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VIIK 519.6

BBIYNCJIEHUE HYJIEN IIEPBOTO ITOPSIAKA KOMIIJIEKCHBIX
AHAJINTUYECKHNX ®YHKIIUN C BOJIbIIINMMN
BEJINMYNMHAMMWU ITPOMN3BOJHBIX

B. B. IIporonomnos!

CyIecTBYIOT TPAKTHYECKH BaYKHBIE TUIIHI KOMIIJIEKCHBIX aHAJTUTHIECKUX (DYHKIUI ¢ OOJIBITUMEI 3HA-
YEeHUSIMU MOJIyJIeli IPOU3BOMHBIX B HYJIsIX. Bhrunciienue HyJeil Takux (QyHKIUA Ipe/ICTaBIIsieT Mpo-
O61eMy J1JIsI TPAJIUIINOHHO UCIIOJIb3YEMbBIX JJIsT 9TOTO METOJIOB BCJIEJCTBUE OOJIBIMTNX 3HAYCHUN TPOU3-
BoaHbIX. JIpyroit a¢dpdekTuBHbBIN aJropuTM JJjisl BBIYUCIEHUs HyJIeil 9TOro Tuia paspaboran Ha Oa-
3e KOHTYPHOI'O MHTErPUPOBAHUS apryMeHTa KOMILUIEKCHON MyHKImu. V3MeneHns apryMeHTa BIOJIb
KOHTYDAa 3HAYNTEILHO MEHBINE U3MEHEHII TPOM3BOIHOMN, ITO JEIAeT MPEJIOKEHHBIN aJropuT™ 3¢-
dexrusnbIM. [To10KEHIE MAKCHMYMa IPUPAIIEHAST APTYMEHTA BIOJIb KOHTYPA HHTETPUPOBAHUS JAET
HAYAJIbHOE TPHUOJIIKEHIE JJIsl BHIYUCISIEMOr0 HyJIsl, & €r0 TOYHOE 3HAUEHUE OIPEJIeISeTC s IOCTE Ly-
IOIIUM YTOYHEHUEM.

KiioueBbie ciioBa: anajmutudeckune QYHKIUU, HyJId QYHKIHI, KOHTYPHOE MHTErPUPOBaHUE, (DYHKIIAN
KOMILJIEKCHOTO apTyMeHTa.

1. Introduction. In recent years the methods of computational electrodynamics became an essential part
of many practical technologies in semiconductor industry, photonics, and radio communications. In particular,
numerical methods for modeling the propagation of electromagnetic waves through layered structures and
for computing the reflectivity of diffraction gratings or the polarization properties of wire grid polarizers
require solving the so-called Rytov dispersion equation [1]. This equation allows one to determine the complex
propagation parameter z with which an electromagnetic wave of wavelength A\ can propagate through the layered
structure composed of two layers:

F(2) =1 —e®)(1+e")+~(1+eP)(1—e) =0, (1)

2 2mh
where [ = % VEL— 2,7 = % Vea — z, a and b are the widths of the layers, and €1 and 5 are their complex

permittivities. In general, equation (1) has an infinite sequence of roots. Let zg be the first-order root of this
sequence. Then,
F(2) = F'(20)(2 — 20) + £(2)(2 — 20), (2)

where F’ is the function derivative and lim e(z) = 0.
Z—rZ0

When applied to highly absorptive media such as metals, some roots may have extremely large modulus
of the derivative ‘F’ (zo)‘ To realize the possible scale of this situation, consider the following example: A =
632.8 nm, a = b = 400 nm, &7 = 1, and g2 = 3.57 — 14.36 (chromium). Then one of the zeros is located
approximately at zp = —3.886359 — ¢0.5272905 and F'(z) = 1.310818 — 47.959988.

Changing the argument by only the 6th digit after the decimal point, i.e., putting z; = zo — 107, we get
the function value F'(z1) = —38.67308 + 7 13.85763. Thus, at this zero we have

F(21) — F(20)
Z1 — 20

|F'(20)| = ‘ =4.55 x 10"

For brevity, the zeros with large moduli of the derivatives are below called deep zeros. Clearly, the deep
zeros may present difficulties for the efficient computation of their values by standard methods. To understand
more clearly why this is so, a brief overview of the standard methods is presented in the next section.

2. Traditional methods for computing zeros. If we are given a polynomial, then all its zeros can
be found by using a process called deflation. Suppose any one of the roots z; is known. Then, dividing the
polynomial by z — z; and applying the algorithm used to find the first root, it is possible to find any second
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root. Applying this procedure iteratively, we eventually find all the roots of the polynomial. The peculiarity of
this procedure is that we do not care about the region in which the roots are located and, since the number of
roots is finite, all the roots can be found consecutively one by one. The Muller algorithm [2] can be applied to
find the first root as well as to find all consecutive roots.

This algorithm requires three guess points to start the search. Then the quadratic polynomial is fitted to
these points and the single zero of this polynomial nearest to the last guess point is found. The process continues
until a required tolerance is achieved. Working well for polynomials, the Muller algorithm with deflation cannot
be applied to our problem by the two reasons: in our case the number of roots is infinite and the algorithm
quickly diverges out of a prescribed region, leaving some roots undiscovered. Instead of the Muller algorithm,
the cubically converging Halley method [3] can be used. However, this method works even worse in the case of
deep roots, since it requires function derivatives.

In 1967 L. M. Delves and J.N. Lyness [4] proposed the algorithm based on the contour integration of the
logarithmic derivative of a function; nowadays this algorithm becomes a standard for the most of the algorithms
for finding zeros in a prescribed region. In it the number of zeros lying inside the contour C is determined by

the formula
1 F’
\} = — P
2m'/ F dz, (3)
c

whereas the zeros themselves are determined by solving the generalized eigenvalue problem for the matrices

1 e F . .

composed of the elements s; = 7 / z 0 dz. However, an attempt to apply this concept to the functions

c

of type (1) fails, since the derivatives happen to be so large that the execution of the code stops, unable to

complete integration accurately. In order to overcome this difficulty, consider another approach discussed in the
next section.

3. The basic idea of the method for computing deep zeros. Instead of (2), the number of zeros

within the contour C' may be computed using the principle of argument [5] by integrating the function argument

1
over the contour: N = o /d{arg [F(z)} } During the integration we have to compute the values of the
T
c
argument variances d{arg [F (z)} } and to sum them over to complete integration. Since the argument variances

are of orders of magnitude smaller than any possible function variances, there are no computational difficulties
to complete such an integration. This is the first advantage of the method we proposed.
Additionally we can examine the behavior of the variances

as a function of the running argument along C' in order to obtain Im (z)
some estimates for the zeros. In particular, such an estimate is
most efficient when there is only one zero within C. Consider C (0.9,2)

the example illustrated in Fig. 1.

Let the function be F(z) = (z — (1,0.8))(z + (1,1.5))z
with the zeros at (—1,—1.5), (0,0), and (1,0.8). For this case
the argument variances along the vertical sides of the rectangle
are shown in Fig. 2. On the rout along the left side of C, we °
have the leftmost zero at the right and the rightmost zero at
the left, while on the rout along the right side of C' the leftmost

zero remains at the left and the rightmost remains at the right. ? Re (2)
Thus, the argument variances caused by the zeros situated

outside the contour will always be of opposite signs along the i

parallel sides of the contour. This means that it is possible to

isolate the central root by summing the variances along the

opposite sides of the contour. This situation is illustrated by
the solid line in Fig. 2. The maximum of the sum yields an
estimate of the vertical coordinate of the central root. The (-0.9, -2)
same procedure can be applied for the horizontal sides of the e
contour. Thus, the second advantage of our method is that it is
possible to approximately locate the inner zero simultaneously
with counting the number of zeros within the contour.

When the contouring gives N > 1, the location of the inner

Fig. 1. Integration over the rectangle with
the left lower corner at (—0.9, —2) and right
upper corner at (0.9,2)
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Fig. 2. Function argument variances along the left Fig. 3. Zeros of the function (1) connected by lines
(dashed line) and right (dashed-dotted line) sides of in order from left to right

the contour. The sum of them is shown by the solid

line

zero will be obviously incorrect, so that in this case the result must be ignored, the contour narrowed, and the
procedure repeated. When we have arrived at N = 1, we may get a sufficiently good estimate for the zero that
can be used as an input for the refinement algorithm, such as the Muller method. If this zero happens to be
deep, however, it is likely that the refinement algorithm will converge to another root outside the contour. In this
case the procedure must be repeated with a new contour inside the initial one, and so on until the refinement
algorithm converges within the contour. This is the basic idea of the method.

A few comments should be done regarding the practical implementation of the method. First, the argument
can be computed unambiguously only within the [0, 2] interval. If it is necessary to compute the argument
outside this interval with preserving the continuity of the function, then a procedure of stitching the values over
the 27 discontinuities should be applied. In our case we have to calculate only small variances of the function
argument and, consequently, there is no need in stitching over the 27 discontinuities. Therefore, it is possible
to greatly simplify computations by using the following analytic form for the variance:

d[arg (F)] = d{arctan{ﬁié?”} - ﬁ {Re (F)d[Im(F)] — Im (F) d[Re(F)] }

Second, during integration of (3), the adaptive step change should be implemented in order to keep a necessary
accuracy. For the sake of speed, it is worth to initially choose rather small number of subdivisions on the
contour, say 100, and to increase it only if the function argument variance becomes too large. Finally, it should
be noted that our code was written in Fortran and the refinement algorithm was chosen to be the Muller method
implemented as the ZANLY subroutine of the IMSL library [6].

4. The algorithm.

1. Select the rectangle in which the zeros should be found: input the left lower corner and the upper right
corner.

2. Compute the number NO of zeros in the rectangle using (3). If N0=0, then quit with notification. If
NO>1, then assign N=NO.

3. If N>1, then divide the original rectangle in two halves and compute N in the left rectangle. If N>1,
then repeat.

4. If N=0, then swap the neighboring rectangles and repeat.

5. If N=1, then input a zero guess. Draw a maximum possible square around the zero guess and compute
the integral (3) along it. If N=0, then perform a new subdivision within the current rectangle and repeat.
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6. If N=1, then input a zero guess. Repeat 5 until the side of the square is less than TOL.

7. Call ZANLY and compute the zero. If zero is outside the square, then repeat 5.

8. If the zero is inside the square, then assign its ordinal number and save. If the zero ordinal number is
less than NO, then repeat with 3, otherwise quit.

If at step 3 we choose the left rectangle, then the zeros will be numbered consecutively from their lowest
real parts. Otherwise, the roots will be numbered counting from the largest real parts. The parameter TOL
specifies the maximum radius of the region in which the ZANLY subroutine starts finding a zero. For a better
convergence, TOL must be as small as possible, of the order of 1073,

5. Example of computation. Compute all zeros of function (1) with the parameters defined in Section 1
in the rectangle (—1000, —35), (—0.1, —0.1). It is worth to first compute the results using single precision complex
arithmetic in order to identify poorly determined zeros if they exist. The screen shot of the computer monitor
is presented below.

Enter max value of phase difference (0.1 recommended)
0.1

Enter tolerance for root search (0.001 recommended)
0.001

Enter left lower corner

Enter Real Z1

-1000

Enter Imag Z1

-35

Enter right upper corner

Enter Real Z2

-0.1

Enter Imag Z2

-0.1

NUMBER OF ROOTS IN THE RECTANGLE: 39

root N 1 z: (-954.0978,-15.67441) F(z): (-7.4205680E-05,-2.1356277E-04)
root N 2 z: (-906.1952,-15.51160) F(z): (2.5762793E-06,7.2566904E-06)
root N 3 z: (-858.9707,-15.68921) F(z): (1.4134132E-05,-1.4892459E-04)
root N 4 z: (-813.6056,-15.50243) F(z): (-3.2297787E-05,8.8813154E-05)
root N 5 z: (-768.8445,-15.70736) F(z): (4.1521358E-05,-1.3975592E-04)
root N 6 z: (-726.0241,-15.49073) F(z): (1.5818043E-06,-4.4978238E-04)
root N 7 z: (-683.7178,-15.72994) F(z): (-8.8210363E-05,-1.9440080E-04)
root N 8 z: (-643.4515,-15.47551) F(z): (1.1982391E-05,-1.0729567E-04)
root N 9 z: (-603.5889,-15.75864) F(z): (3.2039232E-05,-1.3793542E-04)
root N 10 z: (-565.8890,-15.45525) F(z): (-4.7004301E-07,-1.4687330E-04)
root N 11 z: (-528.4549,-15.79584) F(z): (-4.3780467E-05,1.2451979E-04)
root N 12 z: (-493.3387,-15.42763) F(z): (1.0861555E-04,-2.2022270E-04)
root N 13 z: (-458.3121,-15.84539) F(z): (-5.1389587E-05,1.1799941E-04)
root N 14 z: (-425.8033,-15.38878) F(z): (-1.0057975E-06,5.5186033E-06)
root N 15 z: (-393.1548,-15.91345) F(z): (-3.5499619E-05,-2.0716935E-04)
root N 16 z: (-363.2877,-15.33224) F(z): (2.3619109E-06,4.3366649E-06)
root N 17 z: (-332.9739,-16.01065) F(z): (6.2358831E-06,-4.2859221E-05)
root N 18 z: (-305.7995,-15.24641) F(z): (-3.7556754E-05,8.2025239E-05)
root N 19 z: (-277.7549,-16.15638) F(z): (1.1361901E-04,1.1719217E-04)
root N 20 z: (-253.3523,-15.10928) F(z): (-7.1983745E-06,-1.9075919E-04)
root N 21 z: (-227.4732,-16.38908) F(z): (-8.8826157E-05,1.3628372E-04)
root N 22 z: (-205.9709,-14.87594) F(z): (-7.4295538E-05,-5.3421903E-05)
root N 23 z: (-182.0886,-16.79391) F(z): (-3.3633223E-06,1.9763254E-05)
root N 24 z: (-163.7012,-14.44615) F(z): (-1.4449892E-05,2.0809252E-04)
root N 25 z: (-141.5558,-17.58361) F(z): (-7.4822219E-06,-4.3670525E-06)
root N 26 z: (-126.6134,-13.57415) F(z): (-2.6654969E-05,-4.5174281E-07)
root N 27 z: (-106.0432,-19.25433) F(z): (1.3292051E-05,-4.8897433E-05)
root N 28 z: (-94.62355,-11.71493) F(z): (2.5323325E-05,-1.0517285E-04)
root N 29 z: (-76.38768,-21.93226) F(z): (-4.9749078E-06,-3.0144029E-05)
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root N 30 z: (-67.06992,-8.763555) F(z): (4.1825924E-04,-3.7350567E-04)
root N 31 z: (-52.58426,-24.75001) F(z): (1.0822387E-06,4.7372432E-06)
root N 32 z: (-44.02319,-5.777972) F(z): (2.5991166E-03,-3.3440022E-04)
root N 33 z: (-33.97283,-27.25909) F(z): (-1.6793897E-06,-1.1425575E-05)
root N 34 z: (-25.90372,-3.311430) F(z): (8.9612361E-03,-1.4696946E-02)
root N 35 z: (-20.26427,-29.19605) F(z): (1.5921086E-06,-5.3371036E-06)
root N 36 z: (-12.61823,-1.565052) F(z): (-0.2869364,-1.150095)

root N 37 z: (-11.27158,-30.45336) F(z): (3.4242094E-06,4.6095661E-06)
root N 38 z: (-6.819347,-31.05658) F(z): (-1.4922171E-05,-4.3640553E-06)
root N 39 z: (-3.886359,-0.5272903) F(z): (5.136904,-2.359382)

Press any key to continue

Zeros of function (1) computed with double precision complex arithmetic

N Re (2) Im (2) |F(z){

1 | -9.540977595801235E4-02 | -1.567441892790350E+-01 3.019806626980426E-13
2 | -9.061951600258290E+02 | -1.551160305353389E-+01 4.407656439090835E-13
3 | -8.589707521042559E+02 | -1.568921246934664E-+01 1.058356923037507E-12
4 | -8.136055862893412E+02 | -1.550243436871120E+01 8.316689495813723E-14
5 | -7.688445659287260E+02 | -1.570735247162385E+01 1.314504061156185E-13
6 | -7.260240578166776E+02 | -1.549073181136085E+01 4.532460716807538E-13
7 | -6.837178786816493E+02 | -1.572995328406492E+-01 4.096727173092940E-13
8 | -6.434514478657668E+02 | -1.547550549695704E+01 6.224046131325608E-13
9 | -6.035888527659774E+02 | -1.575863892051898E+-01 4.069369499369587E-13
10 | -5.658890251610026E+02 | -1.545525325693889E+-01 1.020173347323357E-12
11 | -5.284548728772937TE+02 | -1.579585045153972E+01 7.105516174887867E-13
12 | -4.933386849445413E+02 | -1.542762137124049E+4-01 6.597055448962145E-13
13 | -4.583121140260413E+02 | -1.584539230377967E+01 4.041982792082277E-13
14 | -4.258033493600928E+02 | -1.538878321613366E+01 4.392884133218002E-13
15 | -3.931548055532865E+02 | -1.591345425086025E+01 | 0.000000000000000E+-00
16 | -3.632876895465475E+02 | -1.533224430719856E+01 1.286847625882703E-13
17 | -3.329739321316593E+02 | -1.601064508944336E+01 1.621843951300168E-13
18 | -3.057994857658682E+02 | -1.524640918914081E+01 1.040890542596457E-12
19 | -2.777548756077671E+02 | -1.615635926790910E+01 1.734655884282248E-13
20 | -2.533523024042593E+-02 | -1.510928122338324E+-01 1.082266451513747E-13
21 | -2.274731795106826E4-02 | -1.638909466263839E+-01 7.553172887309252E-14
22 | -2.059708868136810E+4-02 | -1.487594868718368E+-01 1.558341878610840E-13
23 | -1.820885593730619E4-02 | -1.679391235425890E+-01 4.130936831003462E-13
24 | -1.637012061928949E+-02 | -1.444614731698818E+-01 1.336196464944824E-08
25 | -1.415558316332628E4-02 | -1.758361327207739E+-01 9.532931148469529E-14
26 | -1.266134255576757E4-02 | -1.357415035972105E+-01 4.130936831003462E-13
27 | -1.060432102502674E+02 | -1.925432687791370E+01 7.140866117879973E-14
28 | -9.462355534667954E+4-01 | -1.171492952110427E+-01 1.171857100421693E-13
29 | -7.638767757771870E401 | -2.193226709880078E+-01 1.151683528066849E-11
30 | -6.706992463373996E+4-01 | -8.763556585803229E4-00 | 2.470564346833809E-12
31 | -5.258426206300209E+-01 | -2.475000745523743E+-01 1.275379677289189E-12
32 | -4.402319010608897E+-01 | -5.777972533683895E+00 | 0.000000000000000E+00
33 | -3.397282848790300E+4-01 | -2.725909520841754E+-01 5.376231353587555E-14
34 | -2.590371986838409E+01 | -3.311430324622187E+00 | 4.152398636035003E-10
35 | -2.026426450128012E4-01 | -2.919605094406653E+-01 1.687916891722083E-08
36 | -1.261822742683489E+01 | -1.565052066804964E+00 | 0.000000000000000E+00
37 | -1.127158308567147E+01 | -3.045335690247878E+01 3.113695637850019E-14
38 | -6.819347270830086E4-00 | -3.105658038915582E+-01 1.902136147497003E-10
39 | -3.886359268593807E400 | -5.272903785357645E-01 5.823134822479450E-05

The above result is also presented graphically in Fig. 3, showing the oscillating character of the sequence
of zeros. The computation time on the Pentium4 3GHz computer is equal to 0.94 s, including displaying and
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writing the result into a file. It can be seen that in this sequence there are two deep zeros whose residuals are of
order unity: N = 36 and N = 39. This is because the single precision arithmetic cannot compute more accurate
values of an very abruptly varying function.

Double precision complex arithmetic substantially increase the accuracy of computation as is shown in the
table. The last column of the table contains the values of function moduli computed at zeros. It is noteworthy
that in this case the computation time is even shorter (0.89 s) than with single precision arithmetic. Probably,
this is due to a better convergence of the Muller algorithm near deep zeros when double precision is used.
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