УДК 519.633:517.977.1

О ДВУХ МЕТОДАХ ПРИБЛИЖЕННОГО ПРОЕКТИРОВАНИЯ НА УСТОЙЧИВОЕ МНОГООБРАЗИЕ

 $C. B. Милютин^{1}, E. B. Чижонков^{1}$

При численной стабилизации с помощью граничных условий решений нелинейных дифференциальных уравнений с частными производными важную роль играют методы проектирования на устойчивые инвариантные многообразия. В работе рассматриваются два различных способа проектирования (метод нулевого приближения и метод линеаризации), отличающиеся в нелинейном случае направлениями смещений. Для обоих методов приводятся и анализируются численные эксперименты по стабилизации решений уравнений Чафе–Инфанта. Работа выполнена при частичной финансовой поддержке РФФИ (код проекта 05–01–00511).

Ключевые слова: стабилизация, неустойчивые решения, граничные условия, уравнения в частных производных, проектирование на устойчивое многообразие.

1. Введение. Задача приближенного проектирования на устойчивое инвариантное многообразие в окрестности неподвижной точки имеет много практических приложений. Например, при численном решении сложных нестационарных задач математической физики, описываемых дифференциальными уравнениями в частных производных, возникает проблема стабилизации искомого стационарного решения (экспоненциального подавления возмущений в некоторой его окрестности). Если стационарное решение неустойчиво, то сложность стабилизации возрастает многократно. Однако известно [1], что эта проблема может быть решена с помощью специальной процедуры построения граничных условий, основанной на указанном выше проектировании.

Сформулируем постановку задачи, следуя [2]. Рассмотрим непрерывное отображение $S(\cdot): H \to H$, определенное на банаховом пространстве H с нормой $\|\cdot\|$, имеющее неподвижную точку S(0)=0 гиперболического типа. Пусть определены два оператора проектирования $P_+, P_-: H \to H$, ограниченный линейный оператор $L: H \to H$ и непрерывное отображение R(u) = S(u) - Lu, такие, что в некоторой окрестности $\mathcal O$ нуля имеют место соотношения

$$\begin{split} P_{+} + P_{-} &= I, \quad \|P_{\pm}\| \leqslant C_{\pm}, \quad L(P_{+}H) = P_{+}H, \quad L(P_{-}H) \subset P_{-}H, \\ \exists \, 0 < \alpha < 1: \, \|Lv\| \geqslant (1+\alpha)\|v\| \quad \forall v \in P_{+}H, \quad \|Lw\| \leqslant (1-\alpha)\|w\| \quad \forall w \in P_{-}H, \\ \big\|R(u_{1}) - R(u_{2})\big\| \leqslant \theta \Big(\max \big\{\|u_{1}\|, \|u_{2}\|\big\}\Big) \|u_{1} - u_{2}\| \quad \forall u_{1}, \, u_{2} \in H \end{split}$$

с непрерывной положительной неубывающей функцией $\theta(\cdot)$, удовлетворяющей условию $\theta(0)=0$. Здесь и далее имеются в виду элементы u=v+w окрестности \mathcal{O} .

Обозначим через \mathcal{M}^- устойчивое многообразие подмножества \mathcal{O} , так называемый "входящий ус" Адамара: $\mathcal{M}^- = \{m^0 \in \mathcal{O}: \exists \, m^{k+1} \in \mathcal{O}, \, m^{k+1} = S\left(m^k\right), \, k = 0, 1, \ldots\}$. Представляет интерес приближенное проектирование заданного элемента $p \in \mathcal{O}$ на устойчивое инвариантное многообразие \mathcal{M}^- при условии, что допустимое смещение берется из подпространства $P_+\mathcal{O}$. Это соответствует построению такого $u = v + P_- p$, что $v \in P_+ \mathcal{O}$ и элемент u близок к многообразию \mathcal{M}^- .

В работе [2] было показано, что все известные методы решения данной задачи могут быть сформулированы как различные модификации итерационного процесса решения нелинейного функционального уравнения, задающего многообразие. Настоящая статья посвящена сравнению двух методов: метода нулевого приближения и метода линеаризации применительно к численной стабилизации в общем случае нетривиального стационарного решения $(s(x) \neq 0)$ уравнения Чафе-Инфанта при $a, b \geqslant 0$, $x \in \Omega_0 = (-\pi/2, \pi/2), \ y_t = y_{xx} + ay - by^3 + f(x)$, взятого с некоторым начальным возмущением $y_0(x)$. Это уравнение часто встречается в теории аттракторов дифференциальных уравнений и хорошо изучено [3]. Для нас оно представляет интерес, поскольку при необходимости легко превращается как в линейное, так и/или в неустойчивое уравнение.

¹ Московский государственный университет им. М. В. Ломоносова, механико-математический факультет, Ленинские горы, 119899, Москва; e-mail: chizhonk@mech.math.msu.su

[©] Научно-исследовательский вычислительный центр МГУ им. М.В. Ломоносова

Отметим, что применение метода нулевого приближения при проектировании на устойчивое многообразие известно для стабилизации решений более сложных уравнений (см., например, [4]), метод же линеаризации, видимо, реализован в настоящей работе впервые.

2. Численная стабилизация линейного уравнения. Процесс численной стабилизации с заданной скоростью δ , подробно изложенный в [5], состоит из трех этапов: продолжение—проектирование начального условия на более широкую область, интегрирование исходного уравнения в расширенной области, порождающее искомые граничные условия, и собственно стабилизация, т.е. интегрирование уравнения в исходной области с полученными граничными условиями. Ограничимся здесь кратким изложением основной идеи на дифференциальном уровне.

Так как в настоящем разделе рассматривается случай только линейного уравнения, то параметр b в уравнении Чафе–Инфанта положим равным нулю, а стационарное решение и, соответственно, правую часть выберем тривиальными: s(x)=0 и f(x)=0. Для стабилизации увеличим исходную область $\Omega_0=(-\pi/2,\pi/2)$ до интервала $\Omega=(-\pi,\pi)$. Нас интересует убывание решения в норме пространства L_2 , поэтому продолжение начального условия $y_0(x)$ с Ω_0 на Ω выберем в простейшей (разрывной) форме:

$$\overline{w}(x) = \begin{cases} y_0(x), & x \in \Omega_0, \\ 0, & x \in \Omega \setminus \Omega_0. \end{cases}$$

Алгоритм продолжения—проектирования с сохранением свойства непрерывности подробно изложен и проанализирован в [6].

Проведем проектирование. Возьмем из нашего уравнения $y_t = y_{xx} + ay$ оператор в правой части и рассмотрим следующую спектральную задачу:

$$\varphi_{xx} + a\varphi = -\lambda\varphi, \quad \varphi(-\pi) = \varphi(\pi) = 0.$$
 (1)

Ее решение имеет вид

$$\varphi_k(x) = \frac{1}{\sqrt{\pi}} \sin \frac{k}{2} (x + \pi), \quad \lambda_k = (k/2)^2 - a, \quad k = 1, 2, \dots$$
(2)

Чтобы в области Ω решение уравнения $z_t=z_{xx}+a\,z$ с однородными граничными условиями первого рода удовлетворяло оценке $\|z(x,t)\|_{L_2(\Omega)}\leqslant C\exp\left(-\delta t\right)$ с некоторым заданным δ , в разложении начального условия $z_0(x)$ по собственным функциям не должно быть функций $\varphi_k(x)$ с номерами $k=1,2,\ldots,K$, такими, что $\lambda_K<\delta$, при этом $z_0(x)$ в исходной области Ω_0 должно совпадать с $y_0(x)$. Отсюда следует, что начальное условие $z_0(x)$ представимо в виде

$$z_0(x) = \overline{z}_0(x) + \overline{w}(x)$$
, где $\overline{z}_0(x) = \begin{cases} 0, & x \in \Omega_0, \\ \sum\limits_{k=1}^K c_k \varphi_k(x), & x \in \Omega \setminus \Omega_0, \end{cases}$

где коэффициенты c_k определяются из условий ортогональности

$$\int_{\Omega} z_0(x)\varphi_k(x) \, dx = 0 \,, \quad k = 1, 2, \dots, K.$$
 (3)

Соотношения (3) можно записать с помощью матрицы проектирования $A: A \mathbf{c} = \mathbf{b}$, где $1 \leqslant i, j \leqslant K$, $a_{ij} = \int\limits_{\Omega \setminus \Omega_0} \varphi_i(x) \varphi_j(x) \, dx$, $b_i = -\int\limits_{\Omega_0} y_0(x) \varphi_i(x) \, dx$. На следующем этапе необходимо проинтегрировать урав-

нение $z_t=z_{xx}+a\,z$ с полученным начальным условием $z_0(x)$ и нулевыми граничными (при $x=\pm\pi$) условиями по пространственной переменной. Затем при $t\geqslant 0$ возьмем след найденного решения на границе $\Omega_0:z_\pm(t)=z(\pm\pi/2,t)$. Это будут искомые граничные условия, которые обеспечивают стремление к нулю с заданной скоростью δ решения задачи $y_t=y_{xx}+a\,y$ в области Ω_0 с начальным условием $y_0(x)$, т.е. будет выполнено неравенство $\|y(x,t)\|_{L_2(\Omega_0)}\leqslant \|z(x,t)\|_{L_2(\Omega)}\leqslant C\exp\left(-\delta t\right)$.

Перейдем к изложению дискретных аспектов стабилизации. Введем на отрезке $[-\pi,\pi]$ равномерную сетку $x_l=hl,\ h=2\pi/M,\ l=0,\pm1,\ldots,\pm M/2$ (для удобства возьмем M, кратное четырем). Рассмотрим проекции функций $\varphi_k(x)$ на сетку: $\mu_k(l)=\varphi_k(x_l)$. Векторы $\mu_k(l)$ удовлетворяют дискретной задаче на собственные значения:

$$\mu_k(l+1) - (2-ah^2)\mu_k(l) + \mu_k(l-1) = -\nu_k h^2 \mu_k(l)$$
, $\mu_k(-M/2) = \mu_k(M/2) = 0$, $l = 0, \pm 1, \pm 2, \dots, \pm M/2 - 1$,

с соответствующими $\nu_k = \frac{4}{h^2} \sin^2 \frac{kh}{4} - a$; кроме того, эти векторы ортонормированы относительно скалярного произведения $(\mu_k,\mu_r)=h\sum_{l=-M/2}^{M/2}\mu_k(l)\mu_r(l)$. Пусть δ_k^m — символ Кронеккера. Элементы матрицы

проектирования a_{km} вычислим по формуле $a_{km}=\delta_k^m-h\sum_{l=-M/4}^{M/4}\mu_k(l)\mu_m(l)$. Для интегрирования по времени применим полностью неявную разностную схему

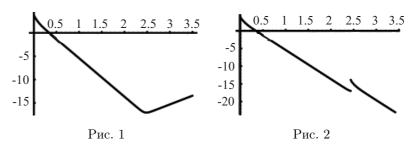
$$\frac{z_m^{q+1} - z_m^q}{\tau} = \frac{z_{m+1}^{q+1} - 2z_m^{q+1} + z_{m-1}^{q+1}}{h^2} + a z_m^{q+1} - b \left(z_m^{q+1} \right)^3, \quad m = 0, \pm 1, \dots, \pm M/2.$$

Характерные значения сеточных параметров: $\tau = 10^{-3}, h = \pi/256$. Реализация схемы осуществлялась правой прогонкой в сочетании с методом Ньютона (в нелинейном случае) [7]. Сходимость при этом фиксировалась максимальной по m величиной невязки, не превосходящей $\varepsilon_{\rm newt}=10^{-5};$ обычно для этого требовалось не более пяти итераций.

Для наглядной демонстрации процесса стабилизации строятся графики, на которых приводится величина
$$\Psi(t_q) = \ln\left(\|z^q\|_{L_{2,h}(\Omega)}\right)$$
, где $\left\|z^q\right\|_{L_{2,h}(\Omega)} = \left[h\sum_{m=-M/2}^{M/2}(z_m^q)^2\right]^{1/2}$, $t_q = q\tau$. Для области Ω_0 значения

индексов суммирования принадлежат диапазону [-M/4, M/4]. "Идеальной" стабилизации соответствуют прямые вида $\Psi(t) = -\delta t + {\rm const}$, поэтому особому вниманию подлежат отклонения графиков от таких прямых.

Рассмотрим пример. Пусть зафиксированы параметры задачи: a=5 (неустойчивость) и $\delta=4$ (скорость стабилизации), а начальное возмущение задано формулой $y_0(x) = 1 - 4x^2/\pi^2$. Типичное поведение функции $\Psi(t_q)$ для неустойчивых предельных решений представлено на рис. 1: сначала она убывает со скоростью, близкой к



заданной, а затем (при накоплении вычислительной погрешности) начинает расти со скоростью, определяемой величиной $a\ (\Psi(t_q) \approx (a-1/2)t + {\rm const}).$

На рис. 2 показан результат применения повторного проектирования в момент времени t_Q , когда накопленная вычислительная погрешность меняет знак производной функции $\Psi(t_a)$. Здесь имеется в виду, что мы осуществляем процедуру продолжения-проектирования, как в начале вычислений: берем решение z_m^Q для $m=0,\pm 1,\ldots \pm M/4-1$, продолжаем его сначала нулем для остальных значений m, а затем из полученной функции "удаляем" несколько младших собственных функций (их количество определяется первоначально заданным значением δ). Как показано на рис. 2, эта операция скачком увеличивает норму решения, т.е. величину $\Psi(t_Q)$, а далее опять происходит ее убывание с заданной скоростью δ . Этот эффект имеет исключительно конечноразрядную (численную) природу, и с увеличением параметра неустойчивости а требуется более частое повторение этой процедуры.

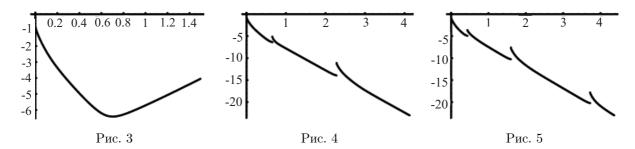
В заключение раздела напомним, что пока рассматривался только линейный случай (S(u) = Lu), для которого проектирование на многообразие \mathcal{M}^- осуществлялось *точно* в предположении отсутствия ошибок округлений. Для этого требовалось знание решения задачи на собственные значения, которое находилось только один раз. При наличии нелинейностей в стабилизируемом уравнении ситуация усложняется из-за одновременного влияния нескольких факторов.

3. Метод нулевого приближения. Перейдем к стабилизации нелинейного уравнения. Будем решать задачу приближенного проектирования на устойчивое многообразие следующим образом. Заменим исходный оператор S на его линеаризацию L в нулевой точке и построим проекцию элемента p на устойчивое многообразие полученной линейной задачи. Устойчивое многообразие оператора L совпадает с пространством $P_{-}\mathcal{O}$; следовательно, $u=P_{-}p$. В этом случае имеем $\lim_{n\to\infty}\|L^nu\|=0$. Для задач численной стабилизации метод нулевого приближения был предложен и опробован в [5].

Рассмотрим в области Ω_0 нелинейную задачу с параметрами $b=a=\delta=4$ и начальной функцией $y_0(x) = \gamma(\sin x + \cos x), \ \gamma = 0.01.$ Выбор такого возмущения обусловлен двумя соображениями: чтобы его норма была невелика, с одной стороны, и чтобы не оказаться в подпространстве четных (или нечетных) функций, инвариантном относительно процесса стабилизации, — с другой.

На рис. З изображено поведение величины $\Psi(t_q)$, посчитанной для указанного варианта. Как можно видеть из графика, на начальном этапе решение стабилизируется со скоростью, превосходящей δ (здесь влияние нелинейности сказывается положительно), однако начиная с некоторого момента времени стабилизация прекращается из-за неустойчивости задачи и отличия между многообразиями \mathcal{M}^- в линейном и нелинейном случаях. Эта ситуация аналогична изображенной на рис. 1, т.е. для продолжения стабилизации требуется новое проектирование.

На рис. 4 иллюстрируется процесс стабилизации, сопровождавшийся проектированием численного решения в моменты, когда скорость стабилизации падала до уровня $\delta/2$. Соответственно на рис. 5 изображена та же картина, но для более выраженной нелинейности: b=10. Как и следовало ожидать, при увеличении параметра b количество требуемых проектирований увеличилось.



По своей форме применение метода нулевого приближения очень близко к процессу стабилизации неустойчивого линейного уравнения: матрица проектирования строится один раз на основе собственных функций линейной задачи и при замедлении скорости стабилизации осуществляется новое продолжение—проектирование. Однако рассматриваемый подход обладает существенным отличием: в исходной области Ω_0 интегрируется нелинейное уравнение, а стабилизирующие граничные условия берутся из решения линейного уравнения в расширенной области Ω . Это может приводить к новому эффекту: в области Ω стабилизация продолжается, а в исходной области Ω_0 она уже прекратилась из-за значительного влияния нелинейных членов уравнения. В линейном случае такое невозможно в принципе, так как вычислительная погрешность в Ω всегда растет быстрее, чем в Ω_0 , вследствие отличия в младшем (неустойчивом) собственном значении дифференциального оператора.

На основании вышесказанного можно сформулировать простую стратегию подавления роста возмущений, которые порождаются одновременно нелинейностью и вычислительной погрешностью. Проектирование продолженной начальной функции $y_0(x)$ в Ω_0 на устойчивое многообразие порождает начальное условие $z_0(x)$ в Ω . Интегрирование в обеих областях осуществляем пошагово: шаг по времени в расширенной области, фиксация граничных условий, шаг по времени в исходной области. Продвижение во времени порождает сначала стабилизацию со скоростью не ниже δ , а затем ее замедление (вплоть до прекращения). Важно, что скорость стабилизации определяется только в исходной области Ω_0 . При заметном падении скорости (например, до величины $\delta/2$) независимо от причины останавливаем интегрирование, берем значения полученного численного решения в Ω_0 и осуществляем продолжение—проектирование заново. Общее количество таких циклов зависит в первую очередь от параметров уравнения a b: сначала их частота определяется коэффициентом при нелинейности, а по мере приближения к стационарной точке — параметром неустойчивости. На рис. 4 и 5 это иллюстрируется относительным удлинением временных интервалов между проектированиями по мере уменьшения нормы возмущения.

Отметим, что численные эксперименты свидетельствуют о возможности интегрирования в расширенной области также и нелинейного уравнения и последующего использования в целях стабилизации полученных таким образом граничных условий. Однако теоретические основы этого подхода не известны. Поэтому внимание авторов в первую очередь посвящено традиционным методам проектирования на устойчивые многообразия.

4. Метод линеаризации. Сформулируем алгоритм проектирования на устойчивое многообразие. Выделим линейное приближение оператора S в заданной точке p, тогда $S(h) = Lh + L_ph + R_p(h)$. Постро-им проекцию элемента p на устойчивое многообразие данной линеаризации, т.е. на устойчивое многообразие оператора $L + L_p$. В этом случае для найденной точки $u = P_-p + v$ имеем $\lim_{n \to \infty} \left\| (L + L_p)^n u \right\| = 0$. Для задач численной стабилизации идея этого метода была предложена в [8].

Перепишем уравнение Чафе-Инфанта $y_t = y_{xx} + a y - b y^3 + f(x)$, имеющее нетривиальное стационарное

решение s(x) относительно приращения u(x,t) = y(x,t) - s(x):

$$u_t = u_{xx} + u(a - 3bs^2) - bu^2(u + 3s).$$
(4)

Будем считать, что начальное возмущение задано в виде $u(x,0) = u_0(x)$.

Рассмотрим теперь линеаризацию уравнения (4) в точке p = v(x):

$$z_t = z_{xx} + z(a - 3bs^2) - 3bv(v + 2s)z.$$
(5)

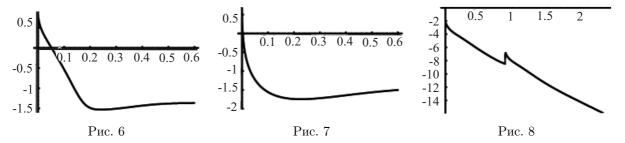
Отметим, что здесь в разложении нелинейного оператора S отброшен член нулевого порядка S(p). Это связано с сохранением у приближенного линейного оператора $L+L_p$ точки z=0 в качестве неподвижной. В противном случае для приближения нарушается важное свойство исходного оператора: S(0)=0.

Если функции s(x) и v(x) продолжить нулем в области $\Omega\setminus\Omega_0$, то без ограничения общности можно считать, что уравнение (5) определено в Ω и пригодно для нахождения стабилизирующих граничных условий. Таким образом, метод линеаризации проектирования на устойчивое многообразие применительно к стабилизации уравнения Чафе-Инфанта состоит в следующем. В некоторый момент времени t в области Ω_0 имеется решение u(x,t) (в начальный момент $-u_0(x)$). Полагаем v=u(x,t), продолжаем эту функцию нулем в $\Omega\setminus\Omega_0$ и решаем спектральную задачу

$$\varphi_{xx} + \varphi(a - 3bs^2) - 3bv(v + 2s)\varphi = -\lambda\varphi, \quad \varphi(-\pi) = \varphi(\pi) = 0.$$
 (6)

На основе полученных собственных функций $\varphi_1, \varphi_2, \dots, \varphi_K$ осуществляем процедуру продолжения—проектирования функции v, ее результатом является начальная для интегрирования в расширенной области Ω функция $z_0(x)$. Далее реализуем пошаговую стратегию стабилизации, при этом из решения (5) находим граничные условия для задачи (4). При замедлении скорости стабилизации в области Ω_0 до недопустимого предела опять полагаем v = u(x, t) и повторяем цикл заново.

При численной стабилизации для нахождения собственных значений в задаче (6) использовался QRалгоритм с двойными сдвигами [9], а собственные векторы уточнялись методом обратных итераций.



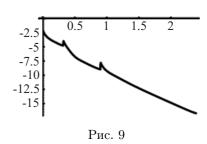
Отметим различие в применении методов линеаризации и нулевого приближения. В методе нулевого приближения функция v(x) равна нулю, поэтому задачу (6) достаточно решить один раз, а затем использовать полученные собственные функции для проектирования по мере необходимости. В методе линеаризации задачу (6) приходится решать каждый раз заново, однако компенсацией за это является резкое увеличение скорости стабилизации (при одинаковом количестве "удаленных" собственных функций φ_k). Кроме того, по мере приближения к стационарной точке результаты проектирования в обоих методах сближаются за счет уменьшения нормы возмущения, поэтому применение метода линеаризации оправдано лишь в начале процесса стабилизации.

Рассмотрим численный пример для задачи с параметрами $a=\delta=5,\ b=200,$ начальной функцией $u_0(x)=\sin x+\cos x$ и стационарным решением $s(x)=\sin 2x.$ На рис. 6 и 7 приведены расчеты начального этапа стабилизации в области Ω_0 на основе рассматриваемых методов проектирования (рис. 7 соответствует методу линеаризации).

При выбранных начальном возмущении и стационарном решении различие в решениях спектральных задач настолько велико, что при одинаковом количестве "удаленных" собственных функций в методе линеаризации логарифм нормы возмущения примерно в три раза меньше по сравнению с методом нулевого приближения (в момент времени $T\approx 0.1$). Это показывает наличие областей, в которых оправдано применение вычислительно более трудоемкого метода линеаризации. Имеются, конечно, и обратные примеры. В качестве иллюстрации (рис. 8) приведем график $\Psi(t_q)$, полученный на основе метода ненулевого приближения в области Ω_0 , для рассматривавшейся выше задачи с параметрами $b=a=\delta=4$ и стартовым возмущением $y_0(x)=\gamma(\sin x+\cos x)$, $\gamma=0.01$. Стационарное решение возьмем нулевым s(x)=0. На

рис. 9 приведен процесс стабилизации этой же задачи на основе метода линеаризации. На первый взгляд, результаты носят парадоксальный характер, так как метод нулевого приближения выигрывает у метода линеаризации по количеству проектирований без потери скорости стабилизации.

Этот эффект несложно объяснить спецификой нелинейности в стабилизируемом уравнении. Она пропорциональна возмущению в кубе, поэтому для тривиальной стационарной точки (s(x)=0) реальный порядок точности проектирования в методе нулевого приближения равен трем, тогда как в методе линеаризации порядок точности проектирования всегда равен двум, поскольку из разложения оператора отбрасываются слагаемые, начиная с квадратичных. Выравнивание порядков несложно осуществить введением нетривиального стационарного решения.



- **5.** Заключение. На основе проведенных исследований можно сделать следующие выводы:
- а) оба рассмотренных в работе метода проектирования на устойчивое многообразие позволяют успешно решать задачу стабилизации неустойчивой стационарной точки;
- б) метод нулевого приближения является алгоритмически более простым и требует меньших вычислительных затрат;
 - в) оба метода имеют одинаковый теоретический порядок точности;
- Γ) при больших начальных возмущениях и/или сильной нелинейности в уравнениях применение метода линеаризации может значительно увеличивать скорость стабилизации по сравнению с методом нулевого приближения.

Последнее особенно важно, когда ставится вопрос о возможности стабилизации решения в принципе. Авторы выражают благодарность А. А. Корневу за плодотворное обсуждение результатов.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Фурсиков А.В.* Стабилизируемость квазилинейного параболического уравнения с помощью граничного управления с обратной связью // Матем. сборник. 2001. **192**, № 4. 115–160.
- 2. Корнев A.A. Классификация методов приближенного проектирования на устойчивое многообразие // Докл. РАН. 2005. **400**, № 6. 1–3.
- 3. Henry D. Geometric theory of semilinear parabolic equations. Lecture Notes in Mathematics. Vol. 840. Berlin: Springer-Verlag, 1981.
- 4. Chizhonkov E.V., Ivanchikov A.A. On numerical stabilization of solutions of Stokes and Navier–Stokes equations by the boundary conditions // Rus. J. Numer. Anal. Math. Modelling. 2004. 19, N 6. 477–494.
- 5. Chizhonkov E. V. Numerical aspects of one stabilization method // Rus. J. Numer. Anal. Math. Modelling. 2003. 18, N 5. 363–376.
- 6. Чижонков E.В. Об операторах проектирования для численной стабилизации // Вычисл. методы и программирование. 2004. 5, № 2. 42–50.
- 7. Самарский А.А., Николаев Е.С. Методы решения сеточных уравнений. М.: Наука, 1978.
- 8. Чижонков Е.В. Численная стабилизация квазилинейных параболических уравнений и уравнений типа Навье—Стокса с помощью граничных условий // Тр. Математического центра им. Н. И. Лобачевского. Казань: Изд-во Казанского Матем. общества, 2004. 71–120.
- 9. Деммель Дж. Вычислительная линейная алгебра. М.: Мир, 2001.

Поступила в редакцию 21.04.2007