. This work was supported by the Interdisciplinary SB RAS Basic Research
Integration projects N 26 “Mathematical models, numerical methods, and parallel algorithms for large tasks
from the Siberian Branch of the Russian Academy of Sciences and their implementation on multiprocessor
supercomputers”, N 113 “Development of computation methods, algorithms, hardware, and software for parallel
simulation of natural processes”, N 119 “Post-genomic bioinformatics: computer analysis and modeling of
molecular-genetic systems” and by the RAS program N 22.8 “Molecular and cellular biology”. This work was
also partially supported by the Russian Ministry of Education and Sciences (contract N P857).

СПИСОК ЛИТЕРАТУРЫ

1. Allen M.P., Tildesley D.J. Computer simulation of liquids. New York: Oxford University Press, 1990.
2. Yao Z., Wang J.-S., Liu G.-R., Cheng M. Improved neighbor list algorithm in molecular simulations using cell

decomposition and data sorting method // Comput. Phys. Commun. 2004. 161. 27–36.
3. Gonnet P. A simple algorithm to accelerate the computation of non-bonded interactions in cell-based molecular

dynamics simulations // J. Comput. Chem. 2007. 28. 570–573.
4. Mattson W., Rice B.M. Near-neighbor calculations using a modified cell-linked list method // Comput. Phys.

Commun. 1999. 119. 135–148.
5. Kahle J.A., Day M.N., Hofstee H.P., Johns C.R., Maeurer T.R., Shippy D. Introduction to the Cell multiprocessor //

IBM J. of Research and Development. 2005. 49, N 4/5. 589–604.
6. Anderson J.A., Lorenz C.D., Travesset A. General purpose molecular dynamics simulations fully implemented on

graphics processing units // J. Comput. Science. 2008. 227. 5342–5359.
7. Smith W. Molecular dynamics on hypercube parallel computers // Comput. Phys. Commun. 1991. 62. 229–248.

8. Fincham D. Parallel computers and molecular simulation // Molecular Simulation. 1987. 1. 1–45.

9. Fomin E.S., Alemasov N.A., Chirtsov A.S., Fomin A.E. MOLKERN: A library of software components for molecular
modeling programs // Biophysics. 2006. 51, Suppl. 1. 110–112.

10.http://www.boost.org

11.http://www2.sscc.ru

Поступила в редакцию
16.07.2010


