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тальная реализация функций exp, exp2 и expm1 для форматов с плавающей точкой двойной,
одинарной и половинной точности. Уделяется особое внимание аспектам точности вычислений и
производительности. Выполняется подробное сравнение с другими существующими на данный
момент библиотеками векторных математических функций, реализованными для архитектуры
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1. Введение. Реализации базовых математических функций востребованы при численном модели-
ровании во многих предметных областях, включая вычислительную физику, химию, биологию, финансы.
В зависимости от особенностей задачи к таким реализациям могут предъявляться различные требования
как по точности, так и по производительности. Действительно, в некоторых задачах финансовой матема-
тики и компьютерной графики точность не является критическим фактором, влияющим на возможность
решения задачи, тогда как время вычислений выходит на первый план. При решении задач вычислитель-
ной физики, напротив, к точности подсчета значений математических функций предъявляются повышен-
ные требования. Понимая сложности, связанные с наличием двух противоречивых критериев (точность и
время вычислений), разработчики компиляторов реализуют аппроксимации математических функций в
соответствии с требованиями стандартов и дают прикладным программистам возможность влиять на де-
тали работы алгоритма путем установки необходимых опций компилятора. Так, в компиляторах С и С++
поддерживается двойная и одинарная (в некоторых реализациях еще и половинная) точность, удовлетво-
ряются требования GNU C по числу правильно вычисленных бит мантиссы, установленные для каждой
функции, а также поддерживается набор флагов, определяющий степень толерантности к арифметиче-
ским преобразованиям, необходимость учета специальных значений и другие особенности реализации.

Кажущаяся простота реализации математических функций, так или иначе сводящаяся к вычисле-
нию некоторого полинома в точке, не должна вводить в заблуждение. Достижение требуемой точности
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за как можно меньшее время вычислений и выполнение всех предъявляемых требований не являются
элементарной задачей [1, 2]. Исторически одними из первых классов алгоритмов для вычисления ма-
тематических функций были итерационные методы, в частности алгоритм Волдера [3]. Другие методы
используют полиномиальную аппроксимацию с предварительной редукцией аргумента [4–7]. Подход с
использованием табличных значений может быть применен в тех областях, где не требуется высокая
точность, в частности для 8-битной арифметики. Современные высокопроизводительные реализации эф-
фективно комбинируют полиномиальную аппроксимацию и табличные значения [8–10]. Тем не менее,
задача разработки реализации, удовлетворяющей требованиям по точности и производительности, все
еще остается актуальной [11].

Наряду с реализациями, встроенными в компиляторы языков программирования высокого уровня,
распространены следующие программные библиотеки. Так, в библиотеке MPFR [12] представлены реали-
зации математических функций с поддержкой произвольной точности. Библиотека CRLibm [13] содержит
производительные реализации математических функций с корректным округлением в любой точке диапа-
зона области определения. В библиотеке SLEEF [14] представлены векторные реализации математических
функций для различных платформ. Тем не менее, при появлении новых процессорных архитектур пробле-
ма разработки библиотеки математических функций, оптимизированной для этой архитектуры, сочетаю-
щей точность вычислений с высокой производительностью, позволяющей настраивать режимы точности,
и, что очень важно, позволяющей компилятору векторизовывать вычислительные циклы, вновь выходит
на передний план. Именно в этом направлении и выполняется проект, некоторые из текущих результатов
которого представлены в данной статье.

Проект RVVMF посвящен созданию высокопроизводительной библиотеки, реализующей стандарт-
ные функции из модуля LibM компиляторов С и С++ в виде, допускающем работу в векторизован-
ных циклах (в терминологии Intel C++ Compiler такой модуль называется Short Vector Math Library
(SVML)). Данная библиотека ориентирована на перспективные процессоры открытой и свободной от
патентных отчислений архитектуры RISC-V, которая активно развивается последние 10 лет большим
международным сообществом, в котором российские компании играют заметную роль. На момент напи-
сания статьи библиотека поддерживает экспоненциальные (exp, exp2, expm1) и логарифмические (log,
log2, log10, log1p) функции, некоторые тригонометрические функции (sin, cos, sincos), гиперболиче-
ский тангенс (tanh), квадратный корень (sqrt, isqrt, hypot), округления (ceil, floor, trunc, round,
rint), модуль (abs). Часть функций находится в открытом доступе [15]. Существенной особенностью
библиотеки является поддержка двойной, одинарной и половинной точности вычислений с плавающей
точкой. В будущем планируется поддержка нескольких режимов точности, в частности, пониженной точ-
ности.

В данной статье представлена реализация функций exp, exp2 и expm1. В работе приведено деталь-
ное описание алгоритма, использованных оптимизаций и улучшений для повышения точности и произво-
дительности. Выполнено подробное сравнение с другими аналогичными библиотеками под архитектуру
RISC-V, а именно SLEEF и VecLibm [16, 17]. Изучен вопрос о компромиссе между скоростью вычислений
и точностью, показано, какие алгоритмические приемы влияют на достижение этого компромисса. Авто-
ры надеются, что результаты этой работы могут быть полезны другим исследователям при реализации
математических библиотек. Код рассматриваемых функций находится в открытом доступе [15].

Статья является доработанной и расширенной версией публикации [18].

2. Постановка задачи. Существует ряд стандартов, описывающих требования к реализации ма-
тематических функций, в частности стандарт арифметики с плавающей точкой IEEE 754, стандарт ком-
пьютерной арифметики ISO/IEC 10967, стандарты языков программирования. В них описывается на-
бор необходимых математических функций, область определения, математические свойства, специаль-
ные случаи и особые точки, точность реализации и многое другое. Стандарты не всегда согласованы
между собой. Например, в стандарте IEEE 754 требуется точная реализация математических функций
с гарантированным верным округлением во всех точках, в то время как стандарт ISO/IEC 10967 позво-
ляет допустить ошибку округления в последнем бите мантиссы. Мы дополнительно ориентировались на
реализацию математической библиотеки компилятора GNU (glibc libm), которая достаточно хорошо со-
ответствует перечисленным стандартам и учитывает особенности применения математических функций
в условиях необходимости обеспечить баланс между точностью и производительностью.
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Важным вопросом с точки зрения корректности вычислений является обработка особых случаев.
Некоторые значения аргументов требуют установки флагов, соответствующих определенным исключени-
ям при работе с плавающей точкой (FP exceptions): FE_DIVBYZERO, FE_INEXACT, FE_INVALID, FE_OVERFLOW,
FE_UNDERFLOW. Часть из них устанавливается автоматически в процессе выполнения арифметических опе-
раций (например, FE_INEXACT), другая требует ручной обработки в зависимости от значения аргумента и
применяемого алгоритма. В частности, для функции exp обычно представляет интерес диапазон норма-
лизованных (normal) аргументов с нормализованным результатом 𝑥 ∈ [𝑥underflow, 𝑥overflow], однако также
необходимо учитывать область переполнения 𝑥 > 𝑥overflow, антипереполнения 𝑥 < 𝑥underflow, особые зна-
чения 𝑥 = ±∞, 𝑥 = NaN, субнормальные (subnormal) аргументы и результаты. Значения 𝑥underflow и
𝑥overflow зависят от типа числа с плавающей точкой. Характерные диапазоны функций exp, exp2, expm1,
порядок их обработки и установки флагов приведены в Приложении 1.

В некоторых приложениях пользователь может гарантировать отсутствие особых значений ±∞ и
NaN, что позволяет ускорить вычисления. Эти и другие “агрессивные” математические оптимизации могут
быть задействованы при использовании опций компиляции, например ключа -ffast-math компилятора
GCC. Библиотека RVVMF учитывает данную возможность и предоставляет версию функций, в которых
отключены обработка исключений и проверки на особые значения.

Важным вопросом при проектировании математической библиотеки является точность реализации
математических функций. Мерой точности может являться, например, максимальное значение отклоне-
ния полученного результата от истинного значения функции. Для описания ошибок округления часто
используют понятие unit in the last place (ulp), означающее расстояние между двумя представимыми
числами с плавающей точкой. Данное расстояние зависит от числа, в окрестности которого измеряет-
ся отклонение. Существует несколько определений ulp [19], незначительно различающихся между собой.
В частности, в определении по Кэхэну ulp(𝑥) является расстоянием между двумя ближайшими к 𝑥 пред-
ставимыми числами 𝑎 ̸= 𝑏, при этом не требуется выполнение условия 𝑎 ⩽ 𝑥 ⩽ 𝑏. С другой стороны,
ulp(𝑥) по Харрисону — это расстояние между ближайшими к 𝑥 представимыми числами 𝑎 ̸= 𝑏, такими,
что 𝑎 ⩽ 𝑥 ⩽ 𝑏, в предположении неограниченности диапазона чисел с плавающей точкой. На практике
имеет смысл вычислять ulp(𝑥) по Кэхэну в окрестности точек ±∞, а в остальных случаях — по Хар-
рисону.

Максимальное значение ошибки вычислений математической функции, не превышающее 0.5 ulp,
гарантирует корректное округление во всех точках. Здесь и далее подразумевается режим округления
к ближайшему представимому числу (round-to-nearest mode). Максимальную ошибку можно определить
теоретически, не перебирая все представимые точки, посредством формальных доказательств, основан-
ных на интервальной арифметике. Тем не менее, ограничение в 0.5 ulp достаточно трудно обеспечить,
что подробно рассматривается в разделе 3.4.5. Большинство математических библиотек удовлетворяет
более слабым критериям. Так, модуль libm компилятора GCC [20] гарантирует максимальную ошибку не
более 1 ulp для функций exp, exp2, expm1. Данная формулировка дает неполное представление о точности
реализации математической функции, т.к. не содержит информации о частоте случаев с неверным округ-
лением. В связи с этим на практике для описания ошибок также применяются статистические критерии,
измеряющие число неверных округлений среди случайной выборки аргументов из множества представи-
мых точек диапазона. Если среди 𝑛 случайных аргументов 𝑘 значений функции было округлено неверно,
и при этом максимальная ошибка между истинным и округленным значением не превышает 1 ulp, то
говорят, что точность равна 0.5+𝑘/𝑛 ulp в статистическом смысле. Кроме того, представляется целесооб-
разным определять максимальное расстояние между истинным и полученным значением функции среди
точек выборки, однако в этом случае не гарантируется отсутствие точек, для которых ошибка больше
найденной максимальной [21].

Библиотека RVVMF предполагает выполнение следующих ограничений на точность реализации ма-
тематических функций:

• допускается ошибка 1 ulp, но не более;
• требуется точность 0.501 ulp в статистическом смысле, что эквивалентно одному неверному округ-

лению из 1000 случайных чисел с плавающей точкой.
Производительность оптимизируется только при выполнении данных условий.
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3. Алгоритм вычисления экспоненты.

3.1. Общий метод. Один из классических алгоритмов вычисления экспоненты включает в себя ре-
дукцию аргумента в отрезок в окрестности нуля и последующую аппроксимацию функции в этом отрезке
полиномом [8, 10]. Редукция может быть выполнена за счет использования машинного представления чис-
ла с плавающей точкой: 𝑒𝑥 = 2𝐸𝑒𝑦, 𝑦 = 𝑥−𝐸 ln 2. При выборе 𝐸 = ⌊𝑥/ ln 2⌉, где ⌊·⌉ — округление к ближай-
шему целому в соответствии со стандартом IEEE, аргумент отображается в отрезок 𝑦 ∈ [− ln 2/2, ln 2/2],
в котором функция 𝑒𝑦 аппроксимируется достаточно точно полиномом небольшой степени. С целью умень-
шения числа операций при вычислении полинома аргумент может быть отображен в меньший диапазон
за счет использования предпосчитанных табличных значений:

𝑒𝑥 = 2𝐸22
−𝑘𝑓𝑒𝑦 ≈ 2𝐸𝑇 (𝑓)𝑃 (𝑦), (1)

ℎ =

⌊︂
𝑥

2−𝑘 ln 2

⌉︂
= 2𝑘𝐸 + 𝑓, (2)

𝑦 = 𝑥− ℎ · 2−𝑘 ln 2. (3)

Здесь 𝑓 = 0, . . . , 2𝑘 − 1 — младшие 𝑘 бит целого числа ℎ, 2𝑘𝐸 — старшие биты ℎ, 𝑇 (𝑓) = 22
−𝑘𝑓 —

значение из таблицы размером 2𝑘, 𝑃 (𝑦) — полиномиальная аппроксимация функции 𝑒𝑦, 𝑦 ∈ [− ln 2/2𝑘+1,

ln 2/2𝑘+1]. Значение параметра 𝑘 выбирается с учетом архитектурных особенностей. Увеличение 𝑘 приво-
дит к уменьшению степени аппроксимирующего полинома и, следовательно, количеству арифметических
операций, однако требует использования таблицы большего размера.

Функция 𝑒𝑦 на редуцированном отрезке аппроксимируется полиномом. Часто используются полино-
мы Чебышева для получения равномерного приближения или полиномы, минимизирующие максималь-
ную ошибку на отрезке. При построении минимаксных полиномов применяется классический алгоритм
Ремеза [4] и специализированные алгоритмы, адаптированные для случая коэффициентов с плавающей
точкой [5]. Для построения минимаксного полинома мы использовали программное обеспечение Sollya [22].
Ошибка аппроксимации контролируется степенью полинома. Кроме ошибок аппроксимации, на точность
результата существенно влияют ошибки, возникающие при выполнении операций над числами с плава-
ющей точкой. Поддержка fused multiply–add (FMA) инструкций позволяет одновременно улучшить про-
изводительность и точность вычислений, последняя из которых достигается за счет выполнения одного
округления вместо двух при эквивалентном умножении и сложении. Также на некоторых этапах вычисле-
ния функции для корректного округления требуется учитывать отбрасываемые младшие биты операндов.

Особое внимание с точки зрения точности следует уделить вычислению формулы (3). В случае,
когда порядок 𝑦 много меньше порядка 𝑥, при вычитании двух чисел возникает катастрофическая поте-
ря точности (cancellation), приводящая к неверному результату. В методе Коди–Уэйта [6, 10] константа
𝑐 = 2−𝑘 ln 2 представляется в виде суммы двух чисел с плавающей точкой 𝑐ℎ и 𝑐𝑙, где 𝑐ℎ хранит (𝑚 − 𝑑)

старших битов мантиссы 𝑐, а 𝑐𝑙 следующие 𝑚 битов (𝑚 — длина мантиссы, 𝑑 ограничивает диапазон
аргументов функции, |𝑥| < 2𝑑). Доказано, что операция 𝑦′ = 𝑥 − ℎ · 𝑐ℎ выполняется абсолютно точно, а
ошибка, вносимая операцией 𝑦 = 𝑦′ − ℎ · 𝑐𝑙, уже не является катастрофической.

Вычисление полинома реализовано с использованием схемы Горнера и операций FMA. На некото-
рых архитектурах может присутствовать несколько устройств FMA, в этом случае выгодно выполнять
вычисления параллельно, например используя метод Эстрина [23]. Наша реализация адаптирована для
одного или двух устройств FMA за счет выполнения вычислений независимо для четных и нечетных сте-
пеней полинома. Ошибки округления при вычислении полинома слабо влияют на результат, поскольку для
функции 𝑒𝑦 полином представляется в виде 𝑃 (𝑦) = 1 +𝑄(𝑦), где |𝑄(𝑦)| ≪ 1, следовательно, накопленная
в младших битах 𝑄(𝑦) ошибка не учитывается при сложении.

В следующих разделах представлены некоторые полезные приемы, использующиеся при вычисле-
нии экспоненты, а также несколько алгоритмов вычисления функции 𝑒𝑥, отличающихся соотношением
точности и скорости работы.

3.2. Некоторые полезные техники. В данном разделе кратко описываются известные техники,
полезные при реализации математических функций. Эти и другие приемы описаны более подробно, на-
пример, в [24, 25].

Для улучшения точности вычислений иногда необходимо сохранять и использовать младшие би-
ты мантиссы, теряющиеся при выполнении стандартных арифметических операций. Далее операции над
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числами, представленными двумя числами с плавающей точкой, будем называть double-FP арифмети-
кой. Основные операции такой арифметики с доказательством корректности работы подробно описаны,
например, в [24, 26]. Будем предполагать возможность использования операции FMA без выполнения
промежуточного округления, что позволяет существенно сократить вычислительные затраты. В листин-
гах 1–3 приведены некоторые функции double-FP арифметики, используемые в разделе 3.4, а именно:

• точное сложение двух чисел 𝑎 и 𝑏 с сохранением младших битов результата (алгоритм fast2Sum
[25]), где порядок 𝑎 не меньше порядка 𝑏 (листинг 1);

• FMA с сохранением младших битов результата (листинг 2);
• умножение double-FP чисел (листинг 3).

Листинг 1. Алгоритм точного сложения с результатом double-FP (fast2Sum)

Listing 1. Accurate addition algorithm with double-FP result (fast2Sum)

1 function fast2Sum(a, b): # exponent a >= exponent b
2 rh = a + b
3 rl = b - (rh - a)
4 return rh, rl # a + b = rh + rl exactly
5

Листинг 2. Алгоритм fused-multiply add с результатом double-FP

Listing 2. Fused-multiply add algorithm with double-FP result

1 function fma12(a, b, c):
2 rh = FMA(a, b, c)
3 rl = FMA(a, b, c - rh)
4 return rh, rl
5
6 function fma12_v2(a, b, c): # more exact
7 rh = FMA(a, b, c)
8 tmph , tmpl = fast2Sum(c, -rh) # in assumption that |c| >= |rh|
9 rl = FMA(a, b, tmph)

10 rl += tmpl
11 return rh, rl
12

Листинг 3. Алгоритм умножения двух чисел double-FP с результатом FP или double-FP

Listing 3. Algorithm for multiplying two double-FP numbers with FP or double-FP result

1 function mul22(ah, al, bh , bl):
2 rh = ah * bh
3 rl = FMA(ah , bh, -rh)
4 rl += FMA(ah , bl, al * bh)
5 return rh, rl
6
7 function mul21(ah, al, bh , bl):
8 rh , rl = mul22(ah , al , bh, bl)
9 return rh + rl

10

Операция округления к ближайшему целому в формуле (2) для ограниченного диапазона аргументов
может быть реализована быстро за счет выполнения сдвига мантиссы и использования машинного округ-
ления. Это достигается прибавлением к исходному числу значения 1.5 · 2𝑚−1, после чего искомое целое
число представляется младшими (𝑤−𝑝−2) битами результата. Здесь 𝑚 — длина мантиссы, включая стар-
ший бит, 𝑝 — количество битов в порядке числа, 𝑤 = 𝑚+ 𝑝 — общее количество битов числа с плавающей
точкой. Пример использования данного приема приводится в функции calculate_h листинга 4.

https://road.issn.org/


ВЫЧИСЛИТЕЛЬНЫЕ МЕТОДЫ И ПРОГРАММИРОВАНИЕ / NUMERICAL METHODS AND PROGRAMMING
2026, 27 (1), 27–45. doi 10.26089/NumMet.v27r103

33

3.3. Базовый алгоритм вычисления функции exp. Алгоритм вычисления экспоненты (ли-
стинг 4) состоит из следующих этапов:

1. Редукция. Округление к ближайшему целому по формуле (2) выполняется в функции calculate_h,
редукция аргумента по формуле (3) — в функции range_reduction.

2. Извлечение табличного значения. Младшие 𝑘 бит числа ℎ, полученного на предыдущем шаге, со-
ставляют индекс в таблице 𝑇 (𝑓) размером 2𝑘.

3. Вычисление полинома. Как было отмечено в разделе 3.1, значение полинома вычисляется парал-
лельно за счет разделения четных и нечетных степеней. Общий вид полинома и схема вычислений
для полинома степени 6 c использованием метода Горнера и операций FMA продемонстрированы в
формуле (4) (1 ⩾ 𝑎2 ⩾ 𝑎3 ⩾ . . . ⩾ 𝑎6). Единица учитывается на этапе реконструкции для обеспечения
необходимой точности. Степень полинома зависит от выбора 𝑘. Функции evaluate_polynomial_r и
evaluate_polynomial вычисляют соответственно значения 𝑅(𝑦) и 𝑄(𝑦), определяемые формулой (4):

𝑄(𝑦) = 𝑃 (𝑦)− 1 = 𝑦 + 𝑎2𝑦
2 + 𝑎3𝑦

3 + 𝑎4𝑦
4 + 𝑎5𝑦

5 + 𝑎6𝑦
6

= 𝑦 + 𝑦2[(𝑎2 + 𝑦2(𝑎4 + 𝑎6𝑦
2))) + 𝑦(𝑎3 + 𝑎5𝑦

2))]

= 𝑦 + 𝑦2[𝑝𝑒𝑣𝑒𝑛(𝑦
2) + 𝑦 · 𝑝𝑜𝑑𝑑(𝑦2)] = 𝑦 + 𝑦2𝑅(𝑦).

(4)

4. Реконструкция. На данном этапе выполняется реконструкция результата по формуле (1) с исполь-
зованием ранее полученных значений таблицы и полинома. Для увеличения точности умножение
𝑇 (𝑓) и 𝑃 (𝑦) производится с помощью операции FMA: 𝑇 (𝑓)𝑃 (𝑦) = 𝑇 (𝑓) + 𝑇 (𝑓)𝑄(𝑦).

Листинг 4. Базовый алгоритм вычисления функции exp
Listing 4. Base algorithm for calculating the exp function

1 function calculate_h(x):
2 h = FMA(x, INV_LOG2_K , FP2INT_CONST)
3 hi = AS_INT(h & MASK_HI_BIT)
4 h -= FP2INT_CONST
5 return h, hi
6
7 function range_reduction(x, h):
8 yh_ = FMA(h, -LOG2_K_H , x)
9 yh = FMA(h, -LOG2_K_L , yh_)

10 return yh
11
12 function get_table_value(hi):
13 fi = hi & MASK_FI_BIT # table index
14 th = TABLE_H[fi]
15 return th
16
17 function evaluate_polynomial_r(yh , sqry):
18 p_odd = ... # evaluation of odd polynomial terms
19 p_even = ... # independent evaluation of even polynomial terms
20 res = FMA(yh, p_odd , p_even)
21 return res
22
23 function evaluate_polynomial(yh):
24 sqry = yh * yh
25 r = evaluate_polynomial_r(yh, sqry)
26 ph = FMA(sqry , r, yh)
27 return ph
28
29 function update_exponent(hi , res): # res != 0
30 Ei = hi >> k
31 AS_INT(res) += Ei << (m-1)
32 return res
33
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34 function reconstruction(th , ph , hi):
35 res = FMA(th, ph , th)
36 res = update_exponent(hi, res)
37 return res
38
39 function exp(x):
40 # checks for overflow , underflow , NaN (omitted)
41 h, hi = calculate_h(x)
42 yh = range_reduction(x, h)
43 th = get_table_value(hi)
44 ph = evaluate_polynomial(yh)
45 res = reconstruction(th , ph, hi)
46 return res
47

В данном алгоритме используются следующие предвычисленные константы, параметры метода и
макросы:

• AS_INT — получение целочисленного представления битов числа;
• FMA — вызов инструкции fused-multiply add;

• INV_LOG2_K — округленное к ближайшему представимому числу значение
1

2−𝑘 ln 2
;

• LOG2_K_H, LOG2_K_L — старшие (𝑚 − 𝑑) бит и младшие 𝑚 бит мантиссы числа 2−𝑘 ln 2, подробнее
см. раздел 3.1;

• FP2INT_CONST — число с плавающей точкой, используемое для округления к ближайшему целому и
равное 1.5 · 2𝑚−1;

• MASK_HI_BIT, MASK_FI_BIT — маски для выделения младших (𝑝+ 𝑘 + 1) и 𝑘 бит соответственно;
• TABLE_H — таблица округленных к ближайшему представимому значений функции 𝑇 (𝑓) = 22

−𝑘𝑓 ,
𝑓 = 0, . . . , 2𝑘 − 1;

• 𝑘 — параметр редукции;
• 𝑚, 𝑝 — длина мантиссы и порядка действующего типа числа с плавающей точкой.

В листинге 4 неявно задаются в качестве параметров степень и коэффициенты полинома 𝑃 (𝑦). Сте-
пень полинома зависит от параметра 𝑘 и желаемой точности аппроксимации. Для различных типов числа
с плавающей точкой были выбраны следующие параметры:

• binary64 (double): 𝑘 = 6, степень полинома 6;
• binary32 (float): 𝑘 = 4, степень полинома 4;
• binary16 (float): 𝑘 = 3, степень полинома 3.

Экспериментально определено, что приведенные параметры для данного алгоритма и рассматривае-
мого в статье программно-аппаратного окружения (раздел 5) обеспечивают оптимальный, на наш взгляд,
результат с точки зрения баланса точности и производительности.

Базовый алгоритм достаточно эффективен по производительности, однако в некоторых точках ошиб-
ка превышает 1 ulp. В следующем разделе предлагаются различные приемы, позволяющие достигнуть
требуемой точности 0.501 ulp.

Стоит отметить, что при вычислении экспоненты встречаются случаи, когда результат для больших
по модулю отрицательных аргументов является субнормальным (subnormal), но не равен нулю. Метод
update_exponent должен учитывать особенности хранения subnormal и выполнять для них особую ре-
конструкцию результата. Для краткости мы опускаем в данной статье детали работы с subnormal числами.
Исходный код функций библиотеки [15] обеспечивает корректную обработку аргументов из всей области
определения.

3.4. Вариации алгоритма вычисления функции exp. В процессе разработки библиотеки ма-
тематических функций необходимо решить вопрос, касающийся баланса точности вычислений и скорости
работы. Достижение правильного округления во всех точках и теоретическое обоснование корректности
функции является нетривиальной задачей, которая значительно усложняется требованием обеспечения
высокой производительности реализации. В частности, уточнение значения функции в достаточно ред-
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ких “плохих” точках требует существенных дополнительных затрат, на порядок и более превосходящих
ожидаемое время работы. Подробнее данный вопрос рассматривается в разделе 3.4.5.

В данном разделе приводятся пошаговые техники, позволяющие увеличить точность реализации
функции exp. Большинство этих техник подразумевает использование double-FP арифметики. С точки
зрения точности хорошим решением является выполнение всех вычислений с учетом старших и младших
битов числа [25], однако это неприемлемо в рамках высокопроизводительной библиотеки математических
функций. В данной работе предлагается несколько версий алгоритма вычисления экспоненты, показываю-
щих разный результат по точности и производительности. Версии упорядочены по возрастанию точности.
Каждая следующая версия заменяет операцию, приводящую в предыдущей версии к наибольшему числу
ошибок округления, на ее более точный аналог. Выполнение более точных операций ухудшает произво-
дительность, что иллюстрируется в разделе 5.

§ 3.4.1. Вариация 1. Хранение старших и младших битов таблицы.
Более 95% ошибок округления для двойной точности в базовой версии алгоритма возникает из-за

неточных операндов в последней операции FMA при реконструкции результата. В частности, большая
потеря точности происходит из-за округления табличного значения к ближайшему представимому числу.
Чтобы этого избежать, необходимо хранить младшие биты мантиссы табличного значения и учитывать
их при реконструкции. Данный прием позволяет существенно увеличить точность результата без кри-
тических потерь в производительности за счет параллельного выполнения арифметических операций и
операций загрузки из памяти.

В листинге 5 младшие биты таблицы хранятся в отдельном массиве TABLE_L. Принимается во вни-
мание, что сложение операндов должно производиться в порядке от меньшего по модулю к большему во
избежание потери точности.

Листинг 5. Вариация 1 алгоритма вычисления функции exp: хранение старших и младших битов таблицы

Listing 5. Variation 1 of the exp function calculation algorithm: storing the high and low bits of the table

1 function get_table_value(hi):
2 fi = hi & MASK_FI_BIT
3 th = TABLE_H[fi]
4 tl = TABLE_L[fi]
5 return th, tl
6
7 function reconstruction(th , tl , ph, hi):
8 res = th + FMA(th, ph, tl)
9 res = update_exponent(hi, res)

10 return res
11

§ 3.4.2. Вариация 2. Использование double-FP арифметики при вычислении полинома.
Дальнейшее увеличение точности предполагает использование double-FP арифметики во избежание

ошибок округления на этапах редукции аргумента и вычисления полинома. Известным приемом для
уточнения значения полинома является точное выполнение последней операции в схеме Горнера (функция
evaluate_polynomial листинга 6). На этапе реконструкции производится умножение двух чисел формата
double-FP.

Листинг 6. Вариация 2 алгоритма вычисления функции exp: использование double-FP арифметики
при вычислении полинома

Listing 6. Variation 2 of the exp function calculation algorithm: using double-FP arithmetic
in polynomial calculation

1 function evaluate_polynomial(yh):
2 sqry = yh * yh
3 r = evaluate_polynomial_r(yh, sqry)
4 ph , pl = fma12(sqry , r, yh)
5 return ph, pl
6
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7 function reconstruction(th , tl , ph, pl, hi):
8 sh , sl = fast2Sum(1, ph)
9 sl += pl

10 res = mul21(th , tl , sh, sl)
11 res = update_exponent(hi, res)
12 return res
13

§ 3.4.3. Вариация 3. Более точное выполнение редукции методом Коди–Уэйта.
В функции range_reduction листинга 4 выполняется редукция аргумента методом Коди–Уэйта [6].

Доказано, что первая операция FMA выполняется точно, однако вторая вносит ошибку округления. При
использовании double-FP арифметики потери точности можно избежать, сохранив младшие биты 𝑦. Кро-
ме того, существенное влияние на точность редукции в случае арифметики в одинарной точности оказы-
вает ошибка, связанная с недостаточным количеством битов мантиссы при хранении константы 2−𝑘 ln 2.
В листинге 7 эта константа представляется в виде трех чисел с плавающей точкой, что позволяет допол-
нительно уточнить редуцированный аргумент.

Листинг 7. Вариация 3 алгоритма вычисления функции exp: более точное выполнение редукции
методом Коди–Уэйта

Listing 7. Variation 3 of the exp function calculation algorithm: a more accurate implementation of
the Cody—Waite reduction

1 function range_reduction(x, h):
2 yh_ = FMA(h, -LOG2_K_H , x)
3 yh , yl = fma12(h, -LOG2_K_L , yh_)
4 yl = FMA(h, -LOG2_K_LL , yl)
5 yh , yl = fast2Sum(yh , yl)
6 return yh, yl
7
8 function evaluate_polynomial(yh , yl):
9 sqry = yh * yh

10 r = evaluate_polynomial_r(yh, sqry)
11 ph , pl = fma12(sqry , r, yh)
12 pl += yl
13 return ph, pl
14

§ 3.4.4. Вариация 4. Использование операций FMA в double-FP арифметике.
В листинге 2 представлено несколько версий реализации операции FMA в double-FP арифметике. Ни

одна из них не дает абсолютно точного результата, однако это и не требуется. Тем не менее, относительно
небольшое количество ошибок округления может оказывать заметное влияние на статистику в условиях
достаточно сильных требований к качеству решения. В частности, в листинге 7 замена операции fma12 в
строке 3 на более точную операцию fma12_v2 (листинг 2) позволяет достигнуть требуемого ограничения
0.501 ulp для половинной точности во всех рассматриваемых диапазонах (раздел 5.1).

§ 3.4.5. Дальнейшее повышение точности. Обсуждение.
Полученный результат можно уточнять за счет повсеместного использования double-FP арифмети-

ки. В CRLibm [25] разработчикам таким образом удалось достигнуть точности 68 бит результата для типа
double. Тем не менее, даже такая точность не гарантирует корректного округления. В литературе данная
проблема называется Table Maker’s Dilemma (TMD) [27, 11]. Трансцендентный результат 𝑧, найденный с
некоторой точностью 𝜀, может быть округлен как в большую, так и в меньшую сторону, если середина
отрезка между двумя представимыми точками попадает в интервал (𝑧 − 𝜀, 𝑧 + 𝜀).

Классическим решением проблемы TMD является итерационный алгоритм Зива [28], предполагаю-
щий повторение вычислений в расширенной точности. Лефевр [27] показал, что для экспоненты в двой-
ной точности достаточно 157 битов мантиссы для гарантированного выполнения верного округления. В
CRLibm корректная во всех точках реализация функции exp включает в себя “быструю” и “точную” фа-
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зы, причем последняя выполняется в расширенной арифметике. Необходимость выполнения второй фазы
определяется некоторым условием после проведения первой фазы. “Точная” фаза на порядок медленнее
“быстрой”, однако случаи, когда она требуется, достаточно редки: 1 раз примерно на 2 млн точек.

Мы не стремились получить реализацию, приближающуюся к CRLibm по точности. В то же время
мы ставим себе задачу поиска компромисса между точностью и производительностью, как это принято в
компиляторах языков программирования C и C++. В разделе 5 демонстрируется соотношение точности
и скорости работы на примере представленных выше вариаций вычисления функции exp.

3.5. Функция exp2. Редукция и вычисление полинома. Функция exp2(x) вычисляет значе-
ние 2𝑥. Основание 2 позволяет упростить редукцию: операция 𝑦 = 𝑥−ℎ·2−𝑘 является точной в арифметике
с плавающей точкой. В полиномиальном разложении появляется дополнительный коэффициент 𝑎1 (фор-
мула 5), не равный единице:

𝑄(𝑦) = 𝑃 (𝑦)− 1 = 𝑎1𝑦 + 𝑎2𝑦
2 + 𝑎3𝑦

3 + 𝑎4𝑦
4 + . . . = 𝑎1𝑦 + 𝑦2𝑅(𝑦). (5)

В двойной и одинарной точности мы вычисляем данное выражение, используя операцию FMA в
обычной или double-FP арифметике: 𝑄(𝑦) = FMA(𝑎1, 𝑦, 𝑦

2𝑅(𝑦)). В половинной точности требуется учи-
тывать старшие и младшие биты 𝑎1 = 𝑎1ℎ + 𝑎1𝑙.

3.6. Функция expm1. Реконструкция аргумента. Функция expm1, вычисляющая значение 𝑒𝑥 − 1,
имеет во многом схожую реализацию с функцией exp, за исключением финального вычитания единицы из
полученного результата. Затруднение при реализации вызывает тот факт, что единица вносит различный
вклад для различных аргументов. В окрестности нуля возвращаемое значение 𝑃 (𝑦) формулы (4) гаран-
тирует хорошую точность и отсутствие cancellation, в то время как для больших по модулю аргументов
множитель 2𝐸 не равен единице, что ведет к другой последовательности операций. Для скалярных реали-
заций часто эти случаи обрабатываются в отдельных ветках, как, например, в [29], однако это может быть
неприемлемо с точки зрения производительности векторного кода. Мы используем вместо ветвлений опе-
рацию fast2Sum с предварительным определением числа с наибольшим порядком. Последнее может быть
выполнено достаточно быстро за счет маскированных операций. Алгоритм реконструкции аргумента для
функции expm1 представлен в листинге 8.

Листинг 8. Реконструкция аргумента для функции expm1
Listing 8. Reconstruction of the argument for the expm1 function

1 function reconstruction(th , tl , ph, pl, hi):
2 rh , rl = fast2Sum(1, ph)
3 rl += pl
4 sh , sl = mul22(th , tl , rh, rl)
5 sh = update_exponent(hi, sh)
6 sl = update_exponent(hi, sl)
7 smax , smin = sort_numbers_by_exponent(sh, -1)
8 uh , ul = fast2Sum(smax , smin)
9 res = sum_3_numbers(uh, ul, sl)

10 return res
11

В листинге 8 функция sort_numbers_by_exponent выполняет сортировку двух чисел в зависимости
от их порядка. Функция sum_3_numbers суммирует три числа. В то время как для двойной точности
достаточно просто сложить эти числа в порядке от меньшего к большему, в одинарной и половинной
точности требуется выполнить более точное сложение с использованием двух операций fast2Sum.

Функция expm1 весьма чувствительна к ошибкам округления в окрестности нуля. Для вычисления
полинома в половинной точности мы добавили больше операций FMA в double-FP арифметике. Допол-
нительной сложностью работы с числами в половинной и иногда одинарной точности является тот факт,
что в double-FP арифметике соответствующих формату битов порядка может не хватать для хранения
младших битов мантиссы. Для решения этой проблемы в функции expm1 использовалось представление
числа в виде 𝑧 = 𝑧ℎ + 2−𝑑𝑧𝑙, где 𝑑 — целое положительное число.

4. Векторная реализация. Реализация под архитектуру RISC-V выполнена с использованием век-
торных функций-интринсиков, компилирующихся в инструкции RVV 1.0. Реализация алгоритмов выпол-
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нена в двойной, одинарной и половинной точности. Поддерживается режим -ffast-math, исключающий
проверки на особые случаи. В будущем планируется поддержка нескольких реализаций с различной сте-
пенью точности, в том числе пониженной (3.5 ulp).

Особенностью архитектуры является возможность объединять логические векторные регистры за
счет изменения параметра LMUL. Это может дать заметный прирост в производительности [30, 31]. Биб-
лиотека поддерживает 4 режима LMUL (m1, m2, m4, m8). В режиме с LMUL=8 выполняется двойной запуск
реализации с LMUL=4 для ускорения времени работы, т.к. при LMUL=8 количества логических регистров
недостаточно для создания эффективного машинного кода.

5. Эксперименты.

5.1. Точность. В рамках проекта была создана система тестирования точности разработанной ре-
ализации. В качестве признанного эталона выбрана библиотека MPFR с точностью 200 бит, что гаран-
тированно ведет к верному округлению результата. Тестовая система генерирует случайные числа с пла-
вающей точкой в заданных диапазонах и вычисляет ошибку в ulp относительно эквивалентной функ-
ции MPFR. Стоит отметить, что случайное распределение не получается равномерным из-за неравно-
мерного распределения чисел с плавающей точкой на числовой прямой. На выходе отображается ста-
тистика о количестве ошибок округления с отклонением больше 0.5 ulp, 1 ulp, 2 ulp. Согласно требо-
ванию точности 0.501 ulp, допустима не более чем одна ошибка в диапазоне от 0.5 до 1 ulp на 1000
протестированных значений, при этом ошибки более 1 ulp недопустимы. Тестирование производилось
на 106 случайных точках во всей области определения и на 105 случайных точках в других диапазо-
нах. Для половинной точности было протестировано каждое значение в диапазоне области определе-
ния.

В случае двойной точности, а также одинарной в условиях ограниченных ресурсов, для полноты
картины необходимо также вычислять максимальное найденное отклонение [21]. Гарантировать полное
отсутствие ошибок, превышающих 1 ulp, можно только с помощью формальной верификации на основе
интервальной арифметики. Это является предметом будущей работы.

Далее мы приводим количество ошибок на 1000 случайных точек выборки для следующих харак-
терных интервалов:

• 𝐼0 = (−∞,∞) — область определения функции, представляет наибольший интерес;
• 𝐼1 = (𝑥underflow, 𝑥overflow) — диапазон normal значений;
• 𝐼2 = (𝑥underflow, 𝑥underflow + 4) — граница underflow ;
• 𝐼3 = (𝑥overflow − 4, 𝑥overflow) — граница overflow ;
• 𝐼4 = (−4, 4) — широкий диапазон вблизи нуля;
• 𝐼5 = (− ln 2/2𝑘+1, ln 2/2𝑘+1) — узкий диапазон вблизи нуля, соответствующий полиномиальной ап-

проксимации.
Итоговая статистическая ошибка, характеризующая качество реализации, определяется в диапазоне

всей области определения 𝐼0. В табл. 1 демонстрируются результаты тестирования приведенных в раз-
деле 3 вариаций функции exp. Формальным требованиям, представленным в разделе 2, удовлетворяют
вариация 1 для двойной и одинарной точности и вариация 3 для половинной точности. В целях обес-
печения высокой точности в области normal значений и других диапазонах в качестве итоговой версии
выбрана вариация 2 для двойной, вариация 3 для одинарной и вариация 4 для половинной точности.
В будущем планируется поддержка нескольких реализаций каждой математической функции с разной
степенью точности.

Был проведен сравнительный анализ с другими библиотеками. Рассмотрены реализации из GNU C
Library 2.39, модуля SVML пакета Intel oneAPI 2023, библиотек SLEEF, VecLibm. Библиотека VecLibm
поддерживает только двойную точность, при этом для функций exp и exp2 предоставляет несколько
реализаций. Мы рассматриваем версии, соответствующие функциям rvvlm_exp и rvvlm_exp2, которые,
согласно результатам тестирования, удовлетворяют ограничению 1 ulp. В данном разделе мы использова-
ли опцию компиляции -fno-fast-math. Эта опция, в частности для библиотеки Intel SVML, влияет в том
числе на выбор реализации функции: из нескольких доступных версий предпочтение отдается наиболее
точной. В табл. 2 представлены результаты тестирования в различных диапазонах области определе-
ния. Зеленым цветом в таблице обозначены значения, соответствующие статистическому ограничению
0.501 ulp.
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Таблица 1. Количество результатов с неверным округлением на 1000 точек выборки для различных вариаций
функций exp в двойной (“d”), одинарной (“f”) и половинной (“h”) точности. Цвета обозначают следующие
значения (в ulp): темно-зеленый (⩽0.01), светло-зеленый (⩽1), оранжевый (⩽10), светло-розовый (⩽100),
темно-розовый (⩽1000). Жирным шрифтом выделена итоговая статистическая ошибка во всей области

определения
Table 1. Number of results with incorrect rounding per 1000 sample points for different variations of the exp function

in double (“d”), single (“f”), and half (“h”) precision. The colors denote the following values (in ulp): dark green (⩽0.01),
light green (⩽1), orange (⩽10), light pink (⩽100), dark pink (⩽1000). The overall statistical error in the entire domain

is highlighted in bold

Variations
expd expf exph

𝐼0 𝐼1 𝐼2 𝐼3 𝐼0 𝐼1 𝐼2 𝐼3 𝐼0 𝐼1 𝐼2 𝐼3

Basic 1.981 3.710 242.38 244.44 9.942 18.360 209.98 203.80 42.399 73.680 183.71 161.94
1 0.015 0.030 1.650 1.860 0.368 0.580 6.780 7.090 4.958 8.950 28.790 41.330
2 0.006 0.010 0.730 0.770 0.130 0.230 3.360 3.870 2.554 4.390 30.220 41.340
3 0.000 0.000 0.000 0.010 0.005 0.000 0.240 0.350 0.778 1.350 16.560 21.450
4 0.000 0.000 0.000 0.010 0.005 0.000 0.050 0.070 0.125 0.240 0.000 0.000

Таблица 2. Количество результатов с неверным округлением на 1000 точек выборки для экспоненциальных
функций различных библиотек в двойной (“d”), одинарной (“f”) и половинной (“h”) точности. Цвета обозначают

следующие значения (в ulp): темно-зеленый (⩽0.01), светло-зеленый (⩽1), оранжевый (⩽10), светло-розовый
(⩽100), темно-розовый (⩽1000). Жирным шрифтом выделена итоговая статистическая ошибка

Table 2. Number of results with incorrect rounding per 1000 sample points for exponential functions of various libraries
in double (“d”), single (“f”), and half (“h”) precision. The colors denote the following values (in ulp): dark green (⩽0.01),
light green (⩽1), orange (⩽10), light pink (⩽100), dark pink (⩽1000). The overall statistical error is highlighted in bold

glibc SLEEF SVML VecLibm RVVMF glibc SLEEF SVML RVVMF RVVMF
expd expf exph

𝐼0 0.005 0.407 0.053 0.140 0.006 0.029 3.986 2.074 0.005 0.125
𝐼1 0.020 0.800 0.100 0.170 0.010 0.110 7.490 4.090 0.000 0.240
𝐼2 1.040 63.110 5.360 17.660 0.730 0.610 93.240 39.660 0.240 0.000
𝐼3 0.810 62.950 4.360 17.530 0.770 0.720 95.820 27.550 0.350 0.000
𝐼4 0.010 0.410 0.110 0.120 0.020 0.040 4.770 2.850 0.010 0.240
𝐼5 0.000 0.000 0.000 0.000 0.000 0.020 0.140 0.150 0.000 0.210

exp2d exp2f exp2h
𝐼0 0.005 0.441 0.069 0.115 0.008 0.034 2.649 3.577 0.009 0.108
𝐼1 0.000 0.910 0.090 0.140 0.010 0.050 4.960 6.340 0.040 0.170
𝐼2 1.010 67.780 5.750 16.880 0.770 0.490 62.920 49.510 0.120 0.000
𝐼3 0.740 68.060 4.650 16.410 0.690 0.680 60.650 24.130 0.180 0.000
𝐼4 0.010 0.400 0.050 0.070 0.000 0.060 2.790 4.780 0.000 0.190
𝐼5 0.000 0.000 0.010 0.000 0.000 0.020 0.030 2.720 0.000 0.200

expm1d expm1f expm1h
𝐼0 0.452 0.182 0.134 0.362 0.309 2.910 1.607 0.312 0.048 0.708
𝐼1 0.900 0.340 0.270 0.690 0.660 5.710 3.530 0.630 0.070 1.040
𝐼2 0.000 171.680 0.000 0.000 0.000 0.000 104.250 0.000 0.000 0.000
𝐼3 100.760 0.220 1.220 95.420 0.770 101.650 1.070 8.220 0.350 0.000
𝐼4 0.520 0.500 0.340 0.340 0.770 4.620 3.090 0.410 0.110 1.270
𝐼5 0.000 0.440 0.310 0.000 0.440 0.040 3.100 0.580 0.050 1.680

Среди рассмотренных сторонних библиотек наилучшую точность в большинстве случаев ожидаемо
продемонстрировал модуль libm компилятора GCC. Ограничению 0.501 ulp в диапазоне области опре-
деления в двойной точности удовлетворяют все рассмотренные библиотеки. В одинарной точности не
удовлетворяют этому ограничению библиотеки SLEEF и Intel SVML для функций exp и exp2 и SLEEF
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и glibc для функции expm1. Много ошибок округления выявлено в областях 𝐼2 и 𝐼3 больших по модулю
аргументов для библиотек SLEEF, SVML и VecLibm, что указывает на недостаточно точное выполнение
редукции в этих интервалах.

Согласно результатам тестирования, библиотека RVVMF соответствует требованию 0.501 ulp в диа-
пазоне области определения. Для двойной и одинарной точности данное требование также выполнено во
всех рассматриваемых диапазонах. По точности наша реализация показывает результаты не хуже, чем
реализация из математической библиотеки компилятора GCC. Для функции expm1 в половинной точно-
сти возникают ошибки округления в окрестности нуля, что связано с точностью вычисления полинома.
Тем не менее, формальные условия из раздела 2 выполнены. Дополнительное увеличение точности мы
посчитали нецелесообразным с точки зрения производительности.

5.2. Производительность. Для замеров производительности была разработана система бенчмар-
кинга, измеряющая время работы математической функции в трех режимах. Один из тестов вычисляет
по массиву аргументов массив значений функции (“array”), учитываются операции загрузки/выгрузки из
памяти. Другой тест производит вычисления в цикле без операций загрузки/выгрузки, при этом аргумент
следующего вызова зависит от результата предыдущего. Получаемое значение времени работы в тактах
близко к показателю латентности функции (“latency”). Третий тест направлен на измерение показателя,
эквивалентного пропускной способности (“throughput”): в цикле вычисляются 4 независимых значения
математической функции. Аргументы для тестирования выбирались случайным образом из диапазона
положительных normal значений с normal результатом. Результат усреднялся по примерно 25000 точкам
выборки.

Эксперименты производились на процессоре Banana Pi RISC-V SpacemiT K1 (RVV 1.0, длина вектор-
ного регистра 256 бит), использовался кросс-компилятор GCC 14.2. Особенностью процессора является
последовательное (in-order) выполнение инструкций, в связи с чем тесты “latency” и “throughput” де-
монстрируют почти одинаковое время работы. VecLibm предоставляет только интерфейс для обработки
массива, в связи с чем для этой библиотеки были проведены замеры только для теста “array”. Замеры
производительности выполнялись в режиме -ffast-math. В процессе тестирования могли возникнуть вы-
числения с subnormal операндами, например, при подсчете младших битов. Время работы измерялось с
помощью инструкции rdtime. Экспериментально было выявлено, что единица rdtime для приведенной
конфигурации соответствует 75 тактам процессора. Для удобства результаты замеров далее приведены в
тактах.

В табл. 3 представлены замеры производительности для вариаций функции exp из раздела 3. Пара-
метр LMUL выбран оптимальным и равен 2. Выделенные подчеркиванием значения соответствуют версии,
интегрированной в библиотеку RVVMF. Данные версии демонстрируют статистическую ошибку менее
1 ulp в рассмотренных ранее диапазонах (табл. 1). Что характерно, для менее точного формата хранения
числа с плавающей точкой требуется более точная реализация функции, следовательно, время обработки
векторного регистра увеличивается при переходе от двойной точности к одинарной и от одинарной точ-
ности к половинной. Тем не менее, обработка одного элемента ускоряется в 1.75–1.95 раз, что является
вполне приемлемым.

В табл. 4 представлено сравнение времени работы реализаций экспоненциальных функций из раз-
личных векторных библиотек под архитектуру RISC-V. Параметр LMUL выбран оптимальным для каждой

Таблица 3. Время в тактах обработки одного элемента векторного регистра (256 бит) для различных вариаций
функций exp в двойной (“d”), одинарной (“f”), половинной (“h”) точности

Table 3. Time in cycles of processing one element of a vector register (256 bit) for different variations of the exp
function in double (“d”), single (“f”), half (“h”) precision

Variations
expd expf exph

latency throughput array latency throughput array latency throughput array

Basic 28 26 26 13 12 12 6 5 5
1 33 31 30 15 14 14 7 7 7
2 37 35 35 17 16 16 9 9 9
3 43 41 41 19 18 18 10 10 10
4 45 42 43 20 19 19 11 10 10
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Таблица 4. Время в тактах обработки одного элемента векторного регистра (256 бит) для экспоненциальных
функций векторных математических библиотек для архитектуры RISC-V

Table 4. Time in cycles of processing one element of a vector register (256 bits) for exponential functions
from several RISC-V vector math libraries

float64 float32 float16

VecLibm SLEEF RVVMF SLEEF RVVMF RVVMF

exp
latency — 68 37 21 19 11

throughput — 65 34 20 18 10
array 32 66 35 20 18 10

exp2
latency — 59 37 21 18 10

throughput — 57 35 20 17 9
array 26 57 36 20 17 9

expm1
latency — 114 41 51 23 14

throughput — 112 38 50 22 14
array 35 112 39 50 22 14

функции. Для нашей реализации и SLEEF оптимальный LMUL равен 2. VecLibm предлагает значения по
умолчанию 4 для exp и 2 для expm1.

Наша реализация демонстрирует более высокую производительность по сравнению библиотекой
SLEEF. Функции exp и exp2 для типа с плавающей точкой float64 в 1.5–2 раза быстрее SLEEF, при
этом показывают меньшее число ошибок округления. В одинарной точности выигрыш составляет около
10%, что обусловлено более высоким качеством результата (табл. 2). Реализация expm1 быстрее SLEEF
в 2–3 раза.

Библиотека VecLibm на данный момент является эталоном по скорости работы и обгоняет нашу
реализацию примерно на 10%. Такая скорость может быть достигнута за счет оптимальной переста-
новки инструкций для последующего конвейерного выполнения. В нашем случае для рассматриваемого
программно-аппаратного окружения перестановка инструкций не выполняется автоматически и требует
дополнительного исследования и ручной настройки. Однако при запусках на процессоре с внеочередным
(out-of-order) исполнением инструкций ситуация может кардинально измениться. Дальнейшая работа в
том числе направлена на исследование скорости работы реализации на таких процессорах, при этом в
связи с отсутствием соответствующего аппаратного обеспечения рассматривается возможность использо-
вания программных симуляторов.

Стоит отметить, что в будущем целесообразна оптимизация производительности отдельно под каж-
дый параметр LMUL. VecLibm поддерживает только один параметр LMUL, фиксируемый на этапе компиля-
ции библиотеки, что не всегда эффективно. Например, при векторизации вычислительного цикла может
возникнуть ситуация, в которой использование параметра по умолчанию LMUL=4 для функции exp окажет-
ся невыгодным из-за ограниченного числа регистров. Возникающая в такой ситуации нехватка регистров
будет вызвана их нерациональным распределением и приведет к деградации суммарного времени работы
векторизуемого цикла. В некоторых алгоритмах этот эффект может быть нивелирован за счет предвычис-
ления большого количества экспонент и сохранения результатов в достаточно большие массивы, однако
это не всегда возможно из-за особенностей алгоритма. Кроме того, использование дополнительной памя-
ти также может привести к существенному замедлению вместо ожидаемого ускорения. Эти соображения
позволяют сделать следующий вывод: в математических библиотеках для RISC-V процессоров целесооб-
разно поддерживать оптимизированные реализации функций для всех доступных значений LMUL. Также
имеет смысл предоставлять несколько интерфейсов одной и той же функции, например, для отдельного
векторного вызова или для обработки массива элементов.

6. Заключение. Поиск компромисса между точностью реализации и производительностью для
стандартных математических функций не является тривиальной задачей. Ограничение на максималь-
ную ошибку 0.5 ulp требует вычислений в расширенной точности, что вызывает большие затруднения в
случае векторной реализации. Мы ориентируемся на статистическое ограничение 0.501 ulp, однако такая
точность требует дополнительных вычислительных затрат и не является необходимой для ряда прило-
жений. Оптимальным решением в данной ситуации служит поддержка нескольких отличающихся по
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точности версий, как это сделано, в частности, в библиотеке VecLibm. Выбор одной из версий удобно
осуществлять установкой соответствующих опций компиляции.

Разработанные нами реализации функций exp, exp2 и expm1 не отстают по точности от сторонних
библиотек векторных математических функций, а в ряде случаев их опережают. Точность реализации
сопоставима с версией математической библиотеки компилятора GCC. С точки зрения производитель-
ности, наша реализация обеспечивает ускорение в несколько раз по сравнению с библиотекой SLEEF,
но незначительно уступает библиотеке VecLibm (примерно на 10%). Преимуществом нашей реализации
является поддержка двойной, одинарной и половинной точности, нескольких значений LMUL (1, 2, 4, 8),
режима -ffast-math.

В дальнейшем мы планируем работу по дополнительной оптимизации производительности, в част-
ности, адаптации под различные LMUL. Важным направлением работы является исследование производи-
тельности для процессоров RISC-V с внеочередным исполнением.

Приложение 1
Обработка особых аргументов и диапазонов

В табл. 5 приведен порядок обработки специальных диапазонов функций exp, exp2, expm1 с учетом
возможных флагов исключений плавающей точки. Подразумевается, что флаг FE_INEXACT поднимается
автоматически и не требует ручной обработки.

Таблица 5. Порядок обработки особых значений и диапазонов для экспоненциальных функций

Table 5. The order of processing special values and ranges for exponential functions

Диапазон аргументов
Функция 𝑦 = 𝑓(𝑥)

exp exp2 expm1

𝑥 < 𝑥underflow0
,

результат округляется
до +0 (exp, exp2) или −1 (expm1)

𝑦 = +0, FE_UNDERFLOW 𝑦 = −1

𝑥 ∈ [𝑥underflow0
, 𝑥underflow),

большие по модулю отрицательные
аргументы, результат subnormal

FE_UNDERFLOW
FE_UNDERFLOW,
если были потеряны
значимые биты

—

𝑥 ∈ [𝑥underflow,−MAX_SUBNORMAL)∪
(MAX_SUBNORMAL, 𝑥overflow],
диапазон normal аргументов и
normal значений

Специальная обработка не требуется

𝑥 ∈ [−MAX_SUBNORMAL,−0)∪
(+0, MAX_SUBNORMAL],
множество subnormal аргументов

𝑦 = +1 𝑦 = 𝑥

𝑥 > 𝑥overflow,
результат равен +∞

𝑦 = +∞, FE_OVERFLOW

𝑥 = +0
𝑦 = +1

𝑦 = +0

𝑥 = −0 𝑦 = −0

𝑥 = +∞ 𝑦 = +∞
𝑥 = −∞ 𝑦 = +0 𝑦 = −1

𝑥 = qNaN (quiet NaN) 𝑦 = qNaN

𝑥 = sNaN (signaling NaN) 𝑦 = qNaN, FE_INVALID
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