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НОВЫЙ ПОДХОД К НЕВЫПУКЛОЙ ОПТИМИЗАЦИИ

А. С. Стрекаловский1, А. В. Орлов1

В работе предлагается новый подход к решению непрерывных невыпуклых задач оптимизации,
основанный на условиях глобальной оптимальности. Детально представлена методика решения
трех задач: задачи о полиэдральной отделимости, систем нелинейных уравнений и отыскания
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1. Introduction. Many optimization problems arising in different application areas are really nonconvex [1 –
6]. Most of them deal with the functions that can be represented as a difference of two convex functions (the
so-called d.c. functions).

Nowadays, the situation in the continuous nonconvex optimization may be characterized as the dominance
of methods borrowed from other sciences [1 – 4], such as discrete optimization (the branch-and-bound method,
cut methods, outside and inside approximations, vertex enumeration, and so on), physics, chemistry (simulated
annealing methods), biology (genetic and ant colony algorithms), etc.

On the other hand, the classical methods of convex optimization [6 – 8] have been discarded because of
their inefficiency [1 – 4]. It is well known that the serious limitation of convex optimization methods applied to
nonconvex problems consists in their ability of being trapped at a local extremum or even at a critical point,
depending on a starting point [1 – 4]. Thus, the classical apparatus proves itself inapplicable for new problems
arising in practice.

In such a situation it seems quite improbable to create an approach for finding a global solution to nonconvex
problems in such a way that this approach be connected with the convex optimization theory and be based on
using the methods of convex optimization.

Nevertheless, we risked to propose such an approach [9 – 20] and even to advance the following principles
of nonconvex optimization.

1. Linearization of the basic (generic) nonconvexity of the problem under study and, consequently, a
reduction of the problem to a family of (partially) linearized problems.

2. Application of convex optimization methods for solving linearized problems and, as a consequence, within
special local search methods.

3. Construction of “good” (pertinent) approximations (resolving sets) of level surfaces and epigraph boundaries
of convex functions.

Obviously, the first and second principles are well known. The depth and efficiency of the third one can be
observed in [9 – 20].

Having developed these principles, we come to a methodology for solving the nonconvex problems that can
be represented as follows.

1. Exact classification of the problem under study.
2. Application of special local search methods.
3. Application of special conceptual global search methods (strategies).
4. Construction of pertinent approximations of level surfaces of corresponding convex functions with the

aid of the experience obtained by solving similar nonconvex problems.
5. Application of convex optimization methods for solving linearized problems and within the frames of

special local search methods.
It can be readily seen that this approach lifts the classical convex optimization up to a new altitude, where

the efficiency and the time-optimality of the methods become of prime importance not only for convex but for
nonconvex optimization as well.
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Our computational experience gives the evidence that, if you follow the above methodology, you have a
more reliable chance to reach the global solution to a nonconvex problem of large size (> 1000) than with the
use of the branch-and-bound or cut methods.

At present, together with our colleagues we are investigating the following problems on the basis of the
approach described above.

1. Solving a system of nonlinear equations by reducing the problem to an optimization problem (the
variational approach).

2. The problem of polyhedral separability when you have to separate two finite sets of points in R
n by

means of a minimum number of hyperplanes.
3. Finding the Nash equilibrium points in bimatrix games with the aid of a special bilinear programming

problem.
For solving these problems one needs some background of the d.c. programming theory. Therefore, in this

paper we first recall the general schemes of local and global searches in d.c. problems. In the next sections of the
paper, some particular problems of d.c. minimization are considered in detail and the efficiency of the approach
is illustrated by numerical experiments.

2. Theoretical foundations of d.c. minimization. Consider the problem

F (x) = G(x) −H(x) ↓ min, x ∈ R
n, (2.1)

where the functions G(x) and H(x) are convex. Assume that at any point x ∈ R
n it is possible to find some

subgradient x∗ ∈ ∂H(x).
As mentioned above, the development of special local search methods for each class of nonconvex problems

is one of the main stages in the global search. In this case the definition of a critical point depends on properties
of the problem and on the corresponding local search method.

Similarly to the situation in the differentiable case, the classical convex optimization methods cannot be
directly applied in a nonconvex case even for a local search. Some simple examples illustrate this fact [7 – 9].

In order to solve problem (2.1), we apply the special local search method described below. This method is
a generalization of the local search method for the differentiable constrained d.c. minimization [9, 15, 17, 18].

Let x0 ∈ R
n be a starting point. If a point xs ∈ R

n is known, then we seek the next point xs+1 as a solution
to the following problem linearized at the point xs:

Js(x) = G(x) − 〈x∗

s , x〉 ↓ min, x ∈ R
n, x∗

s ∈ ∂H(xs). (2.2)

More precisely, this means that the point xs+1 satisfies the inequality

G(xs+1)− 〈x∗

s , x
s+1〉 6 inf

x

{
G(x) − 〈x∗

s , x〉
}
+ δs, (2.3)

where the conditions

δs > 0, s = 1, 2, . . . ,

∞∑

s=0

δs < ∞ (2.4)

hold for the sequence {δs}.
Note that problem (2.2) is convex and, consequently, is solvable by contemporary packages and libraries of

linear and convex optimization methods, e.g., ILOG CPLEX and/or MINOS.
The convergence theorem for the corresponding algorithm is formulated as follows.

Theorem 1. Let the goal function F = G−H in problem (2.1) be lower bounded and at any point x one

can find a subgradient x∗ ∈ ∂H(x).
(i) Then the sequence {xs} generated by rule (2.3) satisfies the condition

lim
s→∞

{
inf
x

[
G(x)−G(xs+1)− 〈x∗

s , x− xs+1〉
]}

= 0, x∗

s ∈ ∂H(xs). (2.5)

(ii) Further, if for a limit point z of the sequence {xs} the corresponding sequence of subgradients is also

convergent, i.e.

x∗

s → z∗ ∈ ∂H(z), (2.6)

then the following condition holds:

inf
x

{
G(x) −G(z)− 〈z∗, x− z〉

}
= 0, z∗ ∈ ∂H(z). (2.7)
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This means that the point z is a solution to the convex problem

G(x) − 〈z∗, x〉 ↓ min, x ∈ R
n. (2.8)

In the sequel, such a point z is said to be critical for problem (2.1).
(iii) In the differentiable case, from (2.7) the classical optimality condition follows:

∇G(z)−∇H(z) = 0. (2.9)

The proof of this theorem is similar to the differentiable constrained case [9, 15, 17, 18].
In practical applications of the above method, due to the structure of the problem, the key role is played

by the selection of the solving method for the linearized problem (2.2) from the libraries of standard convex
optimization methods.

Now, let us formulate some global optimality conditions for problem (2.1) (see also [9, 12, 15, 17, 18]).

Theorem 2. If a point z ∈ R
n is a global solution to problem (2.1), then

∀(y, γ) : γ −H(y) = ζ , F (z), G(y) 6 γ 6 sup(G), ∀y∗ ∈ ∂H(y) :

G(x) − 〈y∗, x〉 > γ − 〈y∗, y〉 ∀x ∈ R
n.

(2.10)

If, in addition, the condition ∃v ∈ R
n : F (v) > F (z) , ζ holds, then condition (2.10) becomes sufficient for the

point z ∈ R
n to be a global solution to problem (2.1).

Properties and features of these conditions are discussed in [9, 12, 15, 17, 18]. Note that one of the principal
properties can be formulated as follows. If a point z is not a global solution, we can construct a new point being
better than z. In the works mentioned above, we generalized these conditions for the minimizing sequences.

In order to decide whether the point under consideration is a global solution to problem (2.1), Theorem 2
suggests the consideration of the following auxiliary problem:

Ψ(x, y, y∗, γ) , 〈y∗, x− y〉+ γ −G(x) ↑ max
x,y,y∗,γ

,

y∗ ∈ ∂H(y), x ∈ D, (y, γ) ∈ R
n+1 : γ −H(y) = ζ , F (z), G(y) 6 γ 6 sup(G,D).

(2.11)

Moreover, if we need to examine only the necessary condition, then the last inequalities in (2.11) cannot
be taken into account.

In [9, 15, 17, 18] it had been proved that, on each iteration of the global search, problem (2.11) may be
solved approximately and partially. This result can be generalized to the nondifferentiable case.

Nevertheless, problem (2.11) seems to be as difficult as the original one (2.1). Therefore, by analogy with
[9, 15, 17, 18], it is suggested to decompose the problem into several simpler ones.

a) Suppose we have a number γ such that γ− , inf (G,D) 6 γ 6 γ+ , sup(G,D). Then for the level surface(
ζ , F (z)

)
Y (ζ, γ) =

{
y ∈ R

n|H(y) = γ− ζ
}

of the function H(·) one has to construct an approximation

A(ζ, γ) =
{
y1, . . . , yN | H(yi) = γ − ζ, G(yi) 6 γ, i = 1, . . . , N

}
.

b) For each yi ∈ A(ζ, γ) and some y∗i ∈ ∂H(yi), we solve the linearized problem

G(x) − 〈y∗i , x〉 ↓ min, x ∈ D. (2.12)

Let ui be an approximate global solution to (2.12).

c) Finally, for each i = 1, . . . , N we solve the so-called level problem

〈
v∗, ui − v

〉
↑ max

v,v∗

, H(v) = γ − ζ, v∗ ∈ ∂H(v). (2.13)

Let wi, w∗
i be an approximate global solution to (2.13).

d) As a result, by solving three basic subproblems one obtains the number η(ζ, γ) := γ + η0(ζ, γ), where

η0(ζ, γ) = 〈w∗

j , u
j − wj〉 − g(uj) , max

16i6N

{
〈w∗

i , u
i − wi〉 −G(ui)

}
; w∗

j ∈ ∂H(wj), w∗

i ∈ ∂H(wi).

If η(ζ, γ) > 0, then the point uj turns out to be better than z, since w∗
j ∈ ∂H(wj), and due to convexity

of H(·) one has 0 < γ +
〈
w∗

j , u
j − wj

〉
− g(uj) 6 H(uj)−H(wj) + γ −G(uj) = F (z)− F (uj).
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The latter is equivalent to F (uj) < F (z), so that one may pass to the next iteration by putting xk+1 := uj.
If η(ζ, γ) 6 0, then a new evaluation γ := γ+∆γ is selected with the aid of a one-dimensional optimization
method for the function Φ(γ) := η(ζ, γ) considered on the segment [γ−, γ+] [7, 8]. Henceforth, we use the
passive search [7] everywhere. If η(ζ, γ) 6 0 ∀γ ∈ [γ−, γ+], then the one-dimensional search for γ is
terminated. In this case one can stop, since the current critical point is the sought-for solution to the
problem under consideration.

Sometimes, instead of solving problem (2.13) and computing the value η(ζ, γ), one directly compares the
values F (ui) of the goal function with the value ζ , F (z). It can easily be seen that η(ζ, γ) > 0 if and only if
the point uj is better than the point z.

Now, one can describe the global search strategy for the nondifferentiable d.c. minimization problem (2.1)
[9, 15, 17, 18]. As known, the strategy consists of the stages a) – d) and some additional steps arising by virtue
of the features of the problem under consideration.

Note that, in contrast to the global search algorithm for smooth d.c. minimization problems, we have to
use an element of the subdifferential of the function H(·) at a current point instead of the gradient. It can be
readily seen that the subproblems of stages b) and c) are also nondifferentiable and therefore need some special
methods to be solved.

In the following sections of this paper we present some variants of the global search strategy in greater
detail, while taking into account specific properties of the problems under scrutiny.

3. Nonlinear equations. This section of the paper is devoted to one of the classical branches of numerical
mathematics, which has various applications in many areas of contemporary natural sciences, from economics
to ecology. This implies finding a solution to the systems of nonlinear equations [21, 22].

Despite of a wide spectrum of methods developed in this area, the problem of numerical solution of such
systems remains rather actual, first of all, because of the fact (when applying, say, the Newton–Kantorovich
method) that there appear some difficulties caused by choosing a suitable starting point ensuring the convergence
to a solution [21, 22]. On the other hand, the complexity of searching for the starting point increases with the
system’s size.

When applying variational methods, one deals with nonconvex optimization problems; hence, as mentioned
above, the classical methods of convex optimization are inapplicable for solving such problems [7, 8].

In this section the process of solving systems of nonlinear equations with d.c. functions is considered. For the
purpose of finding a solution for this class of systems, it is suitable to use the apparatus of d.c. minimization [9]
based on global optimality conditions and outlined in the previous section. In addition we note that the problem
of finding a suitable starting point disappears. Moreover, the global search algorithm turns out to be able to
carry out an auxiliary operation, e.g., to find suitable initial points for a further application, say, of the Newton–
Kantorovich method.

3.1. Problem statement and the d.c. decomposition of a goal function. The following system of
nonlinear equations is considered:

fi(x) = 0, i = 1, . . . ,m, (3.1)

where x ∈ R
n and fi(x) are d.c. functions, i.e.

fi(x) = gi(x) − hi(x), (3.2)

where gi(x), hi(x) are convex functions on R
n, i = 1, . . . ,m. It is well known [22] that this system of equations

can be represented as the optimization problem

Φ(x) = F
(
f1(x), . . . , fm(x)

)
↓ min, x ∈ R

n, (3.3)

where the goal function can be taken, e.g., in the form

F (x) =

m∑

i=1

∣∣fi(x)
∣∣. (3.4)

It can easily be seen that problem (3.3), (3.4) turns out to be generally nonconvex, and the question of
how to solve it remains open.

Nevertheless, using the known properties of d.c. functions [4, 9], one can show that for function (3.4) the
following representation takes place:

F (x) = G(x) −H(x), (3.5)



164 вычислительные методы и программирование. 2007. Т. 8

where G(x) = 2
m∑

i=1

max
{
gi(x), hi(x)

}
and H(x) =

m∑

i=1

(
gi(x) + hi(x)

)
are obviously convex functions.

Since the function F (x) given by formula (3.4) is a d.c. function, the apparatus of d.c. minimization can
be applied for solving problem (3.3), (3.4).

3.2. Global search algorithm. Consider the principal stages of global search. Our first task is to obtain
a critical point for problem (3.3), (3.4). For this purpose we use the special local search method described above.

Let us formulate the linearized problem. Since the d.c. decomposition of the goal function is given by (3.5),

the second term H(x) =

m∑

i=1

(
gi(x) + hi(x)

)
, x ∈ R

n, turns out to be a smooth function. Then problem (2.2)

can be represented as follows:

Js(x) = G(x) −
〈
∇H(xs), x

〉
↓ min, x ∈ R

n. (3.6)

However, problem (3.6) is nondifferentiable [23], because the function G(x) = 2
n∑

i=1

max
{
gi(x), hi(x)

}
is obviously

nonsmooth.
Therefore, for solving problem (3.6) one needs to apply nondifferentiable optimization methods. To accomplish

this, we apply the r-algorithm of N. Shor. Recall that Shor’s r-algorithm uses the operation of space stretching
among the directions of the difference of two consecutive subgradients [24, 25]. According to [25], this method
is one of the best among similar methods from the practical point of view.

Let us proceed to finding a solution to system (3.1). Here we present a global search algorithm for problem
(3.3), (3.4). Principally, this algorithm consists of the stages a) – d) described in the previous section.

Let x0 ∈ R
n be a starting point, {τk} and {δk} be numerical sequences, τk, δk > 0, k = 0, 1, 2, . . ., τk ↓ 0,

δk ↓ 0 (k → ∞). In addition, assume that we are given a number γ+.

Step 0. Set k := 0, xk := x0.
Step 1. Starting with xk ∈ R

n, obtain the τk-critical point zk by the special local search method (see the
previous subsection). Set ζk := F (zk) 6 F (xk).

Step 2. Stop if F (zk) < ε, where ε is a given accuracy and zk is an approximate solution to system (3.1).
Step 3. Select some γ ∈ [0, γ+].
Step 4. Construct the approximation

Ak(γ) =
{
v1, . . . , vNk

∣∣H(vi) = γ − ζk, i = 1, . . . , Nk, Nk = Nk(γ)
}
. (3.7)

Step 5. For each i = 1, . . . , Nk, find ui ∈ R
n such that

G(ui)−
〈
∇H(vi), ui

〉
− δk 6 inf

x

{
G(x)−

〈
∇H(vi), x

〉 ∣∣x ∈ R
n
}
. (3.8)

Step 6. For each i = 1, . . . , Nk, find wi:

〈
∇H(wi), ui − wi

〉
+ δk > sup

v

{〈
∇H(v), ui − v

〉 ∣∣H(v) = γ − ζk

}
. (3.9)

Step 7. Set ηk(γ) := η0k(γ) + γ, where

η0k(γ) :=
〈
∇H(wj), uj − wj

〉
−G(uj) , max

16i6N

{〈
∇H(wi), ui − wi

〉
−G(ui)

}
. (3.10)

Step 8. If ηk(γ) > 0, then set xk+1 := uj and go to Step 1.
Step 9. If ηk(γ) 6 0, then set γ := γ +△γ ∈ [0, γ+] and go to Step 3.
Step 10. If ηk(γ) 6 0 ∀γ ∈ [0, γ+] (i.e., the one-dimensional search for γ is completed), then stop. The

iterative process is terminated.

It can be readily seen that the new stopping criterion is added to the global search scheme due to the
statement of problem (3.3), (3.4), since it is clear that, if the value of the goal function is close to zero, we
obtain an approximate solution to system (3.1).

The peculiarity of the above-proposed method consists in the implementation of Steps 4, 5 and 6. Actually,
at Step 4 we have to construct an approximation of the level surface; at Steps 5 and 6 we have to solve the
linearized problem

G(x) −
〈
∇H(vi), x

〉
↓ min

x
(3.11)
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and the level problem 〈
∇H(v), ui − v

〉
↑ max

v
, H(v) = γ − ζk. (3.12)

Note that the linearized problem (3.11) coincides with problem (2.2) solved at each step of the special local
search method described above.

3.3. Implementation of the global search algorithm. The first test of the global search method for
solving the above systems of equations was carried out with the following quadratic systems:

fi(x) ,
1

2
〈Cix, x〉 + 〈bi, x〉+ di = 0, i = 1, . . . , n, (3.13)

where x ∈ R
n and Ci are symmetric (n×n) matrices, not necessarily positive definite. As is known [21], such a

matrix can be represented in the form of the difference of two symmetric positive definite matrices: Ci = Ai−Bi.
This fact leads to the following d.c. representation of the quadratic functions:

fi(x) , gi(x)− hi(x), i = 1, . . . , n, (3.14)

where gi(x) =
1

2
〈Aix, x〉 and h(x) =

1

2
〈Bix, x〉 − 〈bi, x〉 − di are convex functions, Ai, Bi > 0, Ai = AT

i ,

Bi = BT
i .

In the case of the quadratic systems of equations, the analytical solution can be given for the level
problem (3.12) [9]. For the one-dimensional search of γ, we split the segment [0, γ+] into a finite number of
parts according to the dimension of the systems. For constructing the level surface approximation, we use the
previous experience of solving various nonconvex problems [9 – 20].

For example, one can choose the points of approximation of the form yi = zk − λiv
i, i = 1, . . . , Nk,

where vi is a vector constructed, generally speaking, with the aid of the information about the problem under

consideration; λi is a scalar that verifies the conditions H(yi) =
1

2
〈Syi, yi〉 − 〈q, yi〉 − α = γ − ζ.

Taking into account the properties of the problem of interest, the following approximations can finally
be applied: R1 =

{
yi = zk − λie

i
∣∣ i = 1, . . . , n

}
, where ei = (0, . . . , 1, . . . , 0) is the vector of the standard

Euclidean basis; R2 =
{
yi = zk − λip

i
∣∣ i = 1, . . . , n

}
, where pi = si +

1

2
S−1q and si are the columns of matrix

S. Such a definition of the vector pi is due to the properties of the function H(x). The next approximation
has been constructed with the aid of numerical experiments: R3 =

{
yi = zk − λic

i
∣∣ i = 1, . . . , n

}
, where

ci = (−1, . . . ,−1︸ ︷︷ ︸
i

, 1, 1, . . . , 1).

During our numerical testing, the approximations proposed have not shown a sufficient efficiency. Therefore,
we suggested to apply the integrated approximation: R = R1

⋃
R2

⋃
R3.

All the software programs were written with the use of Visual C++ 6.0 by Elena Petrova, one of our
colleagues. The prescribed accuracy for solving the problem has been chosen equal to 0.001. We select the
points as starting ones in such a way to provide for the worst conditions for the algorithm. The test systems
with known solutions were taken from [26]:

1) fi = (3− 2xi)xi + 1− xi−1 − 2xi+1, i = 1, 2, . . . , n, x0 = xn+1 = 0;

2) fi = 3xi − xi−1 − 2xi+1 − kx2
i + 1, i = 1, 2, . . . , n, x0 = xn+1 = 0;

3) f1 = 1− x1, fi = 10(i− 1)(xi − xi−1)
2, i = 2, 3, . . . , n;

4) Let n be an even number, then fi = 1− xi, i = 1, 3, 5, . . . , n− 1, fi = 10(xi − x2
i−1), i = 2, 4, . . . , n;

5) fi = 3xi(xi+1 − 2xi + xi−1) +
(xi+1 − xi−1)

2

4
, x0 = 0; xn+1 = 20;

6) fi = xi − 0, 1x2
i+1, i = 1, 2, . . . , n− 1, fn = xn − 0, 1x2

1.

The results of numerical solution of these systems are given in Table 1 with the following notation: No is
the number of an example; x0 is a starting point; n is the system’s dimension; F0 is the initial value of the
objective function F (x); F∗ is the resulting value of the goal function; St is the number of iterations of the
global search algorithm; PL is the number of linearized problems solved; T is the algorithm’s operating time
(minutes:seconds.parts of seconds on AMD Athlon-1700, 256 Mb RAM).

Note that the global solution to the system in 6) was reached for all the starting points under consideration
only with the aid of the special local search method (this is not presented in Table 1).
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Table 1

No x0 n F0 F ∗ St PL T

1 (1,−1, . . . , 1,−1) 10 57 0 2 29 00:00.14

20 117 0 2 49 00:07.78
30 177 0 2 247 01:21.22
40 237 0 2 328 03:11.13

2 (1, . . . , 1) 10 12 0 6 91 00:00.43

20 21 0 8 748 00:03.98

3 (2,−2, . . . , 2,−2) 10 7201 0 10 341 00:01.25

20 30400 0 18 719 00:20.57
30 69600 0 20 1403 07:12.66
40 124800 0 22 1598 15:40.68

4 (0, . . . , 0) 10 5 0 42 5755 00:10.81

20 10 0 61 9437 00:45.32

5 (10, . . . , 10) 10 600 0 8 673 00:01.34

20 600 0 17 1715 02:17.35

In addition to the quadratic test systems, during the numerical experiments the following systems of
nonlinear equations were solved:

7) fi = 2xi − xi−1 − xi+1 +
ν2

2
(xi + ti + 1)3, i = 1, . . . , n, ν =

1

n+ 1
, ti = iν, x0 = xn+1 = 0,

8) fi = xi−1 − 2xi + xi+1 − ν2 expxi, i = 1, . . . , n, ν =
1

n+ 1
, x0 = xn+1 = 0,

9) fi = xi −
1

2n

( n∑

j=1

x3
j + i

)
, i = 1, . . . , n.

As to the d.c. representation of these functions, it can be readily seen that x3 = g1(x) − h1(x), where

g1(x) =

(
x +

1

4

)4

+
1

256
and h1(x) = x4 +

x2

4
+

1

8

(
x +

1

4

)2

are convex functions. In these cases, moreover,

instead of solving the level problem and computing the value of η(ζ, γ) we compared the values of the goal
function at the current and obtained critical points (see the end of Section 2). Other stages of the global search
for the problems in 7) – 9) coincide with the stages for the problems in 1) – 6).

The results of computing these systems are given in Table 2.

Table 2

No x0 n F0 F ∗ St PL T

7 (1,−1, . . . , 1,−1) 10 38.3 0.01229 2 167 > 10 min

20 78.2 0.07898 2 214 > 10 min

8 (1, . . . , 1) 10 38.01 0 1 9 00:01.31

20 78.1 0.04537 1 173 > 10 min

9 (2,−2, . . . , 2,−2) 10 4.6 0 2 12 00:00.43

20 9 0 3 21 00:02.64
30 13.37 0 3 24 00:18.62
40 17.75 0 2 28 00:20.84
50 22.15 0 3 42 00:16.18
60 26.5 0 3 47 00:53.78
70 30.87 0 3 58 01:56.35

The solution time has been limited down to 10 minutes. It turned out that in some cases during this time
(systems in 7) and 8)) we failed to find a solution with the desired accuracy. However, it is obvious that the
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value of the goal function has been decreased quite substantially. This fact allows one to use the obtained point
as a good starting point for the standard numerical methods intended for solving systems of equations.

It is clear that to the end of improving the obtained results, in particular in order to increase the dimension
of the systems under consideration, one needs some further improvement of the level surface approximation.
For example, it can be readily seen that one needs to reduce the number of approximation points.

Nevertheless, one can conclude from the tables that for a reasonable solution time the algorithm is able to
solve the systems of sufficiently large dimension. Thus, this fact confirms the possibility of solving the nonlinear
systems of equations by the new global search algorithms.

4. Polyhedral separability problem. This section is devoted to one of the problems of the so-called
general separability. As known [7], the practical demands are not limited by the linear separability only, and
one often needs a more general concept of separability, e.g., the polyhedral separability [27, 28]. The practical
applications concerning the cancer diagnosis and prognosis can be found, e.g., in [29].

4.1. Problem statement. First of all, recall the statement of the linear separability problem [7]. Consider
two nonempty finite sets A and B from R

n. These sets include M and N points, respectively, so that A and B
can be represented by matrices A ∈ R

M×n and B ∈ R
N×n. The columns of these matrices are the coordinates of

points from A and B, respectively. Let us denote these points by ai ∈ A, i = 1, . . . ,M , and bj ∈ B, j = 1, . . . , N.
With this notation, we say that a hyperplane H =

{
x ∈ R

n
∣∣ 〈ω, x〉 = ξ

}
strictly separates the sets A and B

(see [7]) if
min

16i6M
〈ω, ai〉 > ξ > max

16j6N
〈ω, bj〉. (4.1)

Using the standard procedures, one can pass to the normalized form of linear separability (see [27, 28]):

min
16i6M

〈v, ai〉 > µ+ 1 > µ− 1 > max
16j6N

〈v, bj〉. (4.2)

The next result follows from the separation theorems [7].
Proposition 1. Sets A and B are linearly separable if and only if the intersection of their convex envelopes

is empty: conv(A)
⋂

conv(B) = ∅.
In the case when the sets are not linearly separable, one can introduce the notion of polyhedral separability.

As a consequence, the problem of polyhedral separability consists in the separation of two finite sets of space R
n

by a minimum number of hyperplanes.
Recall [27, 28] that sets A and B are said to be polyhedrally separable by the family of hyperplanes

Hp(ω
p, ξp) =

{
x ∈ R

n
∣∣ 〈ωp, x〉 = ξp

}
, ωp ∈ R

n, ξp ∈ R, p = 1, . . . , P,

if for each point ai ∈ A and for each hyperplane Hp the inequality 〈ai, ωp〉 6 ξp holds and for each point bj ∈ B
and at least for one hyperplane Hp the inequality 〈bj , ω

p〉 > ξp is fulfilled.
It can easily be seen that the sets A and B are involved into the above definition in an asymmetric manner.

Moreover, this definition can be reformulated in a more formal way [27, 28].
Definition 1. Sets A and B are said to be polyhedrally separable by the family of hyperplanes

Hp =
{
x ∈ R

n
∣∣ 〈vp, x〉 = µp

}
, vp ∈ R

n, µp ∈ R, p = 1, . . . , P,

if the following inequalities hold: ∀i = 1, . . . ,M , ∀p = 1, . . . , P , 〈ai, v
p〉 6 µp−1; ∀j = 1, . . . , N , ∃p ∈ {1, . . . , P},

〈bj, vp〉 > µp + 1.
As an analogue of Proposition 1, the following proposition is valid.
Proposition 2 [27, 28]. Sets A and B are polyhedrally separable if and only if the convex hull of the set A

has an empty intersection with the set B:

conv(A)
⋂

(B) = ∅. (4.3)

Recall also that the number

∆ =
1

M

M∑

i=1

max
{
0, max

16p6P

(
〈ai, v

p〉 − µp + 1
)}

+
1

N

N∑

i=1

max
{
0; min

16qp6P

(
−〈bj, v

p〉+ µp + 1
)}

(4.4)

is called the general classification error for the sets A and B with respect to the family of hyperplanes {Hp}.

Theorem 3. Sets A and B are separable by the family of the hyperplanes {Hp} if and only if

∆ = 0. (4.5)
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This theorem can be considered as a foundation of the polyhedral separability algorithm described below.
4.2. Analysis of the error function. Let V be a (P × n) matrix having the vectors vp, p = 1, . . . , P ,

as its columns and M = (µ1, . . . , µP ) be a vector from R
P . Define the error function depending on P × (n+1)

variables as follows:
F (V,M) = F1(V,M) + F2(V,M), (4.6)

where

F1(V,M) =
1

M

M∑

i=1

max
{
0, max

16p6P

(
〈ai, v

p〉 − µp + 1
)}

,

F2(V,M) =
1

N

N∑

i=1

max
{
0; min

16p6P

(
−〈bj , v

p〉+ µp + 1
)}

.

(4.7)

First of all we note that the error function is a d.c. function, since it is defined as a sum of max and min
of the affine functions [9]. In order to apply the d.c. minimization theory described in the Section 2, we have to
obtain a transparent d.c. representation of the error function to solve the problem of polyhedral separability

It can be shown that the function F (V,M) can be represented as F = g− f, where g and f are the convex
functions defined as follows:

g(V,M) =
1

M

M∑

i=1

max
{
0, max

16p6P

(
〈ai, v

p〉 − µp + 1
)}

+
1

N

N∑

j=1

max
{
0; max

16p6P

(
〈bj , v

p〉 − µp − 1
)}

;

f(V,M) =
1

N

N∑

j=1

max
16p6P

(
〈bj , v

p〉 − µp − 1
)
.

Thus, the problem of polyhedral separability can be formulated as a problem of unconstrained minimization
of the nondifferentiable nonconvex error function F (V,M):

F (V,M) ↓ min , (V,M) ∈ R
P×(n+1). (4.8)

For solving this problem (as in the case of systems of d.c. equations), one can apply the theory of d.c.
minimization outlined in Section 2 [9].

4.3. Global search. Now, let us describe the process of global search for problem (4.8), which includes
the same stages a) – d) from Section 2 and reflects some peculiarities of the polyhedral separability problem.

First, the local search for problem (4.8) was performed by the special local search method described in

Section 2. Suppose
(
Ṽ k,M̃k

)
is an obtained point. As in the case of solving the systems of d.c. equations,

the linearized subproblems have been solved by Shor’s r-algorithm [24]. Instead of solving only one linearized
problem (stage b)) we have executed local search, i.e., a finite sequence of linearized problems has been solved.
Let

(
Us,Υs

)
be the point obtained by this procedure.

Next, instead of solving the level problem and computing the value of η(ζ, γ), one directly compares the

value of the goal function F
(
Us,Υs

)
with the value of F

(
Ṽ k,M̃k

)
. As mentioned in Section 2, η(ζ, γ) > 0 if

and only if the point
(
Us,Υs

)
is better than the vector

(
Ṽ k,M̃k

)
.

As to the one-dimensional search, during the process of solving the polyhedral separability problem an
approach similar to that used in the previous section was applied. We split the segment [0, γ+] into a finite
number of subsegments. Let ∆γ be the length of each subsegment. The number ∆γ is selected from the set
{∆γ1, . . . ,∆γI}.

Note that the polyhedral separability problem is rather difficult and that for constructing approximations
of the level surface, as a whole, twelve variants of the approximation construction scheme based on different
ideas have been proposed.

Further, since the global minimum of the error function is known: F∗ = 0, we added two extra stopping
criteria to the global search scheme.

Hence, the global search algorithm for problem (4.8) assumes the following form.
Suppose we have a starting point (V,M)0, a local search accuracy τ0, and the number γ+.

Step 0. Set k := 0, i := 0,
(
V k,Mk

)
:= (V,M)0, and τk := τ0.

Step 1. Select ∆γi ∈ {∆γ1, . . . ,∆γI}.

Step 2. Starting with the point
(
V k,Mk

)
∈ R

P (n+1), find a τk-critical point
(
Ṽ k,M̃k

)
for problem (4.8)

by the special local search method. Set ζk := F
(
Ṽ k,M̃k

)
6 F

(
V k,Mk

)
.
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Step 3. If F
(
Ṽ k,M̃k

)
6 ε1, then stop:

(
Ṽ k,M̃k

)
is an approximate global solution to problem (4.8).

Step 4. Select γ ∈ [0, γ+].
Step 5. Construct an approximation of the level surface

Ak(γ) =
{(

V s,Ms
) ∣∣ f

(
V s,Ms

)
= γ − ζk, s = 1, . . . , Sk

}
.

Step 6. For each s ∈ {1, . . . , Sk}, starting with the point
(
V s,Ms

)
, with the aid of the special local search

method find a τk-critical point
(
Us,Υs

)
.

Step 7. If for some number s ∈ {1, . . . , Sk} one has F
(
Us,Υs

)
6 ε1, then stop:

(
Us,Υs

)
is an approximate

global solution to problem (4.8).
Step 8. If for a number s ∈ {1, . . . , Sk} one has F

(
Us,Υs

)
< ζk, then set k := k + 1, τk+1 = τk/2,(

V k+1,Mk+1
)
:=

(
Us,Υs

)
, and go to Step 2.

Step 9. If F
(
Us,Υs

)
> ζk for each s ∈ {1, . . . , Sk}, then set γ := γ +∆γi ∈ [0, γ+] and go to Step 5.

Step 10. If F
(
Us,Υs

)
> ζk for each s ∈ {1, . . . , Sk} for all γ ∈ [0, γ+] and τk 6 ε2, then set i := i + 1,

∆γi := ∆γi+1 and go to Step 1.
Step 11. If i = I, i.e., the search for ∆γ is terminated, then stop.

4.4. Numerical experiments. For the numerical testing of the above-proposed algorithm, a set of 50 test
examples has been constructed. In these examples the dimension of the original space varies from 2 up to 10, the
number of points in the sets A and B changes from 1 up to 100, the number of separating hyperplanes balances
between 1 and 5, and the general dimension of problem (4.8) varies from 3 up to 24. For each example a set of
separating hyperplanes has been constructed, and for each test problem a global solution has been found with
the corresponding value of the goal function: F∗ = 0.

The accuracy of the stopping criterion has been chosen to be ε1 = 10−3 and ε2 = 10−4. The value of ∆γi
(I = 5) has been selected from the set {0.5, 0.3, 0.2, 0.1, 0.05}. The starting point for all cases has been chosen
as follows:

(V,Γ)0 = {vp = bp, γp = 0, p = 1, . . . , P}. (4.9)

The initial accuracy for the local search τ0 was equal to 0.05.
The set of examples and the corresponding software implemented with the use of Visual C++ 6.0 have

been developed by our colleague Oksana Druzhinina. The results of 12 approximations to the set of testing
examples are given in Table 3.

In this table we use the following notation: R is the number of approximation; S is the number of elements
in the approximation; Sol (%) is the percentage of solved examples; ∆max is the maximum deviation of obtained
solutions from the global solution among all the examples; PLmax is the maximum number of solved linearized
problems; NoPLm is the number of the example where PLmax is reached; Tmax is the maximum operation time
of the algorithm (Pentium Celeron, 660 MHz, 256 MB RAM); NoTm is the number of the example where Tmax

was reached; K is the number of the examples in which an improvement of the goal function cannot be reached
with the use of the level surface approximation elements.

Note that the approximations R11 and R12 represent a union of the approximations R3, R4, and R10
taken in a different order.

It can be seen from Table 3 that the approximation R11 turns out to be the best among the ones considered
for solving the problem of polyhedral separability (94 % of examples were solved and the maximum deviation was
0.469). Moreover, the good results are shown by the approximations R12 (92 % and 0.491) and R10 (90 % and
1.97). The algorithm has given the maximum operation time and the maximum number of the solved linearized
problems when applying approximation R5. This may be explained by the fact that this approximation has the
largest number of elements. From the viewpoint of problem difficulty, one can mark problems 26 and 30 (see
the columns NoPLm and NoTm).

Further, note that the approximation R10 seems to be the most attractive for the problem of polyhedral
separability. Although it slightly loses with respect to the approximationsR11 and R12 as regards the percentage
of problems solved, but it wins rather much as regards to the number of the linearized problems solved and
the algorithm’s operation time. To sum up, one can say that, despite all the difficulties of the nonconvex and
nondifferentiable problem of polyhedral separability, the proposed algorithm has demonstrated very promising
computational results.

5. Bilinear programming and bimatrix games. Various problems in engineering design, the decision
making theory, operations researches, and economy can be described by bilinear programming problems. In this
section we consider a bilinear programming problem and the related problem of finding the Nash equilibrium
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Table 3

R S Sol% ∆max PLmax NoPLm Tmax Notm K

1 n 68% 2.0 13127 19 0 : 01 : 18.94 19 8

2 n 66% 2.0 18005 26 0 : 01 : 30.79 26 4

3 N 82% 2.0 36743 26 0 : 03 : 34.53 26 3

4 M 88% 1.901 43576 26 0 : 22 : 30.86 26 0

5 M ∗N 82% 2.0 328235 6 1 : 03 : 43.57 6 1

6 1 46% 1.966 41627 19 0 : 08 : 38.18 30 6

7 n 74% 1.98 6490 4 0 : 03 : 11.12 30 0

8 n 64% 2.086 12749 26 0 : 06 : 54.16 30 0

9 n 74% 2.0 9466 26 0 : 03 : 11.02 30 1

10 1 90% 1.97 3701 26 0 : 01 : 29.17 24 1

11 M + 2 94% 0.469 47018 26 0 : 24 : 05.46 30 0

12 M + 2 92% 0.491 78022 26 0 : 31 : 28.14 26 0

point [20, 30, 31]. In spite of seeming simplicity, the bilinear problems turn out to be nonconvex. As mentioned
above, in nonconvex problems there exist a lot of local extrema or even stationary (critical) points that can be
very far from the global solutions even if the goal function values are concerned.

There are two types of bilinear problems: those with joint constraints and those with disjoint constraints.
The former is a harder problem than the latter one. However, even for a problem with disjoint constraints,
constructing a fast algorithm is a very complicated problem. Several methods have been proposed in the
literature to solve the disjoint bilinear problems [3]. In this section we study the efficiency of our global search
theory approach for disjoint bilinear problems.

5.1. Problem statement and the d.c. decomposition of a goal function. Consider the bilinear
function

F (x, y) = 〈c, x〉+ 〈x,Qy〉+ 〈d, y〉, (5.1)

where c, x ∈ R
m; d, y ∈ R

n; and Q is an (m× n) matrix.
The disjoint bilinear programming problem can be written down as follows:

F (x, y) ↑ max
(x,y)

,

s.t. x ∈ X
△
=

{
x ∈ R

m
∣∣ Ax 6 a, x > 0

}
, y ∈ Y

△
=

{
y ∈ R

n
∣∣ By 6 b, y > 0

}
,

(5.2)

where A is an (m1 ×m) matrix, B is an (n1 × n) matrix, and a ∈ R
m1 , b ∈ R

n1 . Assume, that X and Y are
bounded polytopes.

It can be readily seen that here the goal function can be represented as the difference of two convex
functions:

F (x, y) = f(x, y)− g(x, y), (5.3)

where f(x, y) =
1

4
‖x+Qy‖2 and g(x, y) =

1

4
‖x−Qy‖2 − 〈d, y〉 − 〈c, x〉.

Therefore, for solving this problem we can apply the approach described in Section 2. However, it is necessary
to note that, in contrast to the problems from the previous sections, the function F (x, y) is differentiable and
the objective is to maximize the goal function. This leads us to an appropriate modification of the global search
algorithm.

5.2. Local search. First we note that if, for the local search in problem (5.2) we apply the method
described in Section 2, the specific character of the problem, i.e., its bilinearity, will be lost (see [20] for details).
Therefore, we propose two special local search methods for (5.2).

The first one is a modification of the local search algorithm for bilinear problems from [31]. Let (x0, y0) be
a starting point.
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The X-procedure

Step 0. Set s := 0 and xs := x0.
Step 1. Find a ρs/2-solution ys+1 to the linear problem

〈d+ xsQ, y〉 ↑ max
y

, y ∈ Y, (LPy)

so that the following inequality should hold:

〈d+ xsQ, ys+1〉+ ρs/2 > sup
y

{
〈d+ xsQ, y〉

∣∣ y ∈ Y
}
. (5.4)

Step 2. Find a ρs/2-solution xs+1 to the linear problem

〈c+Qys+1, x〉 ↑ max
x

, x ∈ X, (LPx)

so that the following inequality should hold:

〈c+Qys+1, xs+1〉+ ρs/2 > sup
x

{
〈c+Qys+1, x〉

∣∣ x ∈ X
}
. (5.5)

Step 3. If

F (xs+1, ys+1)− F (xs, ys+1) 6 τ, (5.6)

where τ is a solution accuracy, then stop. Otherwise, set s := s+ 1 and go to Step 1.

This algorithm implies the approximate solution of the linear programming problems with respect to x
and y alternatively.

Now let us formulate the convergence theorem for this method.

Theorem 4. Let F (·) be an upper-bounded function on X × Y ; suppose ρs > 0, s = 1, 2, . . . , and
∞∑
s=1

ρs < +∞. Then the sequence of points (xs, ys) from the X-procedure converges to (x̂, ŷ) in such a way

that

F (x̂, ŷ) > F (x̂, y) ∀y ∈ Y, (5.7)

F (x̂, ŷ) > F (x, ŷ) ∀x ∈ X. (5.8)

The pair (x̂, ŷ) is called the critical point for (5.2) if inequalities (5.7) and (5.8) hold. This point is a partial
global solution to (5.2) with respect to x and y separately.

When the algorithm terminates (i.e., inequality (5.6) holds), we obtain an approximate critical point
for (5.2).

Further, let us emphasize some properties of the algorithm. First, the algorithm initially uses only the
component x0 from the pair (x0, y0). Second, the pair (x0, y0) may be unfeasible. Regardless the latter fact, the
convergence of the X-procedure has been proved.

Below we propose another “symmetric” method for a local search in problem (5.2). In order to start this
algorithm, only the component y0 from the pair (x0, y0) is used.
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The Y-procedure

Step 0. Set s := 0 and ys := y0.
Step 1. Find a ρs/2-solution xs+1 to the linear problem

〈c+Qys, x〉 ↑ max
x

, x ∈ X, (LPx)

so that the following inequality should hold:

〈c+Qys, xs+1〉+ ρs/2 > sup
x

{
〈c+Qys, x〉

∣∣ x ∈ X
}
. (5.9)

Step 2. Find a ρs/2-solution xs+1 to the linear problem

〈d+ xs+1Q, y〉 ↑ max
y

, y ∈ Y ; (LPy)

this means that the following inequality should hold:

〈d+ xs+1Q, ys+1〉+ ρs/2 > sup
y

{
〈d+ xs+1Q, y〉

∣∣ y ∈ Y
}
. (5.10)

Step 3. If
F (xs+1, ys+1)− F (xs+1, ys) 6 τ, (5.11)

where τ is a solution accuracy, then stop. Otherwise, put s := s+ 1 and go to Step 1.

Theorem 5. Under the conditions of Theorem 4, the sequence (xs, ys) constructed by the Y-procedure

converges to (x̂, ŷ), which satisfies conditions (5.7) and (5.8).

It should be noted that both the X- and Y-procedures converge to the point with the same properties; this
point turns out to be critical for problem (5.2).

5.3. Global search algorithm in bilinear problems. Further, as in Sections 3 and 4, the global search
algorithm for the bilinear problem is presented.

Suppose (x0, y0) ∈ D
△
= X × Y is a starting point, {τk}, {δk} are two numbers sequences, τk, δk > 0,

k = 0, 1, 2, . . ., τk ↓ 0, δk ↓ 0, (k → ∞).
In addition, let Dir =

{
(u1, v1), . . . , (uN , vN ) ∈ R

m+n
∣∣ (us, vs) 6= 0, s = 1, . . . , N

}
be a set of vectors,

γ−
△
= inf (g,D), γ+

△
= sup (g,D), and ν and q be some scalars.

Step 0. Let k := 1, (x k, y k) := (x0, y0), s := 1, p := 1, γ := γ−, and △γ = (γ+ − γ−)/q.
Step 1. Starting with (x k, y k) ∈ D, by the X-procedure or the Y-procedure obtain a τk-critical point

(xk, yk) ∈ D for (5.2), here F (xk, yk) > F (x k, y k). Set ζk := F (xk, yk).
Step 2. Compute the point (u s, v s) with the aid of (us, vs) ∈ Dir; here (u s, v s) = λs(u

s, vs) and
f(u s, v s) = γ + ζk.

Step 3. If g(u s, v s) > γ + νγ, then set s := s+ 1 and go to Step 2 else go to Step 4.
Step 4. Starting with (u s, v s), by the X-procedure or the Y-procedure obtain a δk-critical point for (5.2):

(x̂ s, ŷ s) ∈ D.
Step 5. Find a point (xs

0, y
s
0), f(x

s
0, y

s
0) = γ + ζk, satisfying the following inequality:

〈
∇xf(x

s
0, y

s
0), x̂

s − xs
0

〉
+
〈
∇yf(x

s
0, y

s
0), ŷ

s − ys0
〉
+ δk >

> sup
x,y

{〈
∇xf(x, y), x̂

s − x
〉
+
〈
∇yf(x, y), ŷ

s − y
〉
: f(x, y) = γ + ζk

}
.

(5.12)

Step 6. Compute

ηk(γ) = γ − g(x̂ s, ŷ s) +
〈
∇xf(x

s
0, y

s
0), x̂

s − xs
0

〉
+
〈
∇yf(x

s
0, y

s
0), ŷ

s − ys0
〉
. (5.13)

Step 7. If ηk(γ) 6 0, s < N, then set s := s+ 1 and go to Step 2.
Step 8. If ηk(γ) 6 0, s = N , then set γ := γ +△γ, s := p and go to Step 2.
Step 9. If ηk(γ) > 0, then set (x k+1, y k+1) := (x̂ s, ŷ s), k := k + 1, s := s+ 1, p := s and go to Step 1.
Step 10. If s = N , ηk(γ) 6 0 ∀γ ∈ [γ−, γ+] then stop.

Let us explain some specific properties of the above algorithm.
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At Step 2 we construct the level surface approximation of f(·) with the aid of the set of vectors from Dir.
At Step 3 we choose the points of level surface approximation satisfying the inequality from global optimality
conditions (see [9]). The scalar ν is the first parameter of the algorithm by which one can change the precision
of the inequality at Step 3. At Step 4 we implement an additional local search instead of solving one linearized
problem.

At Step 6 we compute the quality estimate of the algorithm’s iteration. At Steps 7 – 10 we check the stopping
criterion and perform loops in the internal (generated by the points of the level surface approximation and the
partition of the segment [γ−, γ+]) and the external (generated by the critical points) cycles. The scalar q is
the second parameter of the algorithm by which one can change the number of the above-mentioned segment
partition.

The above algorithm was tested for a special disjoint bilinear problem. This problem is equivalent to the
problem of finding the Nash equilibrium point for bimatrix games [20]. The computational simulations are
described in the next subsections.

5.4. Bimatrix games. Recall the definition of the Nash equilibrium point in a bimatrix game Γ(A,B).
Definition 2. A point (x∗, y∗) ∈ Sm × Sn is called the Nash equilibrium point for the bimatrix game

Γ(A,B) if the following inequalities hold:

〈x∗, Ay∗〉 > 〈x,Ay∗〉, ∀x ∈ Sm ,

{
x | xi > 0,

m∑

i=1

xi = 1

}
,

〈x∗, By∗〉 > 〈x∗, By〉, ∀y ∈ Sn ,

{
y | yj > 0,

n∑

j=1

yj = 1

}
.

(5.14)

The set of all such points is denoted by NE(Γ).

Theorem 6 [30, 31]. A point (x∗, y∗) is the Nash equilibrium point for a bimatrix game Γ(A,B) if and

only if it is a part of the global solution (x∗, y∗, α∗, β∗) ∈ R
m+n+2 of the following mathematical programming

problem:

F (x, y, α, β)
△
=
〈
x, (A+B)y

〉
− α− β ↑ max , (x, β, y, α) ∈ X × Y, (5.15)

where X =
{
(x, β) ∈ Sm × R

∣∣ xTB 6 βen
}
, Y =

{
(y, α) ∈ Sn × R

∣∣ Ay 6 αem
}
, ep = (1, 1, . . . , 1)T ∈ R

p, and

p = m, n.

At the same time, the numbers α∗ and β∗ are the profits of the first and the second players in the

game Γ(A,B), respectively: 〈x∗, Ay∗〉 = α∗ and 〈x∗, By∗〉 = β∗; the optimum value of the goal function of

problem (5.15) is zero:

F (x∗, y∗, α∗, β∗) = 0. (5.16)

Note that problem (5.15) is a bilinear one. Therefore, for finding an approximate Nash equilibrium point
one can apply the global search algorithm proposed in Subsection 5.3.

In addition, we have to add two extra stopping criteria to the scheme after implementation of local search
at Steps 1 and 4 in the same way as was made during the process of solving the polyhedral separation problem.

5.5. Numerical experiments. In Table 4 one can see the results of solution for randomly generated series
of bimatrix games. The dimension of games varies from (5× 5) up to (200× 200).

First of all we would like to note that during the computational simulation we have selected the X-procedure
to implement the local search. For solving linear problems by the X-procedure, a realization of the simplex
method and its dual variant have been applied and the best results (with respect to the solution time) have
been included in this table.

For constructing the level surface approximation at Step 2 of the algorithm and for the level problem at
Step 5, analytical solutions can be given [20].

Constructing a level surface approximation was performed with the aid of the three direction sets. The first
one is formed by the standard basis vectors: Dir1 =

{
(ei, ej), i = 1, . . . ,m, j = 1, . . . , n

}
.

To form the second direction set, the vectors ei and ej are combined with the vector (x, y), which is included
in the current critical point (x, y, α, β) of problem (5.15) obtained by the local search procedure:

Dir2 =
{
(ei + x, ej + y), i = 1, . . . ,m, j = 1, . . . , n

}
.

The third direction set is constructed with the aid of elements of the matrices A and B and the all-one
vectors ep, p = m, n: Dir3 =

{
(aj + em, bi + en), i = 1, . . . ,m, j = 1, . . . , n

}
. Here aj ∈ R

m are columns of A
and bi ∈ R

n are rows of B.
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Table 4

m = n Nm UnS CntLoc Loc LocA T TA

5 100000 66 45012 1191424 11.9 5 : 52.87 0 : 00.00

10 10000 4 2272 189484 18.9 2 : 51.90 0 : 00.01

15 10000 0 1370 110628 11.1 6 : 40.21 0 : 00.04

20 10000 0 967 93764 9.4 15 : 25.98 0 : 00.09

25 1000 0 73 11655 11.7 3 : 09.65 0 : 00.18

30 1000 0 51 15875 15.9 6 : 43.68 0 : 00.40

35 1000 0 39 15838 15.8 11 : 45.26 0 : 00.70

40 100 0 0 2522 25.2 2 : 46.67 0 : 01.66

45 100 0 2 3016 30.2 5 : 09.06 0 : 03.09

50 100 0 0 3514 35.1 11 : 33.34 0 : 06.93

55 100 0 2 4710 47.1 20 : 19.67 0 : 12.19

60 50 0 1 3349 67.0 31 : 42.62 0 : 38.05

65 50 0 0 2376 47.5 29 : 34.12 0 : 35.48

70 20 0 0 1595 79.8 43 : 04.34 2 : 09.21

75 20 0 0 1156 57.8 27 : 01.78 1 : 21.08

80 10 0 0 397 39.7 11 : 23.42 1 : 08.34

85 10 0 0 794 79.4 31 : 37.43 3 : 09.74

90 5 0 0 457 91.4 36 : 15.92 7 : 15.18

95 5 0 0 526 105.2 32 : 10.01 6 : 26.00

100 5 0 0 1166 233.2 102 : 30.93 20 : 30.18

110 2 0 0 225 112.5 40 : 12.56 20 : 06.28

120 2 0 0 162 81.0 29 : 51.78 14 : 55.89

130 2 0 0 163 81.5 47 : 42.60 23 : 51.30

140 1 0 0 149 149.0 30 : 33.53 30 : 33.53

150 1 0 0 158 158.0 61 : 02.09 61 : 02.09

175 1 0 0 204 204.0 180 : 56.01 180 : 56.01

200 1 0 0 221 221.0 347 : 30.73 347 : 30.73

In Table we use the following notation: m and n are the numbers of the pure strategies of the players;
Nm is the number of problems in the series; UnS is the number of unsolved problems in the series (when a
given accuracy has not been reached); CntLoc is the number of problems from the series solved only by the
local search procedure at Step 1 of the algorithm; Loc is the number of the performed local searches; LocA is
the average number of starts of the local search procedure for only one problem; T is the total working time of
the software programs (minutes:seconds.parts of second on Pentium-4, 3.2 GHz, 1 Gb RAM); TA is the average
time needed to solve one problem.

It can be readily seen that almost all of the problems generated have been solved with the prescribed
accuracy. The accuracy for the problems of dimension up to (100 × 100) was equal to 10−4, whereas for the
problems of dimension larger than (100× 100) it was 10−3. A number of problems have been solved only with
the aid of the local search method in the case when the problem dimension was not so large.
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Furthermore, the average time needed to solve one problem monotonically grows up to the dimension (60×
60), then it decreases sometimes, but, on the whole, it keeps the tendency to increase. This fact can be explained
by a lack of the necessary number of generated problems of large dimension.

The average number of starts of the local search procedure increases with the dimension and rises approximately
from 10 for small problems up to 100 – 200 for the problems of large dimension.

As for finding an approximate Nash equilibrium point, one of the encouraging results of computational
simulation is the solution of the example of dimension (200 × 200) within a reasonable time, whereas in the
publications available the results of dimension only up to (96× 96) can be found [32].

It should be noted that the algorithm spends much solution time on solving the linear problems, which is
considered to be a satisfactory result. Now we hope to apply contemporary linear programming packages (e.g.,
CPLEX), which will allow us to increase the dimension of the games to be solved.

6. Conclusion. In this paper we have demonstrated the efficiency of the global search theory combined
with the variational approach with respect to the problems from various mathematical fields. We proposed the
global search algorithms for systems of nonlinear equations, problems of polyhedral separability, and a special
problem of bilinear programming related to the bimatrix games.

All algorithms have been tested on the basis of a large number of numerical experiments. The results of
our computational simulation confirm the efficiency of the algorithms developed and, being integrated with the
previous results, certify some attractive advantages of the approach based on the global optimality conditions
discussed in [9 – 20].
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