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Аннотация: Представлен новый масштабируемый алгоритм AlEM для решения задач линей-
ного программирования на кластерных вычислительных системах. В отличие от классического
симплекс-метода, алгоритм AlEM на каждом шаге исследует все исходящие из текущей верши-
ны ребра многогранника допустимых решений, что гарантирует построение субоптимального
пути и полностью исключает возможность зацикливания на вырожденных задачах. Приведе-
но формализованное описание алгоритма и его параллельной реализации с использованием
библиотеки MPI. Экспериментально исследована масштабируемость параллельной версии ал-
горитма на реальных и модельных задачах линейного программирования. Результаты вычис-
лительных экспериментов подтверждают высокую параллельную эффективность алгоритма
AlEM, которая сохраняется на уровне не менее 46% при использовании до 200 процессорных
узлов. Показано, что алгоритм AlEM является возможной альтернативой существующим ме-
тодам линейного программирования для высокопроизводительных вычислений.
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Abstract: A new scalable AlEM algorithm for linear programming on cluster computing systems
is presented. Unlike the classical simplex method, the AlEM algorithm, at each step, examines
all edges coming from the current vertex of the polytope of feasible solutions, which guarantees
the construction of a suboptimal path and completely prevents circling in degenerate problems.
A formalized description of the algorithm and its parallel implementation using the MPI library is
given. The scalability of the parallel version of the algorithm on real and synthetic linear programming
problems has been experimentally investigated. The results of computational experiments confirm
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1. Введение. Линейное программирование (ЛП) является одной из наиболее востребованных оп-
тимизационных математических моделей, используемых для решения практических задач в индустрии,
экономике, науке и других областях [1–3]. К настоящему моменту разработано и исследовано большое ко-
личество методов и алгоритмов ЛП [4]. Наиболее популярным и широко используемым является симплекс-
метод [5], позволяющий эффективно решать широкий класс реальных задач ЛП с числом переменных
до 50000 [6]. Однако симплекс-методу присущи определенные недостатки, среди которых выделим следу-
ющие: чувствительность к вырожденным задачам и ограниченная масштабируемость.

Используя терминологию симплекс-метода, вырожденную задачу ЛП можно определить как задачу,
у которой существуют два различных базиса, соответствующих одному и тому же допустимому базисному
решению [7]. В этом случае итерации симплекс-метода могут выполняться без изменения значения целевой
функции, что приводит к замедлению (stalling) работы алгоритма. Более того, может возникнуть ситу-
ация, когда при выполнении подобных “холостых” итераций симплекс-метод придет к базису, который
уже был построен ранее. Данный эффект называется зацикливанием (cycling). Известно, что зацикли-
вание может встречаться при решении практических задач ЛП [8, 9]. Существует несколько известных
подходов, позволяющих предотвратить зацикливание симплекс-метода, однако эти подходы оказываются
эффективными не во всех случаях [10].

На практике встречаются большие задачи ЛП, включающие в себя десятки, а иногда и сотни тысяч
ограничений и переменных [2, 11, 12]. Такие задачи могут потребовать значительных процессорных ресур-
сов. В соответствии с этим научным сообществом были предприняты интенсивные попытки по разработке
различных подходов к распараллеливанию классического симплекс-метода и его вариаций. Определен-
ные успехи были достигнуты в распараллеливании некоторых классов задач ЛП с сильно разреженными
матрицами и матрицами блочно-диагонального типа. Однако реальная масштабируемость параллельных
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реализаций симплекс-метода в большинстве случаев не превышала 16–32 процессорных узлов на кла-
стерной вычислительной системе с распределенной памятью. До настоящего времени не удалось создать
параллельную реализацию симплекс-метода, которая в общем случае превосходила бы по быстродействию
последовательные коммерческие решатели [13].

В данной работе предлагается новый масштабируемый алгоритм проекционного типа AlEM (Along
Edges Movement) для линейного программирования на многопроцессорных системах с распределенной
памятью. Подобно симплекс-методу, алгоритм AlEM строит путь на границе многогранника допустимых
решений задачи ЛП, проходя по ребрам от вершины к вершине, пока не достигнет вершины с оптимальным
значением целевой функции. Принципиальное отличие алгоритма AlEM от симплекс-метода заключается
в следующем. Пусть имеется задача ЛП с системой ограничений 𝐴𝑥 ⩽ 𝑏 и стартовая точка 𝑥̂, являющая-
ся вершиной многогранника допустимых решений 𝑀 = {𝑥|𝐴𝑥 ⩽ 𝑏} в пространстве R𝑛. Симплекс-метод
выделяет из исходной системы базисную подсистему 𝐴̂𝑥 ⩽ 𝑏̂ такую, что 𝐴̂𝑥̂ = 𝑏̂ и 𝐴̂ — невырожденная
матрица. Далее происходит замена одной базисной строки на другую так, чтобы при переходе к следую-
щей вершине значение целевой функции увеличилось. При этом симплекс-метод использует только один
вариант построения базиса из множества возможных, общее число которых вычисляется по формуле

𝐶𝑛
𝑚 =

𝑚!

𝑛!(𝑚− 𝑛)!
,

где 𝑚 обозначает количество уравнений в системе 𝐴𝑥 = 𝑏, для которых текущая вершина является реше-
нием. В отличие от симплекс-метода, алгоритм AlEM исследует все ребра, исходящие из текущей вершины.
Это полностью исключает возможность зацикливания алгоритма AlEM на вырожденных задачах. Кроме
того, алгоритм AlEM позволяет построить субоптимальный путь1 к решению задачи ЛП. В частности,
для куба Кле–Минти [14] размерности 𝑛 алгоритм AlEM находит решение за одну итерацию, в то время
как симплекс-методу для решения этой задачи требуется 𝑛! итераций. В дополнение к вышесказанному,
алгоритм AlEM допускает параллельную реализацию, эффективно масштабируемую на сотнях процес-
сорных узлов кластерной вычислительной системы. Отметим, что AlEM неприменим к оптимизационным
задачам, область допустимых решений которых представляет собой невыпуклый многогранник, так как
при поиске максимума целевой функции AlEM может двигаться по ребрам только в сторону увеличения
ее значений. При попадании в локальный максимум алгоритм не сможет оттуда выбраться.

Статья организована следующим образом. В разделе 2 представлены определения и утверждения,
используемые при описании алгоритма AlEM. Раздел 3 содержит формализованное описание алгоритма
AlEM. Раздел 4 посвящен параллельной версии алгоритма AlEM. В разделе 5 представлены информа-
ция о программной реализации параллельной версии алгоритма AlEM и результаты экспериментов на
кластерной вычислительной системе по исследованию ее масштабируемости на реальных и модельных
задачах ЛП. В разделе 6 суммируются полученные результаты и приводятся направления дальнейших
исследований. Сводка обозначений, используемых в статье, приведена в разделе 7.

2. Основные понятия. Данный раздел содержит основные понятия, определения и утверждения,
необходимые для формализованного описания алгоритма AlEM.

В евклидовом пространстве R𝑛 рассматривается задача ЛП общего вида, содержащая 𝑚 неравенств
и 𝑘 уравнений:

⟨𝑎1,𝑥⟩ ⩽ 𝑏1,

. . . . . . . . .

⟨𝑎𝑚,𝑥⟩ ⩽ 𝑏𝑚,

⟨𝑎𝑚+1,𝑥⟩ = 𝑏𝑚+1,

. . . . . . . . .

⟨𝑎𝑚+𝑘,𝑥⟩ = 𝑏𝑚+𝑘.

(1)

Здесь и далее ⟨*, *⟩ обозначает скалярное произведение двух векторов. Предполагается, что система (1)

1Путь является субоптимальным, если из всех возможных вершин в качестве следующей выбирается вершина с опти-
мальным значением целевой функции.
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включает в себя также неравенства вида
−𝑥1 ⩽ 0,

· · · · · · · · ·
−𝑥𝑛 ⩽ 0.

Необходимо найти точку в области допустимых решений системы (1), в которой достигается максимум
линейной целевой функции

𝐹 (𝑥) = ⟨𝑐,𝑥⟩ .

Указанную систему ограничений можно представить в матричном виде

𝐴̂𝑥 ⩽ 𝑏̂,

𝐴̄𝑥 = 𝑏̄,

где 𝐴̂ ∈ R𝑚×𝑛, 𝐴̄ ∈ R𝑘×𝑛, 𝑏̂ ∈ R𝑚, 𝑏̄ ∈ R𝑘. Предполагается, что размерность пространства 𝑛 > 1,
количество уравнений 𝑘 ⩾ 0. Без ограничения общности мы можем полагать, что матрица 𝐴̄ имеет полный
ранг:

rank
(︀
𝐴̄
)︀
= 𝑘. (2)

Отсюда следует, что
𝑘 < 𝑛,

так как в противном случае область допустимых решений вырождается в точку.
Обозначим через 𝐼 множество индексов строк матрицы 𝐴̂, и через 𝐼 — множество индексов строк

матрицы 𝐴̄:

𝐼 = {1, . . . ,𝑚},
𝐼 = {𝑚+ 1, . . . ,𝑚+ 𝑘}.

Подсистема
𝐴̂𝑥 ⩽ 𝑏̂

задает 𝑚 замкнутых полупространств2

𝑃1 = {𝑥 ∈ R𝑛|⟨𝑎1,𝑥⟩ ⩽ 𝑏1} ,
. . . . . . . . . . . . . . . . . . . . . . . . . . .

𝑃𝑚 = {𝑥 ∈ R𝑛|⟨𝑎𝑚,𝑥⟩ ⩽ 𝑏𝑚} .
(3)

Здесь 𝑎1, . . . ,𝑎𝑚 обозначают строки матрицы 𝐴̂, 𝑏1, . . . , 𝑏𝑚 — элементы столбца 𝑏̂. Пересечение полупро-
странств (3) образует замкнутый выпуклый многогранник 𝑀̂ , называемый ограничивающим:

𝑀̂ =
⋂︁
𝑖∈𝐼

𝑃𝑖.

Полупространства (3) ограничиваются гиперплоскостями, называемыми граничными:

𝐻1 = {𝑥 ∈ R𝑛|⟨𝑎1,𝑥⟩ = 𝑏1} ,
. . . . . . . . . . . . . . . . . . . . . . . . . . .

𝐻𝑚 = {𝑥 ∈ R𝑛|⟨𝑎𝑚,𝑥⟩ = 𝑏𝑚} .

Соответствующие уравнения
⟨𝑎1,𝑥⟩ = 𝑏1,

. . . . . . . . . . . .

⟨𝑎𝑚,𝑥⟩ = 𝑏𝑚

(4)

также будем называть граничными.

2Здесь и далее мы опускаем прилагательное “аффинных” в отношении полупространств, гиперплоскостей и подпро-
странств.
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Подсистема
𝐴̄𝑥 = 𝑏̄

задает 𝑘 гиперплоскостей, называемых опорными:

𝐻𝑚+1 = {𝑥 ∈ R𝑛|⟨𝑎𝑚+1,𝑥⟩ = 𝑏𝑚+1} ,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

𝐻𝑚+𝑘 = {𝑥 ∈ R𝑛|⟨𝑎𝑚+𝑘,𝑥⟩ = 𝑏𝑚+𝑘} .

Соответствующие уравнения
⟨𝑎𝑚+1,𝑥⟩ = 𝑏𝑚+1,

. . . . . . . . . . . . . . . . . .

⟨𝑎𝑚+𝑘,𝑥⟩ = 𝑏𝑚+𝑘

(5)

также будем называть опорными. Здесь 𝑎𝑚+1, . . . ,𝑎𝑚+𝑘 обозначают строки матрицы 𝐴̄, 𝑏𝑚+1, . . . , 𝑏𝑚+𝑘 —
элементы столбца 𝑏̄. Пересечение опорных гиперплоскостей образует подпространство, называемое опор-
ным:

𝑆̄ =

⎧⎨⎩
⋂︀
𝑖∈𝐼

𝐻𝑚+𝑖 , если 𝐼 ̸= ∅,

R𝑛 , если 𝐼 = ∅.

Область допустимых решений системы (1) является пересечением ограничивающего многогранника
𝑀̂ с опорным подпространством 𝑆̄ и представляет собой замкнутый выпуклый многогранник 𝑀 , называ-
емый допустимым:

𝑀 = 𝑆̄ ∩ 𝑀̂.

В частности,
𝑀 ⊂ 𝑆̄.

Мы будем предполагать, что допустимый многогранник 𝑀 является непустым ограниченным множеством.
В этом случае задача ЛП имеет решение.

Следующее утверждение будет использовано алгоритмом AlEM для прохода по ребру от одной вер-
шины к другой.

Утверждение 1. Пусть заданы точка 𝑣 ∈ 𝑀 , произвольный вектор 𝑑 ∈ R𝑛 и полупространство

𝑃𝑖 = {𝑥 ∈ R𝑛|⟨𝑎𝑖,𝑥⟩ ⩽ 𝑏𝑖} ,

ограниченное гиперплоскостью
𝐻𝑖 = {𝑥 ∈ R𝑛|⟨𝑎𝑖,𝑥⟩ = 𝑏𝑖} ,

где 𝑖 ∈ 𝐼. Определим луч, исходящий из точки 𝑣 в направлении вектора 𝑑:

𝑋 = {𝑥 ∈ R𝑛|𝑥 = 𝑣 + 𝜆𝑑, 𝜆 ⩾ 0} .

Тогда

если ⟨𝑎𝑖,𝑑⟩ ⩽ 0, то 𝑋 ⊂ 𝑃𝑖, (6)

если ⟨𝑎𝑖,𝑑⟩ > 0, то 𝑋 ∩𝐻𝑖 = 𝑣 +
𝑏𝑖 − ⟨𝑎𝑖,𝑣⟩
⟨𝑎𝑖,𝑑⟩

𝑑. (7)

Другими словами, луч, исходящий из принадлежащей допустимому многограннику 𝑀 точки 𝑣 в на-
правлении 𝑑, пересечет гиперплоскость 𝐻𝑖 в том и только в том случае, когда ⟨𝑎𝑖,𝑑⟩ > 0. При этом
точка пересечения может быть вычислена по формуле (7).

Доказательство. Так как 𝑣 ∈ 𝑀 , то 𝑣 ∈ 𝑃𝑖, т.е.

⟨𝑎𝑖,𝑣⟩ ⩽ 𝑏𝑖. (8)

Пусть 𝑦 — произвольная точка луча 𝑋:
𝑦 = 𝑣 + 𝜆𝑑.
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Тогда
⟨𝑎𝑖,𝑦⟩ = ⟨𝑎𝑖,𝑣⟩+ 𝜆 ⟨𝑎𝑖,𝑑⟩ . (9)

Предположим, что
⟨𝑎𝑖,𝑑⟩ ⩽ 0. (10)

Так как 𝜆 ⩾ 0, то из (8), (9) и (10) следует
⟨𝑎𝑖,𝑦⟩ ⩽ 𝑏𝑖,

т.е. 𝑋 ⊂ 𝑃𝑖. Таким образом, (6) имеет место.
Пусть теперь

⟨𝑎𝑖,𝑑⟩ > 0. (11)

Положим
𝜆′ =

𝑏𝑖 − ⟨𝑎𝑖,𝑣⟩
⟨𝑎𝑖,𝑑⟩

+ 1.

Из (8) и (11) следует, что 𝜆′ > 0, т.е.
𝑣 + 𝜆′𝑑 ∈ 𝑋.

Имеем:

⟨𝑎𝑖,𝑣 + 𝜆′𝑑⟩ =
⟨
𝑎𝑖,𝑣 +

(︂
𝑏𝑖 − ⟨𝑎𝑖,𝑣⟩
⟨𝑎𝑖,𝑑⟩

+ 1

)︂
𝑑

⟩
=

⟨
𝑎𝑖,𝑣 +

𝑏𝑖 − ⟨𝑎𝑖,𝑣⟩
⟨𝑎𝑖,𝑑⟩

𝑑+ 𝑑

⟩
= 𝑏𝑖 + ⟨𝑎𝑖,𝑑⟩.

Сопоставляя это с (11), получаем:
⟨𝑎𝑖,𝑣 + 𝜆′𝑑⟩ > 𝑏𝑖,

т.е. принадлежащая лучу 𝑋 точка 𝑣+𝜆′𝑑 не принадлежит полупространству 𝑃𝑖. Учитывая, что начальная
точка луча принадлежит полупространству 𝑃𝑖, можно сделать вывод, что луч 𝑋 пересекает граничную

гиперплоскость 𝐻𝑖 в единственной точке. В силу (8) и (11) точка 𝑣 +
𝑏𝑖 − ⟨𝑎𝑖,𝑣⟩
⟨𝑎𝑖,𝑑⟩

𝑑 принадлежит лучу 𝑋.

Непосредственно проверяется, что эта точка также удовлетворяет уравнению⟨
𝑎𝑖,𝑣 +

𝑏𝑖 − ⟨𝑎𝑖,𝑣⟩
⟨𝑎𝑖,𝑑⟩

𝑑

⟩
= 𝑏𝑖,

т.е. принадлежит граничной гиперплоскости 𝐻𝑖. Утверждение 1 доказано.

Обозначим

𝐴 =

[︃
𝐴̂

𝐴̄

]︃
.

Пусть 𝐽 ⊆ 𝐼 ∪ 𝐼 и пусть 𝐴𝐽 — матрица, включающая в себя строки матрицы 𝐴, индексы которых присут-
ствуют в 𝐽 .

Следующее утверждение позволяет проверить, что точка является вершиной допустимого много-
гранника.

Утверждение 2. Пусть 𝑣 ∈ 𝑀 , ℐ̂(𝑣) — множество индексов всех граничных уравнений, которым
удовлетворяет точка 𝑣:

ℐ̂(𝑣) =
{︁
𝑖 ∈ 𝐼

⃒⃒⃒
⟨𝑎𝑖,𝑣⟩ = 𝑏𝑖

}︁
.

Следующие условия являются равносильными:
(i) 𝑣 является вершиной допустимого многогранника 𝑀 ,

(ii) rank
(︁
𝐴ℐ̂(𝑣)∪𝐼

)︁
= 𝑛.

Доказательство. Сначала покажем, что из (i) следует (ii). Пусть 𝑣 является вершиной допустимого
многогранника 𝑀 . C учетом (2) это означает, что точка 𝑣 является единственным решением системы
линейных алгебраических уравнений ранга 𝑛, в которую входят 𝑘 опорных уравнений (5) и 𝑛−𝑘 из числа
граничных уравнений (4). Таким образом, имеет место следующее утверждение:

∃𝐽 ⊆ ℐ̂(𝑣) :
⃒⃒⃒
𝐽
⃒⃒⃒
= 𝑛− 𝑘 ∧ rank

(︀
𝐴𝐽∪𝐼

)︀
= 𝑛.
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Следовательно,
rank

(︁
𝐴ℐ̂(𝑣)∪𝐼

)︁
⩾ rank

(︀
𝐴𝐽∪𝐼

)︀
= 𝑛.

Учитывая, что ранг матрицы 𝐴ℐ̂(𝑣)∪𝐼 не может быть больше 𝑛, так как в этой матрице 𝑛 столбцов,
получаем

rank
(︁
𝐴ℐ̂(𝑣)∪𝐼

)︁
= 𝑛,

т.е. условие (ii) выполняется.
Теперь покажем, что из (ii) следует (i). Пусть выполняется условие

rank
(︁
𝐴ℐ̂(𝑣)∪𝐼

)︁
= 𝑛.

Рассмотрим систему уравнений
𝐴ℐ̂(𝑣)∪𝐼𝑥 = 𝑏ℐ̂(𝑣)∪𝐼 . (12)

Если количество уравнений в этой системе равно 𝑛, то точка 𝑣 будет единственным решением. Это озна-
чает, что точка 𝑣 является вершиной допустимого многогранника 𝑀 . Предположим, что количество урав-
нений в системе (12) больше, чем 𝑛. В этом случае последовательно удалим из системы (12) все лишние
уравнения, соответствующие граничным гиперплоскостям, так, чтобы ранг системы не изменился. В ре-
зультате мы получим эквивалентную систему с квадратной матрицей ранга 𝑛. Точка 𝑣 будет единственным
решением этой системы, т.е. 𝑣 будет вершиной допустимого многогранника 𝑀 . Таким образом, условие (i)
выполняется во всех случаях. Утверждение 2 доказано.

Следующее определение помогает идентифицировать ребра допустимого многогранника, выходящие
из некоторой вершины.

Определение 1. Вершинной прямой по отношению к вершине 𝑣 ∈ 𝑀 будем называть прямую 𝐿𝑣
𝐽
,

задаваемую формулой

𝐿𝑣
𝐽
=

⎧⎨⎩𝑥 ∈
⋂︁

𝑖∈𝐽∪𝐼

𝐻𝑖

⃒⃒⃒⃒
⃒⃒ 𝐽 ⊆ ℐ̂(𝑣),

⃒⃒⃒
𝐽
⃒⃒⃒
= 𝑛− 𝑘 − 1, rank

(︀
𝐴𝐽

)︀
= 𝑛− 𝑘 − 1, rank

(︀
𝐴𝐽∪𝐼

)︀
= 𝑛− 1

⎫⎬⎭ . (13)

Любая вершинная прямая 𝐿𝑣
𝐽

проходит через вершину 𝑣. Через 𝑣 может проходить несколько раз-
личных вершинных прямых. Для каждого ребра 𝐷, исходящего из вершины 𝑣, существует вершинная
прямая 𝐿𝑣

𝐽
такая, что 𝐷 ⊂ 𝐿𝑣

𝐽
.

Вершинную прямую 𝐿𝑣
𝐽

можно задать в параметрическом виде следующим образом:

𝐿𝑣
𝐽
= {𝑥 ∈ R𝑛|𝑥 = 𝑣 + 𝜆𝑑, 𝜆 ∈ R} ,

где 𝑑 ∈ R𝑛 — направляющий вектор, вычисляемый по формуле

𝑑 = 𝑤 − 𝑣, (14)

где
𝑤 = 𝜋𝐽∪𝐼(𝑣 + 𝑔). (15)

Здесь 𝜋𝐽∪𝐼(*) обозначает ортогональную проекцию на подпространство
⋂︀

𝑖∈𝐽∪𝐼

𝐻𝑖, образующее вершинную

прямую 𝐿𝑣
𝐽

в соответствии с формулой (13). В качестве 𝑔 может быть выбран произвольный ненулевой
вектор, не являющийся ортогональным по отношению к прямой 𝐿𝑣

𝐽
. В этом случае 𝑤 ̸= 𝑣. Ортогональная

проекция 𝜋𝐽∪𝐼(*) может быть вычислена по следующей формуле [15]:

𝜋𝐽∪𝐼(𝑥) = 𝑥−𝐴𝑇
𝐽∪𝐼

(︀
𝐴𝐽∪𝐼𝐴

𝑇
𝐽∪𝐼

)︀−1 (︀
𝐴𝐽∪𝐼𝑥− 𝑏𝐽∪𝐼

)︀
. (16)

Заметим, что в соответствии с (2) и (13) матрица 𝐴𝐽∪𝐼 имеет полнострочный ранг. Поэтому матрица
𝐴𝐽∪𝐼𝐴

𝑇
𝐽∪𝐼

будет обратимой (см. утверждение 3F в [16]).

3. Алгоритм AlEM. Данный раздел содержит формализованное описание алгоритма AlEM, стро-
ящего из произвольной вершины допустимого многогранника субоптимальный путь вдоль его ребер к
вершине, являющейся решением задачи ЛП. Субоптимальность пути заключается в том, что всегда вы-
бирается ребро, имеющее наибольшее значение целевой функции в своей конечной точке. Алгоритм AlEM
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Алгоритм 1. AlEM

Algorithm 1. AlEM

1: input 𝐴, 𝑏, 𝑐,𝑣

2: 𝑣0 := 𝑣

3: 𝑡 := 0

4: repeat
5: 𝑣𝑡+1 := Traverse(𝑣𝑡)

6: 𝑡 := 𝑡+ 1

7: until 𝑣𝑡 = 𝑣𝑡−1

8: output 𝑣𝑡

9: stop

требует, чтобы начальная точка 𝑣 ∈ 𝑀 являлась вершиной.
В соответствии с утверждением 2 для этого необходимо про-
верить условие rank(𝐴ℐ̂(𝑣)∪𝐼) = 𝑛. Начальная вершина мо-
жет быть получена, например, с помощью метода исключе-
ния переменных Фурье–Моцкина [17]. Если известна неко-
торая допустимая точка 𝑢 ∈ 𝑀 , то вершина многогранника
𝑀 может быть найдена с помощью алгоритма VeSP [18] не
более чем за 𝑛 итераций. Псевдокод алгоритма AlEM пред-
ставлен в виде алгоритма 1.

Прокомментируем шаги алгоритма 1. На шаге 1 вво-
дятся исходные данные задачи ЛП и некоторая вершина 𝑣

допустимого многогранника 𝑀 , которая на шаге 2 использу-
ется в качестве начальной вершины 𝑣0. На шаге 3 счетчику
итераций 𝑡 присваивается значение 0. Цикл repeat/until с
помощью функции Traverse, представленной ниже в виде алгоритма 2, строит субоптимальный путь, про-
ходя от вершины к вершине по ребрам допустимого многогранника 𝑀 . При этом функция Traverse в
каждой вершине исследует все исходящие ребра и выбирает ребро, ведущее к вершине с наибольшим
значением целевой функции. В результате получается последовательность вершин

𝑣0,𝑣1, . . . ,𝑣𝑡,𝑣𝑡+1, . . . ,

такая, что значение целевой функции в каждой следующей вершине больше, чем в предыдущей:

⟨𝑐,𝑣0⟩ < ⟨𝑐,𝑣1⟩ < . . . < ⟨𝑐,𝑣𝑡⟩ < ⟨𝑐,𝑣𝑡+1⟩ < . . . .

Поскольку количество ограничений в системе (1) конечно, количество вершин допустимого многогранника
𝑀 также конечно. Поэтому алгоритм AlEM за конечное число итераций придет к вершине, у которой нет
исходящих ребер, ведущих к вершинам с бо́льшим значением целевой функции. В этом случае функция
Traverse в качестве результата возвращает текущую вершину 𝑣, которая и будет решением задачи ЛП.

Функция Traverse(𝑣) выполняет переход из текущей вершины 𝑣 в смежную вершину 𝑣max, имеющую
максимальное значение целевой функции среди всех смежных вершин. Для этого перебираются все вер-
шинные прямые, проходящие через 𝑣. Для каждой вершинной прямой вычисляется направляющий век-
тор, ориентированный таким образом, чтобы значение целевой функции возрастало (вершинные прямые,
перпендикулярные градиенту целевой функции, отбрасываются). С помощью направляющих векторов
вычисляются все вершины, смежные с 𝑣, у которых значение целевой функции большее, чем у исходной
вершины. Если такие вершины отсутствуют, функция Traverse возвращает в качестве результата теку-
щую вершину 𝑣. Если множество смежных вершин с бо́льшим значением целевой функции не пусто, то
Traverse возвращает в качестве результата вершину с максимальным значением целевой функции. Псев-
докод функции Traverse представлен в виде алгоритма 2.

Прокомментируем шаги алгоритма 2. На шаге 2 координатам вершины 𝑣max присваиваются коор-
динаты исходной вершины 𝑣. На шаге 3 переменной 𝐹max присваивается значение целевой функции в
исходной вершине. На шагах 4–9 вычисляется множество 𝐼𝑣, включающее в себя индексы всех гранич-
ных гиперплоскостей, проходящих через точку 𝑣. На шагах 10–11 формируется первая комбинация 𝐽 ,
включающая в себя 𝑛−𝑘− 1 индексов граничных гиперплоскостей из множества 𝐼𝑣. Для этого использу-
ется функция Twiddle, основанная на одноименной процедуре [19]. Функция Twiddle (𝑋, 𝑙, combNo), где
combNo ∈

{︁
1, . . . , 𝐶𝑙

|𝑋|

}︁
, строит все сочетания из 𝑙 элементов множества 𝑋 без повторений в определен-

ном порядке. При каждом вызове Twiddle(𝐼𝑣, 𝑛 − 𝑘 − 1, combNo) возвращает комбинацию с порядковым
номером combNo. Если значение combNo превышает количество сочетаний, то Twiddle возвращает пустое
множество. Цикл while (шаги 12–32) исследует все вершинные прямые, проходящие через 𝑣. На шаге
13 проверяется последнее условие из формулы (13). На шагах 14–22 вычисляется направляющий вектор
𝑑 в соответствии с формулой (14). Цикл repeat/until (шаги 14–17) вычисляет по формуле (15) точку
𝑤, которая лежит на исследуемой вершинной прямой и не совпадает с текущей вершиной 𝑣. Шаги 18–
22 ориентируют 𝑑 в направлении возрастания целевой функции. На шаге 23 функция LambdaM(𝑣,𝑑)

(см. ниже алгоритм 3) вычисляет максимальное неотрицательное число 𝜆𝑀 такое, что 𝑣 + 𝜆𝑀𝑑 ∈ 𝑀 .
Заметим, что при 𝜆𝑀 = 0 вершинная прямая задает ложное ребро, имеющее нулевую длину. На шаге 24
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Алгоритм 2. Функция Traverse (переход по ребру к следующей вершине)
Algorithm 2. Function Traverse (traverse edge to next vertex)

1: function Traverse(𝑣)

2: 𝑣max := 𝑣

3: 𝐹max := ⟨𝑐,𝑣⟩
4: 𝐼𝑣 := ∅
5: for 𝑖 ∈ 𝐼 do
6: if ⟨𝑎𝑖,𝑣⟩ = 𝑏𝑖 then
7: 𝐼𝑣 := 𝐼𝑣 ∪ {𝑖}
8: end if
9: end for

10: combNo := 1

11: 𝐽 := Twiddle(𝐼𝑣, 𝑛− 𝑘 − 1, combNo)

12: while 𝐽 ̸= ∅
13: if rank(𝐴𝐽∪𝐼) = 𝑛− 1 then
14: repeat
15: 𝑔 := RandomNonZeroVector()

16: 𝑤 := 𝜋𝐽∪𝐼(𝑣 + 𝑔)

17: until 𝑣 ̸= 𝑤

18: if ⟨𝑐,𝑤⟩ > ⟨𝑐,𝑣⟩ then
19: 𝑑 := 𝑤 − 𝑣

20: else
21: 𝑑 := 𝑣 −𝑤

22: end if
23: 𝜆𝑀 := LambdaM(𝑣,𝑑)

24: 𝑣next := 𝑣 + 𝜆𝑀𝑑

25: if ⟨𝑐,𝑣next⟩ > 𝐹max then
26: 𝑣max := 𝑣next

27: 𝐹max := ⟨𝑐,𝑣max⟩
28: end if
29: end if
30: combNo := combNo + 1

31: 𝐽 := Twiddle(𝐼𝑣, 𝑛− 𝑘 − 1, combNo)

32: end while
33: return 𝑣max

34: end function

Алгоритм 3. Функция LambdaM (вычисление 𝜆𝑀 )
Algorithm 3. Function LambdaM (calculating 𝜆𝑀 )

1: function LambdaM(𝑣,𝑑)

2: for 𝑖 ∈ 𝐼 do
3: if ⟨𝑎𝑖,𝑑⟩ > 0 ∧ ⟨𝑎𝑖,𝑣⟩ = 𝑏𝑖 then
4: return 0

5: end if
6: end for
7: 𝜆𝑀 := +∞
8: for 𝑖 ∈ 𝐼 do
9: if ⟨𝑎𝑖,𝑑⟩ > 0 then

10: 𝜆𝑖 := (𝑏𝑖 − ⟨𝑎𝑖,𝑣⟩)/ ⟨𝑎𝑖,𝑑⟩
11: if 𝜆𝑖 < 𝜆𝑀 then
12: 𝜆𝑀 := 𝜆𝑖

13: end if
14: end if
15: end for
16: return 𝜆𝑀

17: end function
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вычисляется смежная вершина 𝑣next, соответствующая найденному ребру (для ложного ребра получим
𝑣next = 𝑣). Если значение целевой функции в вершине 𝑣next больше 𝐹max, то обновляются значения 𝑣max

и 𝐹max (шаги 25–28). Шаги 30–31 вычисляют следующую комбинацию индексов 𝐽 . Шаг 33 в качестве
результата возвращает вершину 𝑣max, в которой достигается наибольшее значение целевой функции среди
всех рассмотренных.

Алгоритм 2 использует функцию LambdaM, псевдокод которой представлен в виде алгоритма 3.
Параметр 𝑣 должен быть точкой допустимого многогранника 𝑀 . Параметр 𝑑 должен быть вектором,
действующим в подпространстве, получаемом в результате пересечения всех опорных гиперплоскостей.
Функция LambdaM(𝑣,𝑑) вычисляет максимальное неотрицательное число 𝜆𝑀 такое, что 𝑣 + 𝜆𝑀𝑑 ∈ 𝑀 .

Прокомментируем шаги этого алгоритма. Цикл for на шагах 2–6 проверяет все граничные гипер-
плоскости. Если среди них имеется граничная гиперплоскость 𝐻𝑖, проходящая через точку 𝑣, такая, что
⟨𝑎𝑖,𝑑⟩ > 0, то в соответствии с (7) это означает, что единственной общей точкой допустимого многогран-
ника 𝑀 и луча

𝑋 = {𝑥 ∈ R𝑛|𝑥 = 𝑣 + 𝜆𝑑, 𝜆 ⩾ 0}
является точка 𝑣. В этом случае 𝜆𝑀 = 0. Шаг 7 присваивает переменной 𝜆𝑀 в качестве начального
значения бесконечно большое положительное число. Цикл for на шагах 8–15 для всех граничных гипер-
плоскостей 𝐻𝑖, удовлетворяющих условию ⟨𝑎𝑖,𝑑⟩ > 0, вычисляет 𝜆𝑖 в соответствии с формулой (7). Среди
них выбирается минимальное значение:

𝜆𝑀 = min
{︁
𝜆𝑖

⃒⃒⃒
𝑖 ∈ 𝐼, ⟨𝑎𝑖,𝑑⟩ > 0

}︁
.

Поскольку по предположению допустимый многогранник 𝑀 является ограниченным множеством, этот
минимум существует, причем 𝜆𝑀 > 0. В силу утверждения 1 значение 𝜆𝑀 будет наибольшим числом, для
которого 𝑣 + 𝜆𝑀𝑑 ∈ 𝑀 .

4. Параллельная версия алгоритма AlEM. Алгоритм 2 в цикле while (шаги 12–32) перебира-
ет все возможные подмножества 𝐽 из 𝑛 − 𝑘 − 1 элементов множества 𝐼𝑣. Обозначим 𝑚𝑣 = |𝐼𝑣|. Тогда
количество таких подмножеств вычисляется по формуле

𝐶𝑛−𝑘−1
𝑚𝑣

=
𝑚𝑣!

(𝑛− 𝑘 − 1)! (𝑚𝑣 − 𝑛+ 𝑘 + 1)!
. (17)

В простейшем случае, когда 𝑚𝑣 = 𝑛 − 𝑘, формула (17) дает 𝑛 − 𝑘 комбинаций. Однако на практике в
большинстве случаев встречаются задачи ЛП, для которых 𝑚𝑣 > 𝑛 − 𝑘. При решении таких задач с по-
мощью алгоритма AlEM возникает комбинаторный перебор, который может потребовать использования
суперкомпьютерных мощностей. Поэтому мы разработали параллельную версию алгоритма AlEM для
кластерных вычислительных систем. Работа параллельных процессов организуется по схеме SIMD (single
instruction, multiple data): все параллельные процессы выполняют один и тот же код, но над различными
данными. Сочетания, конструируемые с помощью функции Twiddle, распределяются между параллель-
ными процессами по принципу round-robin. Для этого мы преобразовали функцию Traverse (алгоритм 2)
в функцию ParallelTraverse, псевдокод которой представлен в виде алгоритма 4.

В отличие от последовательной функции Traverse, функция ParallelTraverse начинает свою рабо-
ту с комбинации, номер которой равен номеру текущего параллельного процесса (шаги 10–11). Здесь
SYS_MyProcessNo обозначает системную функцию, возвращающую номер текущего параллельного про-
цесса. При переходе к следующей итерации цикла while (шаги 13–33) номер комбинации увеличивается
на число параллельных процессов (шаг 31). Здесь SYS_NumberOfProcesses обозначает системную функ-
цию, возвращающую число параллельных процессов, задействованных в вычислениях. Шаг 34 с помощью
системной функции SYS_AllReduceMaxLoc вычисляет processesNomax — номер параллельного процесса,
на котором получено максимальное значение целевой функции в точке 𝑣max. Шаг 35 с помощью систем-
ной функции SYS_Broadcast пересылает координаты точки 𝑣max из параллельного процесса с номером
processesNomax всем остальным параллельным процессам. В результате функция ParallelTraverse возвра-
щает координаты одной и той же новой вершины для всех параллельных процессов.

Соответствующая параллельная реализация алгоритма AlEM представлена в виде алгоритма 5. Кро-
ме использования функции ParallelTraverse вместо функции Traverse, параллельная реализация имеет
только одно отличие от последовательной реализации 1. Это отличие заключается в том, что добавлено
условие, в соответствии с которым решение задачи ЛП будет выводить параллельный процесс с номером 0
(шаги 8–10).
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Алгоритм 4. Функция ParallelTraverse (параллельное вычисление следующей вершины)

Algorithm 4. Function ParallelTraverse (parallel calculation of the next vertex)

1: function ParallelTraverse(𝑣)

2: 𝑣max := 𝑣

3: 𝐹max := ⟨𝑐,𝑣⟩
4: 𝐼𝑣 := ∅
5: for 𝑖 ∈ 𝐼 do
6: if ⟨𝑎𝑖,𝑣⟩ = 𝑏𝑖 then
7: 𝐼𝑣 := 𝐼𝑣 ∪ {𝑖}
8: end if
9: end for

10: myNodeNo := SYS_MyProcessNo()

11: combNo := myNodeNo

12: 𝐽 := Twiddle(𝐼𝑣, 𝑛− 𝑘 − 1, combNo)

13: while 𝐽 ̸= ∅
14: if rank(𝐴𝐽∪𝐼) = 𝑛− 1 then
15: repeat
16: 𝑔 := RandomNonZeroVector()

17: 𝑤 := 𝜋𝐽∪𝐼(𝑣 + 𝑔)

18: until 𝑣 ̸= 𝑤

19: if ⟨𝑐,𝑤⟩ > ⟨𝑐,𝑣⟩ then
20: 𝑑 := 𝑤 − 𝑣

21: else
22: 𝑑 := 𝑣 −𝑤

23: end if
24: 𝜆𝑀 := LambdaM(𝑣,𝑑)

25: 𝑣next := 𝑣 + 𝜆𝑀𝑑

26: if ⟨𝑐,𝑣next⟩ > 𝐹max then
27: 𝑣max := 𝑣next

28: 𝐹max := ⟨𝑐,𝑣max⟩
29: end if
30: end if
31: combNo := combNo + SYS_NumberOfProcesses()

32: 𝐽 := Twiddle(𝐼𝑣, 𝑛− 𝑘 − 1, combNo)

33: end while
34: processesNomax := SYS_AllReduceMaxLoc (⟨𝑐,𝑣max⟩)
35: SYS_Broadcast(processesNomax,𝑣max)

36: return 𝑣max

37: end function

Алгоритм 5. Параллельная версия AlEM

Algorithm 5. Parallel version of AlEM

1: input 𝐴, 𝑏, 𝑐,𝑣

2: 𝑣0 := 𝑣

3: 𝑡 := 0

4: repeat
5: 𝑣𝑡+1 := ParallelTraverse(𝑣𝑡)

6: 𝑡 := 𝑡+ 1

7: until 𝑣𝑡 = 𝑣𝑡−1

8: if SYS_MyProcessNo() = 0 then
9: output 𝑣𝑡

10: end if
11: stop
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5. Реализация и вычислительные эксперименты. Мы реализовали параллельную версию ал-
горитма AlEM на языке C++. Исходные коды параллельной программы доступны в репозитории GitHub
по адресу https://github.com/zhulevae/AlEM. Для реализации системных функций, обеспечивающих
параллельные вычисления в алгоритмах 4 и 5, была использована библиотека параллельного програм-
мирования MPI 3.0 [20]. Для получения общего количества процессов в качестве системной функции
SYS_NumberOfProcesses была использована функция

MPI_Comm_size(MPI_COMM_WORLD, &processesNumber).

Первым аргументом этой функции является глобальный коммуникатор, включающий в себя все ис-
пользующиеся процессы, а в качестве второго передается указатель на переменную для записи результата.
Для получения номера текущего параллельного процесса в качестве системной функции SYS_MyProcessNo
была использована функция

MPI_Comm_rank(MPI_COMM_WORLD, &myNodeNo).

В качестве системной функции SYS_AllReduceMaxLoc была использована функция

MPI_Allreduce(&local, &reduced, 1, MPI_DOUBLE_INT, MPI_MAXLOC, MPI_COMM_WORLD).

Первый и второй аргументы являются указателями на входной буфер и буфер с агрегированными данны-
ми. Третий аргумент указывает на количество элементов входного буфера. Тип MPI_DOUBLE_INT позволяет
помещать в буферы пары: значение целевой функции в качестве критерия сравнения и номер текущего
процесса в качестве индекса. В сочетании с оператором агрегации MPI_MAXLOC это позволяет получить
в качестве результата агрегации номер процесса с максимальным значением целевой функции и само
значение целевой функции. Системная функция SYS_Broadcast реализована с помощью функции

MPI_Bcast(&v_max, v_max.size(), MPI_DOUBLE, reduced.procNo, MPI_COMM_WORLD).

В качестве четвертого аргумента указывается номер процесса с максимальным значением целевой функ-
ции, который осуществляет рассылку данных всем остальным процессам.

С помощью разработанной программы мы исследовали масштабируемость параллельной версии ал-
горитма AlEM. Для проведения вычислительных экспериментов были использованы четыре задачи ЛП
из репозитория https://github.com/leonid-sokolinsky/Pset01. Характеристики этих задач приведены
в табл. 1.

Здесь 𝑚 обозначает количество ограничений (включая ограничения вида 𝑥 ⩾ 0), 𝑛 — количество
переменных (размерность пространства решений), dim(𝑀) — размерность многогранника допустимых
решений. Задачи afiro и israel заимствованы из репозитория Netlib-LP [21]. Точные значения максимума
целевой функции для этих задач взяты из работы [22]. Задачи tcube1K и tcube2K сконструированы ав-
торами. Область допустимых решений этих задач представляет собой гиперкуб с отсеченной вершиной.
Их описание можно найти в [23]. Файлы задач afiro и israel представлены в формате MPS [24]. Файлы за-
дач tcube1K и tcube2K используют формат MatrixMarket [25]. Координаты стартовых вершин всех задач
заданы в формате MatrixMarket.

Эксперименты проводились на вычислительном кластере “Торнадо ЮУрГУ” [26], характеристики
которого представлены в табл. 2.

Для сборки программы использовался компилятор g++, распространяемый в рамках пакета компи-
ляторов GCC 10, и библиотека Intel MPI 5.0. Компиляция выполнялась с опцией оптимизации O3. Задачи

Таблица 1. Задачи ЛП из репозитория https://github.com/leonid-sokolinsky/Pset01

Table 1. LP problems from repository https://github.com/leonid-sokolinsky/Pset01

Задача
Problem

𝑚 𝑛 dim(𝑀)
Максимум целевой функции
Maximum of objective function

Формат файлов
File format

afiro 27 32 24 0.46475314285714285714285714285714× 103 MPS
israel 174 142 142 0.89664482186304572966200464196045× 106 MPS
tcube1K 2001 1000 1000 400 199 900 MatrixMarket
tcube2K 4001 2000 2000 100 099 900 MatrixMarket

https://road.issn.org/
https://github.com/zhulevae/AlEM
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Таблица 2. Характеристики кластера “Торнадо ЮУрГУ”

Table 2. Specifications of “Tornado SUSU” cluster

Параметр
Parameter

Значение
Value

Количество доступных процессорных узлов
Number of available processor nodes

320

Процессоры
Processors

Intel Xeon X5680 (6 cores, 3.33 GHz)

Число процессоров на узел
Number of processors per node

2

Память на узел
Memory per node

24 GB DDR3

Соединительная сеть
Interconnect

InfiniBand QDR (40 Gbit/s)

Операционная система
Operating system

Linux CentOS

Таблица 3. Результаты экспериментов с параллельной версией алгоритма AlEM

Table 3. Experimental results with the parallel version of AlEM algorithm
.

Задача
Problem

Размерность
Dimension

Число сочетаний
Number of combinations

𝐾max 𝑇𝐾max 𝑇20 𝛼(𝐾max) 𝜖(𝐾max)
Simplex/

AlEM

1 2 3 4 5 6 7 8 9

afiro 32 475020 140 2.6 13 4.97 0.71 0.0004
israel 142 10153 60 0.9 1.6 1.85 0.62 0.02
tcube1K 1000 1000 200 110 501 4.56 0.46 0.2
tcube2K 2000 2000 200 1978 9656 4.88 0.49 0.4

запускались на различном количестве процессорных узлов кластера. При этом общее число MPI-процессов
было равно 12𝐾, где 𝐾 — количество задействованных процессорных узлов. Таким образом, на каждом
узле работало 12 MPI-процессов — по числу физических ядер. Результаты экспериментов представлены
в табл. 3.

Поясним семантику данных, приведенных в этой таблице. В столбце 2 приведено количество пе-
ременных в ограничениях задачи ЛП, определяющее размерность пространства решений. В столбце 3
указано число сочетаний 𝑛 − 1 элементов из общего количества опорных и граничных гиперплоскостей,
проходящих через текущую вершину допустимого многогранника, наблюдаемое при прохождении субоп-
тимального пути. В столбце 4 приводится граница масштабируемости 𝐾max — максимальное количество
процессорных узлов, после которого ускорение перестает расти. В столбце 5 указано время решения за-
дачи на 𝐾max узлах3. Столбец 6 содержит время решения задачи на 20 узлах. Это время берется за базу
при вычислении ускорения и параллельной эффективности. Значения ускорения, достигнутые на границе
масштабируемости, представлены в столбце 7. Ускорение вычислялось по формуле

𝛼(𝐾max) =
𝑇20

𝑇𝐾max

,

где 𝑇20 — время, затраченное на решение задачи ЛП на 20 процессорных узлах, 𝑇𝐾max
— время, затра-

ченное на решение этой же задачи на 𝐾max процессорных узлах. В столбце 8 содержится параллельная
эффективность, достигаемая на границе масштабируемости. Параллельная эффективность вычислялась
по формуле

𝜖(𝐾max) =
20 · 𝑇20

𝐾max · 𝑇𝐾max

.

Столбец 9 содержит отношение времени решения задачи ЛП параллельным симплекс-алгоритмом ко

3Время везде указано в секундах.
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времени решения этой же задачи параллельным алгоритмом AlEM. Исходные коды реализации парал-
лельного симплекс-алгоритма, использованного для сравнения, доступны по адресу https://github.com
/leonid-sokolinsky/Simplex. Симплекс-алгоритм для всех исследуемых задач запускался на двух про-
цессорных узлах по 12 MPI-процессов на узел (использование большего количества узлов приводило к
деградации ускорения).

Результаты экспериментов показывают, что граница масштабируемости параллельной версии алго-
ритма AlEM зависит от двух ключевых параметров — размерности решаемой задачи и числа возможных
сочетаний, перебираемых при переходе от текущей вершины к следующей. Так, при решении небольшой
задачи afiro размерности 32 с большим количеством перебираемых сочетаний, равным 475020, граница
масштабируемости достигается на 140 процессорных узлах. Задача israel имеет размерность в четыре с
лишним раза больше, однако число перебираемых сочетаний у этой задачи в 47 раз меньше. В результате,
граница масштабируемости для задачи israel достигается уже на 60 процессорных узлах. Задачи большой
размерности tcube1K и tcube2K характеризуются относительно малым количеством перебираемых соче-
таний, равным 1000 и 2000 соответственно. Однако они имеют границу масштабируемости примерно на
200 вычислительных узлах. Следует отметить, что параллельная эффективность на границе масштаби-
руемости во всех случаях не опускается ниже 46%, что является неплохим результатом для параллельной
реализации численного метода.

Сравнение параллельной версии алгоритма AlEM с параллельной реализацией симплекс-метода на
исследуемых задачах показало, что AlEM проигрывает симплекс-методу, однако при увеличении размер-
ности задачи разница в быстродействии выравнивается. При этом необходимо учитывать, что алгоритм
AlEM полностью исключает возможность зацикливания на вырожденных задачах, чего нельзя сказать о
симплекс-методе. Мы проверили алгоритм AlEM и симплекс-алгоритм на вырожденных задачах hamck26e
и hamck26s из работы [10]. На обеих задачах алгоритм AlEM демонстрировал отсутствие зацикливания.
В то же время симплекс-алгоритм попадал в состояние зацикливания на каждой из этих задач.

Графики ускорения и параллельной эффективности на различных задачах ЛП приведены на рис. 1.
Ломаный характер линий объясняется тем, что не во всех случаях число перебираемых сочетаний было
кратным количеству MPI-процессов.

6. Заключение. Представлен новый масштабируемый проекционный алгоритм AlEM (Along Edges
Movement) для решения задач ЛП на многопроцессорных вычислительных системах с распределенной
памятью. Основные научные и практические результаты работы заключаются в следующем. Дано фор-
мализованное описание алгоритма AlEM, который, аналогично симплекс-методу, строит путь по ребрам
многогранника допустимых решений от произвольной начальной вершины к вершине с оптимальным зна-
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Рис. 1. Ускорение и эффективность параллельной версии алгоритма AlEM

Fig. 1. Speedup and efficiency of parallel version of AlEM algorithm
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чением целевой функции. Ключевым отличием и преимуществом AlEM является исследование на каждом
шаге всех исходящих из текущей вершины ребер, что гарантирует построение субоптимального пути и
полностью исключает возможность зацикливания на вырожденных задачах в отличие от классического
симплекс-метода. Создана и реализована параллельная версия алгоритма AlEM с использованием библио-
теки параллельного программирования MPI. Предложенная схема распределенных вычислений (по прин-
ципу round-robin) позволяет эффективно распараллелить перебор вершинных прямых в случае, когда их
число превышает количество параллельных процессов. Проведено исследование масштабируемости пред-
ложенной параллельной версии алгоритма AlEM на вычислительном кластере. Результаты экспериментов
на реальных и модельных задачах ЛП различной размерности показали, что алгоритм демонстрирует хо-
рошую масштабируемость вплоть до 200 процессорных узлов. При этом параллельная эффективность на
границе масштабируемости не опускается ниже 46%. Выполнено сравнительное тестирование параллель-
ной версии алгоритма AlEM с параллельной реализацией симплекс-метода. Хотя алгоритм AlEM несколь-
ко уступает в абсолютной скорости симплекс-методу, это отставание сокращается с ростом размерности
задачи. Важнейшим качественным преимуществом AlEM является его устойчивость к зацикливанию, что
было подтверждено тестами на известных вырожденных задачах. Таким образом, алгоритм AlEM пред-
ставляет собой эффективную альтернативу существующим методам линейного программирования для
случаев, когда критически важны гарантии быстрой сходимости на вырожденных задачах и требуется
использование вычислительных систем с массовым параллелизмом. В качестве направлений дальнейших
исследований можно выделить следующие.

• Разработка гибридной версии алгоритма AlEM, использующей подобно симплекс-методу технику
замены только одной базисной строки при переходе к следующей вершине, что устраняет необходи-
мость комбинаторного перебора вершинных прямых.

• Интеграция в алгоритм AlEM искусственной нейронной сети для анализа многомерных образов
допустимого многогранника, что позволит исключить операцию ортогональной проекции на под-
пространство по формуле (16), требующую вычисления обратной матрицы.

7. Обозначения. В данном разделе приведены основные обозначения, использованные в статье.

𝑛 — число переменных в системе ограничений (размерность пространства).
𝑚 — количество неравенств в системе ограничений.
𝑘 — количество уравнений в системе ограничений.
R𝑛 — вещественное евклидово пространство размерности 𝑛.
⟨*, *⟩ — скалярное произведение двух векторов.
𝐴̂ — матрица коэффициентов неравенств, входящих в систему ограничений.
𝐴̄ — матрица коэффициентов уравнений, входящих в систему ограничений.
𝑏̂ — столбец правых частей неравенств, входящих в систему ограничений.
𝑏̄ — столбец правых частей уравнений, входящих в систему ограничений.

𝑎𝑖 — 𝑖-я строка матрицы

[︃
𝐴̂

𝐴̄

]︃
(𝑖 = 1, . . . ,𝑚+ 𝑘).

𝐼 — индексы (номера) строк матрицы 𝐴̂: 𝐼 = {1, . . . ,𝑚}.
𝐼 — индексы (номера) строк матрицы 𝐴̄: 𝐼 = {𝑚+ 1, . . . ,𝑚+ 𝑘}.
𝑃𝑖 — полупространство, определяемое неравенством ⟨𝑎𝑖,𝑥⟩ ⩽ 𝑏𝑖 при 𝑖 ∈ 𝐼.
𝐻̂𝑖 — граничная гиперплоскость, определяемая уравнением ⟨𝑎𝑖,𝑥⟩ = 𝑏𝑖 при 𝑖 ∈ 𝐼.
𝐻̄𝑖 — опорная гиперплоскость, определяемая уравнением ⟨𝑎𝑖,𝑥⟩ = 𝑏𝑖 при 𝑖 ∈ 𝐼.
𝑀̂ — ограничивающий многогранник (пересечение всех полупространств 𝑃𝑖).
𝑆̄ — опорное подпространство (пересечение всех опорных гиперплоскостей 𝐻̄𝑖).
𝑀 — допустимый многогранник (область допустимых решений): 𝑀 = 𝑀̂ ∩ 𝑆̄.
𝐼𝑣 — индексы граничных гиперплоскостей, проходящие через вершину 𝑣.
rank(𝐴) — ранг матрицы 𝐴.
𝐴𝐽∪𝐼 — матрица, включающая строки из 𝐴̂ с индексами из 𝐽 и все строки из 𝐴̄.
𝜋𝐽∪𝐼(𝑥) — ортогональная проекция на подпространство

⋂︀
𝑖∈𝐽∪𝐼

𝐻𝑖.
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