УДК 533.6:628.5

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ СТРУЙНОГО ТЕЧЕНИЯ ВОЗДУХА ПРИ ВХОДЕ В ПЛОСКИЙ КАНАЛ С КОЗЫРЬКОМ И НЕПРОНИЦАЕМЫМ ЭКРАНОМ

И. Н. Логачев¹, К. И. Логачев¹, О. А. Аверкова¹

В рамках теории струй идеальной несжимаемой жидкости исследовано отрывное течение в щелевидном всасывающем канале, выступающем за пределы плоской стенки и оснащенном непроницаемым экраном. Определены характеристики отрывного течения в зависимости от геометрических параметров течения. Работа выполнена при финансовой поддержке РФФИ (код проекта 512.57, 519.682.608–08–13687–офи ц).

Ключевые слова: теория струй идеальной несжимаемой жидкости, метод Жуковского, коэффициент местных сопротивлений.

Введение. Использование теории идеальной жидкости, в частности метода Жуковского, при исследовании отрывных течений на входе в плоские каналы [1, 2] вызвано тем, что с ее помощью определяется не только кинематическая характеристика потока, но и детерминированная граница течения (например толщина струи, которая используется для оценивания аэродинамического сопротивления на входе в отверстие). Повышение сопротивления входного участка канала, вызванное сжатием струи, снижает нежелательные подсосы воздуха через отверстия и рабочие проемы кожухов экологического и технологического оборудования.

Целью настоящей статьи является описание отрывного течения в щелевидном всасывающем канале, выступающем за пределы плоской стенки и в спектре действия которого расположен непроницаемый экран, и определение влияния удаленности этого экрана и степени выдвижения канала (длины козырька) на толщину струи в бесконечности (δ).

Заметим, что реализация поставленной цели методом Жуковского не позволяет построить аналитическое решение в "чистом виде". Этого можно достичь только для некоторых задач с простой геометрией границ области. В данном случае задача сводится к решению системы нелинейных уравнений, содержащих несобственные интегралы типа Коши. В представленной работе вначале строится указанная система уравнений, выделяются сингулярности интегралов (при этом они сводятся к комбинации эллиптических интегралов разных типов, что сокращает время счета), затем ее решение реализуется в универсальной математической среде Maple, численно определяются параметры задачи, анализируются полученные зависимости и производится сравнение с экспериментом.

1. Построение расчетных соотношений. Пусть течение воздуха ориентировано вдоль оси OX плоскости комплексной переменной z = x + iy, причем ось OX — ось симметрии потока; поэтому будем рассматривать область течения в верхней полуплоскости Im z > 0 (рис. 1). Плоский потенциальный поток воздуха ограничен экраном PA, удаленным на расстояние G от входного сечения канала, вертикальной стенкой BA, козырьком CB длиной S, свободной линией тока CD, являющейся границей струи, и лучом PD оси OX. Полуширина канала B берется в качестве единицы длины (т.е. B = 1).

Областью изменения комплексного потенциала $w = \varphi + i\psi$ (где φ — потенциал скорости, а ψ — функция тока) является полоса $0 \leq \psi \leq q$ шириной q (q — расход воздуха, M^2/c). Область изменения функции Жуковского $\omega = \ln\left(\frac{u_0}{u}\right) + i\theta$ (где u — скорость потока, M/c; u_0 — скорость потока на границе струм CD, M/c; θ — угол между положительной осью OX и направлением вектора скорости u) представляет собой полуполосу с вырезом по лучу MB ($\theta = -\pi/2$), ограниченную лучами CB ($\theta = -\pi$), DP ($\theta = 0$) и отрезком CD ($\ln\left(\frac{u_0}{u}\right) = 0$; $0 \geq \theta \geq -\pi$).

Найдем конформное отображение вспомогательной полуплоскости Im t > 0 на внутренность областей изменения функций w и ω . Учитывая прямолинейность границ этих областей, воспользуемся интегралом

 $^{^1}$ Белгородский государственный технологический университет им. В.Г. Шухова, ул. Костюкова, 46, 308012, г. Белгород; И.Н. Логачев, профессор, e-mail: kilogachev@intbel.ru; К.И. Логачев, профессор, e-mail: kilogachev@intbel.ru; О.А. Аверкова, доцент, e-mail: olga_19572004@mail.ru

[©] Научно-исследовательский вычислительный центр МГУ им. М. В. Ломоносова

Рис. 1. К определению гидродинамической картины отрывного течения в плоском канале с глухим экраном

Кристоффеля-Шварца, который осуществляет отображение верхней полуплоскости на внутренность многоугольной области. Так, для комплексного потенциала при принятом соответствии точек имеем

$$w = C_1 \int_0^t \frac{dt}{t-1} + i = \frac{q}{\pi} \ln(t-1).$$
(1)

Постоянная C_1 найдена переходом сингулярной точки A (t = 1) по полуокружности $t - 1 = \varepsilon e^{i\alpha}$, $-\pi \leq \alpha \leq 0$, с бесконечно малым радиусом $\varepsilon \to 0$:

$$\Delta w_A = C_1 \int_{1-\varepsilon}^{1+\varepsilon} \frac{dt}{t-1} = C_1 \int_{\pi}^{0} \frac{i\varepsilon e^{i\alpha}}{\varepsilon e^{i\alpha}} d\alpha = -iC_1 \pi.$$

С другой стороны, приращение в точке A (при переходе с отрезка CA на AD) имеет вид $\Delta w_A = -iq$, поэтому $C_1 = q/\pi$. Для функции Жуковского запишем аналогичное соотношение:

$$\omega = C_2 \int_0^t \frac{t - m}{\sqrt{t} (t - b)(t - p)} dt - \pi i = C_2 \left[\frac{m - b}{p - b} \int_0^t \frac{dt}{\sqrt{t} (t - b)} + \frac{p - m}{p - b} \int_0^t \frac{dt}{\sqrt{t} (t - p)} \right] - \pi i.$$

Для определения константы C_2 найдем приращение функции ω в сингулярных точках B (t = b) и P (t = p) путем перехода их по полуокружностям $t - b = \varepsilon_b e^{i\alpha}$ и $t - p = \varepsilon_p e^{i\alpha}$ (при изменении α от π до 0) с бесконечно малыми радиусами $\varepsilon_b \to 0$ и $\varepsilon_p \to 0$: $\Delta \omega_B = C_2 \frac{m - b}{p - b} \int_{b - \varepsilon_b}^{b + \varepsilon_b} \frac{dt}{\sqrt{t}(t - b)} = \frac{C_2}{\sqrt{b}} \frac{m - b}{p - b} (-\pi i);$

 $\Delta\omega_P = \frac{C_2}{\sqrt{p}} \frac{p-m}{p-b} (-\pi i).$ Сопоставляя их с очевидными приращениями при переходе с луча CB на луч $BM \left(\Delta\omega_b = -\frac{\pi}{2}i - (-\pi i) = \frac{\pi}{2}i \right)$ и с луча MP на луч $DP \left(\Delta\omega_p = 0 - \left(-\frac{\pi}{2}i\right) = \frac{\pi}{2}i \right)$, получим $C_2 \frac{m-b}{p-b} = -\frac{\sqrt{b}}{2}; C_2 \frac{p-m}{p-b} = -\frac{\sqrt{p}}{2}.$ Следовательно,

$$m = \sqrt{bp}; \tag{2}$$

 $\omega = -\frac{\sqrt{b}}{2} \int_{0}^{t} \frac{dt}{\sqrt{t}(t-b)} - \frac{\sqrt{p}}{2} \int_{0}^{t} \frac{dt}{\sqrt{t}(t-p)} - \pi i.$ После несложных преобразований с учетом того, что $\int_{0}^{t} \frac{dt}{\sqrt{t}(t-a)} = \frac{1}{\sqrt{a}} \left(\ln \frac{\sqrt{t} - \sqrt{a}}{\sqrt{t} + \sqrt{a}} - \pi i \right),$ при a > 0 получим явный вид функции Жуковского в пара-

метрической полуплоскости Im t > 0:

$$\omega = \ln\left(\sqrt{\frac{\sqrt{t} + \sqrt{b}}{\sqrt{t} - \sqrt{b}}} \sqrt{\frac{\sqrt{t} + \sqrt{p}}{\sqrt{t} - \sqrt{p}}}\right) = \ln\left(\frac{\sqrt{t} + \sqrt{b}}{\sqrt{t - b}} \frac{\sqrt{t} + \sqrt{p}}{\sqrt{t - p}}\right).$$

С учетом (2) найдем $\tau = \frac{1}{2} \ln \left(\frac{\sqrt{p}+1}{\sqrt{p}-1} \frac{1+\sqrt{b}}{1-\sqrt{b}} \right)$. Для связи с физической областью z имеем

$$z = \frac{\delta}{q} \int_{0}^{t} e^{\omega} \frac{dw}{dt} dt = i + \frac{\delta}{\pi} A; \quad A = \int_{0}^{t} \frac{\sqrt{t} + \sqrt{b}}{\sqrt{t-b}} \frac{\sqrt{t} + \sqrt{p}}{\sqrt{t-p}} \frac{dt}{t-1}.$$
(3)

Определим теперь толщину стру
и δ в точке D $(t = -\infty)$. Для этого найдем значение интеграл
аAв области $t = x_1, 0 \leq x \leq -\infty$. Разделив подын
тегральную функцию на действительную и мнимую части, запишем общее выражение для координат свободной линии тока
 CD:

$$\begin{cases} x_{CD} = \frac{\delta}{\pi} A_1, \\ y_{CD} = 1 + \frac{\delta}{\pi} \left(\sqrt{p} + \sqrt{b} \right) B_1, \end{cases} A_1 = \int_0^{x_1} \frac{x_1 + m}{\sqrt{b - x_1} \sqrt{p - x_1}} \frac{dx_1}{1 - x_1}, B_1 = \int_0^{x_1} \frac{\sqrt{-x_1}}{\sqrt{b - x_1} \sqrt{p - x_1}} \frac{dx_1}{1 - x_1}. \quad (4)$$

Первый интеграл выражается через элементарные функции:

$$A_{1} = 2\ln\frac{\sqrt{b-x_{1}} + \sqrt{p-x_{1}}}{\sqrt{b} + \sqrt{p}} + \frac{2(1+\sqrt{pb})}{\sqrt{1-b}\sqrt{p-1}} \left[\operatorname{arctg} \frac{\sqrt{p-x_{1}}\sqrt{1-b}}{\sqrt{b-x_{1}}\sqrt{p-1}} - \operatorname{arctg} \frac{\sqrt{p}\sqrt{1-b}}{\sqrt{b}\sqrt{p-1}} \right]$$

а второй — через эллиптические интегралы

$$B_1 = -\frac{2b}{\sqrt{p} (1-b)} \left[\text{EllipticPi}\left(\sqrt{\frac{-x_1}{b-x_1}}, 1-b, \sqrt{\frac{p-b}{b}}\right) - \text{EllipticF}\left(\sqrt{\frac{-x_1}{b-x_1}}, \sqrt{\frac{p-b}{b}}\right) \right].$$

Эллиптические интегралы представлены в обозначениях универсальной математической среды Maple:

EllipticPi
$$(z, v, k) = \int_{0}^{z} \frac{dt}{(1 - vt^2)\sqrt{1 - t^2}\sqrt{1 - k^2t^2}}, \quad \text{EllipticF}(z, k) = \int_{0}^{z} \frac{d\alpha_1}{\sqrt{1 - \alpha_1^2}\sqrt{1 - k^2\alpha_1^2}}.$$

Учитывая, что $y_{CD} \to \delta$ при $x_1 \to -\infty$, получим следующее уравнение для определения толщины струи на бесконечности (как функцию параметров *b* и *p*): $\delta = 1 + \frac{\delta}{\pi} (\sqrt{p} + \sqrt{b}) B_1 |_{x_1 = -\infty}$, или

$$\delta = \frac{\pi}{\pi + B} \,, \tag{5}$$

$$B = 2 \frac{\sqrt{p} + \sqrt{b}}{\sqrt{p}} \frac{b}{1 - b} \left[\text{EllipticPi}\left(1 - b, \sqrt{\frac{p - b}{p}}\right) - \text{EllipticK}\left(\sqrt{\frac{p - b}{p}}\right) \right],$$

EllipticPi $\left(1 - b, \sqrt{\frac{p - b}{p}}\right) = \text{EllipticPi}\left(1, 1 - b, \sqrt{\frac{p - b}{p}}\right),$ (6)
EllipticK $\left(\sqrt{\frac{p - b}{p}}\right) = \text{EllipticF}\left(1, \sqrt{\frac{p - b}{p}}\right).$

На основании (3) запишем уравнение, связывающее длину козырька S с теми же параметрами p и b: $S = \frac{\delta}{\pi} \int_{0}^{b} \frac{\sqrt{t} + \sqrt{b}}{\sqrt{b - t} \sqrt{p - t}} \frac{dt}{1 - t}.$ Учитывая, что 0 < t \leqslant b, перепишем это уравнение в виде

$$S = 2\frac{\delta}{\pi} \left[-\ln\frac{\sqrt{p-b}}{\sqrt{p}-\sqrt{b}} + \frac{1+\sqrt{pb}}{\sqrt{p-1}\sqrt{1-b}} \operatorname{arctg} \frac{\sqrt{b}\sqrt{p-1}}{\sqrt{p}\sqrt{1-b}} - \left(1+\sqrt{\frac{b}{p}}\right) \left(\operatorname{EllipticK}\left(\sqrt{\frac{b}{p}}\right) - \operatorname{EllipticPi}\left(b,\sqrt{\frac{b}{p}}\right) \right) \right].$$
(7)

Второе уравнение, определяющее прямую задачу (по заданным S и G находятся параметры p и b, а следовательно, и δ), запишем на основании очевидного уравнения для расхода воздуха:

$$\delta u_0 = u_A (G+S),\tag{8}$$

где u_A — скорость воздуха в точке A (t = 1), м/с.

Скорость воздуха в произвольной точке z(t) определяется уравнением

$$\frac{dw}{dz} \equiv u_x - iu_y = \frac{dw}{dt} \left(\frac{dz}{dt}\right)^{-1} = u_0 \frac{\sqrt{t-b}\sqrt{t-p}}{\left(\sqrt{t}+\sqrt{b}\right)\left(\sqrt{t}+\sqrt{p}\right)}.$$
(9)

На основании этого уравнения найдем $u_A = u_0 \frac{\sqrt{1-b}\sqrt{p-1}}{(1+\sqrt{b})(1+\sqrt{p})}$ — абсолютную величину скорости

в точке А. Тогда уравнение (8) примет вид

$$G = \delta \frac{1 + \sqrt{b}}{\sqrt{1 - b}} \frac{1 + \sqrt{p}}{\sqrt{p - 1}} - S.$$
 (10)

Решая систему двух нелинейных уравнений (7) и (10) с учетом (5) и (6), можем найти вспомогательные параметры задачи b и p и толщину струи δ . Для некоторых геометрических размеров области течения эти параметры приведены в таблице.

Параметры отрывн	юго течения и	в плоском	канале	с козырьком	И
	непроницаем	ым экран	OM		

				_		_			
S	G	b	p	δ	S	G	b	p	δ
0.1	0.5	0.215945	133.8063	0.332612	1.0	0.5	0.844875	592.6906	0.295440
	1.0	0.147974	5.427048	0.463379		1.0	0.712623	10.47901	0.422440
	1.5	0.129457	2.380932	0.507312		1.5	0.642020	3.643530	0.464163
	2.0	0.121676	1.689067	0.526700		2.0	0.601091	2.298623	0.483388
	2.5	0.117706	1.418292	0.536772		2.5	0.575628	1.794975	0.494030
	3.0	0.115421	1.282736	0.542620		3.0	0.558831	1.545575	0.500600
	3.5	0.113990	1.204600	0.546298		3.5	0.547207	1.401412	0.504963
	4.0	0.113037	1.155236	0.548755		4.0	0.538846	1.309520	0.508017
	4.5	0.112371	1.121966	0.550474		4.5	0.532637	1.246870	0.510243
	5.0	0.111888	1.098436	0.551723		5.0	0.527903	1.202007	0.511917
0.5	0.5	0.667823	433.2963	0.302275	5.0	0.5	0.988035	740.5073	0.290827
	1.0	0.507886	8.733717	0.431985		1.0	0.966650	12.62019	0.413708
	1.5	0.443875	3.187741	0.475319		1.5	0.946293	4.319172	0.451920
	2.0	0.411927	2.069036	0.495131		2.0	0.928711	2.692852	0.468897
	2.5	0.393847	1.648102	0.505870		2.5	0.914008	2.078646	0.478246
	3.0	0.382684	1.440196	0.512345		3.0	0.901805	1.769754	0.484108
	3.5	0.375330	1.320693	0.516550		3.5	0.891653	1.587649	0.488109
	4.0	0.370239	1.245044	0.519434		4.0	0.883155	1.468978	0.491007
	4.5	0.366572	1.193842	0.521498		4.5	0.875987	1.386162	0.493197
	5.0	0.363846	1.157443	0.523026		5.0	0.869895	1.325435	0.494906

Зная параметры задачи и δ , можем на основании (9) и (3) найти поле скоростей, а с учетом (1) и (3) построить гидродинамическую картину течения (семейство эквипотенциалей и линий тока). Для этого необходимо раскрыть значение интеграла A для произвольной точки верхней полуплоскости Im t > 0. К сожалению, этот интеграл выражается через элементарные функции лишь в частном случае S = 0 (при b = 0), т.е. в случае, когда входное сечение плоского канала расположено в стенке. Этот случай рассмотрен нами в работах [1, 2]. В общем случае этот интеграл можно представить в виде суммы эллиптических интегралов. В частности, для Im t > 0 при 0 < b < 1 < m < p имеем:

$$A = \int_{0}^{t} \frac{\sqrt{t} + \sqrt{b}}{\sqrt{t-b}} \frac{\sqrt{t} + \sqrt{p}}{\sqrt{t-p}} \frac{dt}{t-1} = a_1 + a_2 + a_3, \tag{11}$$

где

$$\begin{aligned} a_{1} &= \int_{0}^{t} \frac{dt}{\sqrt{t-b}\sqrt{t-p}} = \\ &= \frac{\sqrt{(t-p)(t-b)}}{\sqrt{t-b}\sqrt{t-p}} \ln \left[-\frac{1}{2} \left(b+p-2\left(t+\sqrt{(b-t)(p-t)}\right) \right) \right] + \ln \left[-\frac{1}{2} \left(b+p-2\sqrt{bp} \right) \right]; \\ a_{2} &= \left(1+\sqrt{bp} \right) \int_{0}^{t} \frac{dt}{\sqrt{t-b}\sqrt{t-p}} \left(t-1 \right) = \\ &= \frac{\left(1+\sqrt{bp} \right) i}{\sqrt{p-1}\sqrt{1-b}} \left\{ \frac{\sqrt{t-b}\sqrt{t-p}}{\sqrt{(t-p)(t-b)}} \ln \frac{(t-p)(1-b)+(b-t)(p-1)+2i\sqrt{1-b}\sqrt{p-1}\sqrt{(t-p)(t-b)}}{t-1} + \\ &+ \ln \left[-b(p-1)+p(1-b)-2i\sqrt{bp}\sqrt{p-1}\sqrt{1-b} \right] \right\}; \\ a_{3} &= \left(\sqrt{p}+\sqrt{b} \right) \int_{0}^{t} \frac{\sqrt{t}}{\sqrt{t-b}\sqrt{t-p}} \left(t-1 \right) = \left(\sqrt{p}+\sqrt{b} \right) \left(P_{3}(t) - P_{3}(0) \right); \\ P_{3}(t) &= \frac{2}{\sqrt{p-b}} \operatorname{EllipticF} \left(\sqrt{\frac{b-t}{b}}, -i\sqrt{\frac{b}{p-b}} \right) - \frac{2}{\sqrt{p-b}(1-b)} \operatorname{EllipticPi} \left(\sqrt{\frac{b-t}{b}}, \frac{b}{b-1}, -i\sqrt{\frac{b}{p-b}} \right); \\ P_{3}(0) &= \frac{2}{\sqrt{p-b}} \operatorname{EllipticF} \left(1, -i\sqrt{\frac{b}{p-b}} \right) - \frac{2}{\sqrt{p-b}(1-b)} \operatorname{EllipticPi} \left(1, \frac{b}{b-1}, -i\sqrt{\frac{b}{p-b}} \right) = \\ &= \frac{2}{\sqrt{p}} \operatorname{EllipticK} \left(\sqrt{\frac{b}{p}} \right) - \frac{2}{\sqrt{p}} \operatorname{EllipticPi} \left(b, \sqrt{\frac{b}{p}} \right). \end{aligned}$$

Воспользовавшись этими формулами, легко построить гидродинамическую сетку. Для этого необходимо лишь из (1) найти значение точки $t = 1 + e^{\pi \overline{\varphi}} e^{\pi \overline{\psi}}$ при заданных функции тока $\overline{\psi} = \frac{\psi}{q}$ и величине потенциала $\overline{\varphi} = \frac{\varphi}{q}$.

Подставив найденное t в уравнение (3), с учетом (11) определим координаты точки физической области, в которой $\varphi = \overline{\varphi} q$ и $\psi = \overline{\psi} q$. Безусловно, для этого необходимо предварительно ввести параметры задачи b и p, а также толщину струи δ .

2. Результаты расчета и их обсуждение. В качестве примера на рис. 2 представлена гидродинамическая сетка течения при *G* = 0.5, *S* = 1.0 (*b* = 0.844875, *p* = 592.690614, *δ* = 0.295440), построенная с помощью среды Maple по вышеприведенному алгоритму.

Здесь шаг изменения параметров сетки принят для линии тока $\Delta \overline{\psi} = 0.1$ и для эквипотенциальных линий $\Delta \overline{\varphi} = 0.2$, причем для исключения сингулярных точек B (t = b) и P (t = p) граничные линии тока приняты со смещениями на 10^{-6} : вместо линии тока $\overline{\psi} = 0$ принята линия тока $\overline{\psi} = 10^{-6}$, а вместо $\overline{\psi} = 1$ принята линия тока $\overline{\psi} = 0.999999$.

Как видно из рисунка, поджатие струи в плоском канале намного превышает поджатие за счет лишь срыва струи с козырька (напомним, что при $S \to \infty$ и $G \to \infty$ толщина струи на бесконечности составляет $\delta = 0.5$ [2]).

Для выяснения роли длины козырька S и удаления непроницаемого экрана G на поджатие струи рассмотрим графики рис. 3 и 4. Толщина струи на бесконечности δ резко изменяется в диапазонах 0 < G < 1и 0 < S < 0.5, причем роль экрана при малом его удалении от всасывающего отверстия (при G < 1) более заметна. По сравнению с бесконечным удалением $(G \to \infty)$ толщина струи может быть уменьшена (при S = 0.5) в 1.75 раза при G = 0.5, в то время как увеличение длины козырька до S = 0.5 снижает (при G = 5) толщину струи по сравнению с отсутствием козырька (S = 0) всего лишь в 1,6 раза. В случае же, когда устройство непроницаемого экрана вблизи отверстия невозможно, роль козырька заметна: так, при G = 5 и отсутствии козырька (S = 0) толщина струи составляет $\delta = 0.6064$ (при $G = \infty$ толщина струи $\delta = 0.611$), т.е. снижается лишь на 0.75%, в то время как при оснащении канала козырьком длиной

Рис. 2. Гидродинамическая сетка отрывного течения при входе в выступающий канал с непроницаемым экраном при G = 0.5 и S = 1.0

Рис. 3. Изменение толщины струи в плоском канале в зависимости от длины козырька

Рис. 5. Изменение границ струи в канале в зависимости от удаления экрана $G\ (при\ S=1)$

S=0.5при тех же условиях толщина струи уменьшается до $\delta=0.523,$ или на 14.4%.

Характер схода струи с козырька (рис. 5) зависит от приближения экрана. Смещение струи к экрану тем больше, чем меньше G, однако при G < 0.5 это смещение начинает уменьшаться (рис. 6).

Координаты точки максимального смещения струи навстречу потоку (точки m) легко найти, исследуя на экстремум параметрически заданное уравнение границы струи (4):

$$\frac{dx_{CD}}{dy_{CD}} = \frac{dx_{CD}}{dt} \left(\frac{dy_{CD}}{dt}\right)^{-1} = 0.10$$
$$= \frac{1}{\sqrt{p} + \sqrt{b}} \frac{t + \sqrt{bp}}{\sqrt{-t}} = 0,$$
$$x_m = x|_{t=-\sqrt{bp}}, \quad y_m = y|_{t=-\sqrt{bp}}.$$

Смещение струи к экрану и ее поджатие к оси вызывает рост инерционности струи, величина которой определяется скоростью u_0 или коэффициентом [1]

$$K_u = \left(\frac{u_0 - u_{\rm cp}}{u_{\rm cp}}\right)^2 = \left(\frac{1}{\delta} - 1\right)^2, \quad (12)$$
$$u_{\rm cp} = q/B,$$

где $u_{\rm cp}$ — средняя скорость потока в канале, м/с.

Для случая свободного входа воздуха в выступающий канал [2], как и для слу-

чая входа в экранированный канал без козырька [1], этот коэффициент достаточно хорошо коррелируется с коэффициентом местного сопротивления (к.м.с.), отнесенным к средней скорости $u_{\rm cp}$. По-видимому, это объясняется тем, что коэффициент инерционности в форме (12) численно равен коэффициенту местного сопротивления при резком сужении канала [3, 4], процесс аэродинамического сопротивления в котором является определяющим для рассматриваемого класса входа воздуха в плоские каналы.

Для рассматриваемого случая выступающего канала с непроницаемым экраном имеется возможность сопоставить изменение коэффициента K_u (рис. 7) с экспериментальными данными ЦАГИ, полученными И. Е. Идельчиком [5] и В.И. Ханжонковым [6]. На рис. 7 сплошная линия показывает теоретическое изменение инерционности; ромбики — экспериментальные данные Идельчика для экранированного входа в плоский канал; кружочки — экспериментальные данные Ханжонкова для входа в круглую шахту с плос-

Рис. 6. Изменение координат точки максимального смещения струи к экрану в зависимости от его удаления G (при S = 1) и величины выступа канала S (при G = 5)

Рис. 7. Изменение к.м.с. и инерционности струи в канале в зависимости от удаления экрана от входного сечения при S=5

ким экраном. Как видно из графиков, наибольшее согласование с опытными данными имеет место для экранированного входа в плоский канал. Некоторое отличие проявляется для входа в круглую трубу с плоским экраном конечного размера (диаметр экрана в опытах Ханжонкова равнялся двум диаметрам приточной камеры). Это может быть объяснено отличием осесимметричного течения от плоского и малым размером экрана, хотя общий характер уменьшения коэффициента местного сопротивления при удалении экрана удовлетворительно согласуется с изменением инерционности струи и в этом случае.

Выводы.

1. При оснащении козырьком плоского канала возникает встречное смещение струи и заметное снижение ее толщины в канале. Степень приближения экрана начинает играть заметную роль при расстоянии до входного сечения канала меньше полувысоты канала, а степень выдвижения канала — при длине козырька, равной половине этой высоты. Так, предельная (минимальная) толщина струи при S = 0.5 и G = 0.5снижается в 1.75 раза по сравнению с ее значением при отсутствии экрана, а при G = 5 и S = 0.5 — на 14.4% по сравнению с ее значением при отсутствии козырька (S = 0).

2. Максимальное смещение струи по оси OX наступает при значении $t = \sqrt{bp}$. Величина смещения (x_m) монотонно возрастает с ростом длины козырька, а с приближением экрана к входному отверстию канала смещение вначале увеличивается, а затем уменьшается. Так, при наличии козырька единичной длины максимальная величина достигается при $G \approx 0.5$ и составляет $x_m \approx -0.12$.

3. Характер изменения коэффициента инерционности струи в экранированном канале с козырьком удовлетворительно согласуется с изменением экспериментально найденного коэффициента местного сопротивления при входе воздуха в плоский канал и в круглую приточную трубу в зависимости от удаления плоского экрана.

СПИСОК ЛИТЕРАТУРЫ

- 1. Логачев И.Н., Логачев К.И., Аверкова О.А. Математическое моделирование отрывных течений при входе в экранированный плоский канал // Вычислительные методы и программирование. 2010. **11**, № 1. 72–81.
- 2. Логачев И.Н., Логачев К.И., Зоря В.Ю., Аверкова О.А. Моделирование отрывных течений вблизи всасывающей щели // Вычислительные методы и программирование. 2010. 11, № 1. 47–56.
- 3. Форхгеймер Ф. Гидравлика. М.-Л.: Гл. редакция энергетической литературы НКТП СССР, 1935.
- 4. Альтициль А.Д., Киселев П.Г. Гидравлика и аэродинамика. Основы механики жидкости. М.: Стройиздат, 1975.
- 5. Идельчик И.Е. Справочник по гидравлическим сопротивлениям. М.: Машиностроение, 1975.
- 6. *Ханжонков В.И.* Сопротивление приточных и вытяжных шахт // Промышленная аэродинамика. 1947. № 3. 210–214.

Поступила в редакцию 23.03.2010