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1. Введение. Теория обратных задач для уравнений математической физики является одним из ак-
туальных направлений современной прикладной математики. Исследованию обратных задач посвящено
очень большое количество работ (см. [1–6] и имеющуюся там библиографию). Значительный вклад в тео-
рию обратных задач был внесен в результате разработки метода их приближенного решения, основанного
на замене исходного дифференциального уравнения сингулярно возмущенным. Данный подход, извест-
ный как метод квазиобращения, был предложен в [7] и получил дальнейшее развитие в работах [8–11] и
ряде других исследований.

В методе квазиобращения сингулярно возмущенное уравнение используется для построения прибли-
женного решения, а малый параметр является искусственно введенным параметром метода. Вместе с тем
существует класс обратных задач для сингулярно возмущенных уравнений математической физики, в
которых малый параметр входит в исходное уравнение. Исследованию обратных задач для сингулярно
возмущенных уравнений в частных производных посвящены работы [12–16].

Метод квазиобращения, как правило, применяется к обратным задачам, в которых искомая функция
и дополнительная информация, используемая для определения искомой функции, зависят от одинаковых
переменных. В работах [17, 18] рассматривались обратные задачи для сингулярно возмущенных урав-
нений гиперболического типа, в которых искомые функции зависят от пространственной переменной, а
дополнительная информация представляет собой функцию времени. Кроме того, изучалась возможность
применения разработанных методов для решения аналогичных обратных задач для уравнения теплопро-
водности. Данная работа продолжает исследование в этом направлении.

Рассмотрим следующую задачу Коши для гиперболического уравнения с малым параметром 𝜀2 при
старшей производной:

𝜀2𝑢𝑡𝑡 + 𝑢𝑡 = 𝑢𝑥𝑥, 𝑥 ∈ R, 0 ⩽ 𝑡 ⩽ 𝑇, (1)

𝑢(𝑥, 0) = 𝜙(𝑥), 𝑥 ∈ R, (2)

𝑢𝑡(𝑥, 0) = 𝜙′′(𝑥), 𝑥 ∈ R, (3)

где 𝜙(𝑥) ∈ 𝐶2(R), 𝜀 — положительный малый параметр.
Задачу (1)–(3) можно рассматривать как сингулярное возмущение задачи Коши для параболического

уравнения
𝑣𝑡 = 𝑣𝑥𝑥, 𝑥 ∈ R, 0 ⩽ 𝑡 ⩽ 𝑇, (4)

𝑣(𝑥, 0) = 𝜙(𝑥), 𝑥 ∈ R. (5)

Сходимость решения задачи Коши (1)–(3) к решению задачи Коши (4), (5) при 𝜀 → 0 доказана в [17].
Сформулируем обратную задачу для задачи Коши (1)–(3). Пусть в задаче (1)–(3) задан малый па-

раметр 𝜀, а функция 𝜙(𝑥) неизвестна. Требуется определить функцию 𝜙(𝑥), если задана дополнительная
информация о решении задачи (1)–(3):

𝑢𝑥(0, 𝑡) = 𝑔(𝑡), 0 ⩽ 𝑡 ⩽ 𝑇, (6)

где 𝑔(𝑡) —заданная функция. Легко видеть, что решение обратной задачи в такой постановке неединствен-
но. Чтобы устранить эту неединственность, далее будем считать функцию 𝜙(𝑥) нечетной. Аналогичная
обратная задача с четной функцией 𝜙(𝑥) с условием 𝑢(0, 𝑡) = 𝑔(𝑡) вместо (6) была рассмотрена в [17].

Целью данной статьи является разработка численного метода решения обратной задачи (1)–(3), (6)
для гиперболического уравнения, а также демонстрация возможности применения этого метода для ре-
шения обратной задачи (4)–(6) для уравнения теплопроводности.

2. Вывод интегрального уравнения для функции 𝜙(𝑥). Пусть функция 𝑢(𝑥, 𝑡) удовлетворяет
уравнению (1) и условиям (2), (3), (6). Выведем интегральное уравнение для функции 𝜙(𝑥).

Рассмотрим функцию 𝑝(𝑥, 𝑡) = 𝑒
𝑡

2𝜀2 𝑢(𝑥, 𝑡). Так как функция 𝑢(𝑥, 𝑡) является решением задачи (1)–(3),
то функция 𝑝(𝑥, 𝑡) представляет собой решение следующей задачи:

𝑝𝑡𝑡 −
1

4𝜀4
𝑝 =

1

𝜀2
𝑝𝑥𝑥, 𝑥 ∈ R, 0 ⩽ 𝑡 ⩽ 𝑇,

𝑝(𝑥, 0) = 𝜙(𝑥), 𝑥 ∈ R,

𝑝𝑡(𝑥, 0) = 𝜙′′(𝑥) +
1

2𝜀2
𝜙(𝑥), 𝑥 ∈ R.
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Использовав для ее решения известную формулу [19, с. 269], получим представление для решения
задачи (1)–(3)

𝑢(𝑥, 𝑡) = 𝑒−
𝑡

2𝜀2
𝜙
(︀
𝑥− 𝑡

𝜀

)︀
+ 𝜙

(︀
𝑥+ 𝑡

𝜀

)︀
2

+
𝑡

4𝜀
𝑒−

𝑡
2𝜀2

𝑥+ 𝑡
𝜀∫︁

𝑥− 𝑡
𝜀

𝐼1

(︁
1

2𝜀2

√︀
𝑡2 − 𝜀2(𝑥− 𝜉)2

)︁
√︀

𝑡2 − 𝜀2(𝑥− 𝜉)2
𝜙(𝜉) 𝑑𝜉+

+
𝜀

2
𝑒−

𝑡
2𝜀2

𝑥+ 𝑡
𝜀∫︁

𝑥− 𝑡
𝜀

𝐼0

(︂
1

2𝜀2

√︀
𝑡2 − 𝜀2(𝑥− 𝜉)2

)︂[︂
𝜙′′(𝜉) +

1

2𝜀2
𝜙(𝜉)

]︂
𝑑𝜉, (7)

где 𝐼0(𝑥) и 𝐼1(𝑥) — модифицированные функции Бесселя нулевого и первого порядков соответственно [20].
Выведем интегральное уравнение для функции 𝜙(𝑥). Продифференцировав равенство (7) по пере-

менной 𝑥, применив формулы [21] для модифицированных функций Бесселя

𝐼𝜈−1(𝑥)− 𝐼𝜈+1(𝑥) = 2
𝜈

𝑥
𝐼𝜈(𝑥), 𝐼𝜈−1(𝑥) + 𝐼𝜈+1(𝑥) = 2𝐼 ′𝜈(𝑥), 𝐼 ′𝜈(𝑥) +

𝜈

𝑥
𝐼𝜈(𝑥) = 𝐼𝜈−1(𝑥),

положив 𝑥 = 0 и использовав условие (6), имеем:

𝑔(𝑡) =
𝑒−

𝑡
2𝜀2

2

[︂
𝜙′

(︂
− 𝑡

𝜀

)︂
+ 𝜙′

(︂
𝑡

𝜀

)︂]︂
+

𝑡

16𝜀3
𝑒−

𝑡
2𝜀2

[︂
𝜙

(︂
𝑡

𝜀

)︂
− 𝜙

(︂
− 𝑡

𝜀

)︂]︂
+

+
𝑡

32𝜀5
𝑒−

𝑡
2𝜀2

𝑡
𝜀∫︁

− 𝑡
𝜀

𝐼2

(︁
1

2𝜀2

√︀
𝑡2 − 𝜀2𝜉2

)︁
(︁

1
2𝜀2

√︀
𝑡2 − 𝜀2𝜉2

)︁2 𝜉𝜙(𝜉)𝑑𝜉 +
𝜀

2
𝑒−

𝑡
2𝜀2

[︂
𝜙′′

(︂
𝑡

𝜀

)︂
− 𝜙′′

(︂
− 𝑡

𝜀

)︂]︂
+

+
1

4𝜀
𝑒−

𝑡
2𝜀2

[︂
𝜙

(︂
𝑡

𝜀

)︂
− 𝜙

(︂
− 𝑡

𝜀

)︂]︂
+

1

8𝜀
𝑒−

𝑡
2𝜀2

𝑡
𝜀∫︁

− 𝑡
𝜀

𝐼1

(︁
1

2𝜀2

√︀
𝑡2 − 𝜀2𝜉2

)︁
1

2𝜀2

√︀
𝑡2 − 𝜀2𝜉2

𝜉

[︂
𝜙′′(𝜉) +

1

2𝜀2
𝜙(𝜉)

]︂
𝑑𝜉, 0 ⩽ 𝑡 ⩽ 𝑇,

откуда

𝑔(𝑡)𝑒
𝑡

2𝜀2 = 𝜀𝜙′′
(︂
𝑡

𝜀

)︂
+ 𝜙′

(︂
𝑡

𝜀

)︂
+

1

2𝜀
𝜙

(︂
𝑡

𝜀

)︂[︂
𝑡

4𝜀2
+ 1

]︂
+

𝑡

32𝜀5

𝑡
𝜀∫︁

− 𝑡
𝜀

𝐼2

(︁
1

2𝜀2

√︀
𝑡2 − 𝜀2𝜉2

)︁
(︁

1
2𝜀2

√︀
𝑡2 − 𝜀2𝜉2

)︁2 𝜉𝜙(𝜉) 𝑑𝜉+

+
1

16𝜀3

𝑡
𝜀∫︁

− 𝑡
𝜀

𝐼1

(︁
1

2𝜀2

√︀
𝑡2 − 𝜀2𝜉2

)︁
1

2𝜀2

√︀
𝑡2 − 𝜀2𝜉2

𝜉𝜙(𝜉) 𝑑𝜉 +
1

8𝜀

𝑡
𝜀∫︁

− 𝑡
𝜀

𝐼1

(︁
1

2𝜀2

√︀
𝑡2 − 𝜀2𝜉2

)︁
1

2𝜀2

√︀
𝑡2 − 𝜀2𝜉2

𝜉𝜙′′(𝜉) 𝑑𝜉, 0 ⩽ 𝑡 ⩽ 𝑇.

Приняв во внимание четность подынтегральных выражений и введя новую переменную 𝑧 =
𝑡

𝜀
,

получим:

𝑔(𝜀𝑧)𝑒
𝑧
2𝜀 = 𝜀𝜙′′(𝑧) + 𝜙′ (𝑧) +

1

2𝜀
𝜙 (𝑧)

[︁
1 +

𝑧

4𝜀

]︁
+

𝑧

16𝜀4

𝑧∫︁
0

𝐼2

(︁
1
2𝜀

√︀
𝑧2 − 𝜉2

)︁
(︁

1
2𝜀

√︀
𝑧2 − 𝜉2

)︁2 𝜉𝜙(𝜉) 𝑑𝜉+

+
1

8𝜀3

𝑧∫︁
0

𝐼1

(︁
1
2𝜀

√︀
𝑧2 − 𝜉2

)︁
1
2𝜀

√︀
𝑧2 − 𝜉2

𝜉𝜙(𝜉) 𝑑𝜉 +
1

4𝜀

𝑧∫︁
0

𝐼1

(︁
1
2𝜀

√︀
𝑧2 − 𝜉2

)︁
1
2𝜀

√︀
𝑧2 − 𝜉2

𝜉𝜙′′(𝜉) 𝑑𝜉, 0 ⩽ 𝑧 ⩽
𝑇

𝜀
. (8)
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Преобразуем интеграл, содержащий вторую производную функции 𝜙(𝜉). Проинтегрировав по частям
и использовав свойства модифицированных функций Бесселя, имеем:

1

4𝜀

𝑧∫︁
0

𝐼1

(︁
1
2𝜀

√︀
𝑧2 − 𝜉2

)︁
1
2𝜀

√︀
𝑧2 − 𝜉2

𝜉𝜙′′(𝜉) 𝑑𝜉 =

=
𝑧

8𝜀
𝜙′(𝑧)− 1

4𝜀

𝑧∫︁
0

⎧⎪⎨⎪⎩
𝐼1

(︁
1
2𝜀

√︀
𝑧2 − 𝜉2

)︁
1
2𝜀

√︀
𝑧2 − 𝜉2

− 𝜉2

2𝜀2

𝐼2

(︁
1
2𝜀

√︀
𝑧2 − 𝜉2

)︁
(︁

1
2𝜀

√︀
𝑧2 − 𝜉2

)︁2

⎫⎪⎬⎪⎭𝜙′(𝜉) 𝑑𝜉 =

=
𝑧

8𝜀
𝜙′(𝑧)− 1

8𝜀

[︂
1− 𝑧2

8𝜀2

]︂
𝜙(𝑧) +

3

8𝜀3

𝑧∫︁
0

𝐼2

(︁
1
2𝜀

√︀
𝑧2 − 𝜉2

)︁
(︁

1
2𝜀

√︀
𝑧2 − 𝜉2

)︁2 𝜉𝜙(𝜉) 𝑑𝜉+

+
1

768𝜀2

𝑧∫︁
0

𝜉3

1
2𝜀

√︀
𝑧2 − 𝜉2

⎡⎣𝐼1 (︂ 1

2𝜀

√︀
𝑧2 − 𝜉2

)︂
− 8

𝐼2

(︁
1
2𝜀

√︀
𝑧2 − 𝜉2

)︁
1
2𝜀

√︀
𝑧2 − 𝜉2

− 𝐼3

(︂
1

2𝜀

√︀
𝑧2 − 𝜉2

)︂
+

+4
𝐼4

(︁
1
2𝜀

√︀
𝑧2 − 𝜉2

)︁
1
2𝜀

√︀
𝑧2 − 𝜉2

⎤⎦𝜙(𝜉) 𝑑𝜉.

Подставив это представление в уравнение (8), получим:

𝜙′′ (𝑧) +
1

𝜀
𝜙′ (𝑧)

[︁
1 +

𝑧

8𝜀

]︁
+

1

8𝜀2
𝜙 (𝑧)

[︂
3 +

𝑧

𝜀
+

𝑧2

8𝜀2

]︂
=

1

𝜀
𝑔(𝜀𝑧)𝑒

𝑧
2𝜀 +

𝑧∫︁
0

𝐹 (𝑧, 𝜉)𝜙(𝜉) 𝑑𝜉, 0 ⩽ 𝑧 ⩽
𝑇

𝜀
, (9)

где

𝐹 (𝑧, 𝜉) = −1

𝜀

⎧⎪⎨⎪⎩ 1

8𝜀3

𝐼1

(︁
1
2𝜀

√︀
𝑧2 − 𝜉2

)︁
1
2𝜀

√︀
𝑧2 − 𝜉2

𝜉

[︂
1 +

𝜉2

96𝜀2

]︂
+

1

8𝜀3

𝐼2

(︁
1
2𝜀

√︀
𝑧2 − 𝜉2

)︁
(︁

1
2𝜀

√︀
𝑧2 − 𝜉2

)︁2 𝜉

[︂
3 +

𝑧

2𝜀
− 𝜉2

12𝜀2

]︂
−

− 1

768𝜀5

𝐼3

(︁
1
2𝜀

√︀
𝑧2 − 𝜉2

)︁
1
2𝜀

√︀
𝑧2 − 𝜉2

𝜉3 +
1

192𝜀5

𝐼4

(︁
1
2𝜀

√︀
𝑧2 − 𝜉2

)︁
(︁

1
2𝜀

√︀
𝑧2 − 𝜉2

)︁2 𝜉3

⎫⎪⎬⎪⎭ .

Домножим обе части уравнения (9) на 𝑒
𝑧2+16𝜀𝑧

16𝜀2 :

𝜙′′ (𝑧) 𝑒
𝑧2+16𝜀𝑧

16𝜀2 +
1

𝜀
𝜙′ (𝑧)

[︁
1 +

𝑧

8𝜀

]︁
𝑒

𝑧2+16𝜀𝑧

16𝜀2 +
1

8𝜀2
𝜙 (𝑧)

[︂
3 +

𝑧

𝜀
+

𝑧2

8𝜀2

]︂
𝑒

𝑧2+16𝜀𝑧

16𝜀2 =

=
1

𝜀
𝑔(𝜀𝑧)𝑒

𝑧
2𝜀 𝑒

𝑧2+16𝜀𝑧

16𝜀2 + 𝑒
𝑧2+16𝜀𝑧

16𝜀2

𝑧∫︁
0

𝐹 (𝑧, 𝜉)𝜙(𝜉) 𝑑𝜉, 0 ⩽ 𝑧 ⩽
𝑇

𝜀
. (10)

Заметив, что
𝑑

𝑑𝑧

(︂
𝜙′ (𝑧) 𝑒

𝑧2+16𝜀𝑧

16𝜀2

)︂
= 𝜙′′ (𝑧) 𝑒

𝑧2+16𝜀𝑧

16𝜀2 +
1

𝜀
𝜙′ (𝑧)

[︁
1 +

𝑧

8𝜀

]︁
𝑒

𝑧2+16𝜀𝑧

16𝜀2 , и проинтегрировав урав-

нение (10) с условием 𝜙′(0) = 𝑔(0), имеем:

𝜙′ (𝑧) 𝑒
𝑧2+16𝜀𝑧

16𝜀2 − 𝑔(0) +
1

8𝜀2

𝑧∫︁
0

𝜙 (𝛽)

[︂
3 +

𝛽

𝜀
+

𝛽2

8𝜀2

]︂
𝑒

𝛽2+16𝜀𝛽

16𝜀2 𝑑𝛽 =

=
1

𝜀

𝑧∫︁
0

𝑔(𝜀𝛽)𝑒
𝛽2+24𝜀𝛽

16𝜀2 𝑑𝛽 +

𝑧∫︁
0

𝛽∫︁
0

𝑒
𝛽2+16𝜀𝛽

16𝜀2 𝐹 (𝛽, 𝜉)𝜙(𝜉) 𝑑𝛽𝑑𝜉, 0 ⩽ 𝑧 ⩽
𝑇

𝜀
.
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Или

𝜙′(𝑧) = ℎ(𝑧) +

𝑧∫︁
0

𝑃 (𝑧, 𝜉)𝜙(𝜉) 𝑑𝜉, 0 ⩽ 𝑧 ⩽
𝑇

𝜀
, (11)

где

ℎ(𝑧) = 𝑔(0)𝑒−
𝑧2+16𝜀𝑧

16𝜀2 +
1

𝜀

𝑧∫︁
0

𝑔(𝜀𝛽)𝑒
𝛽2−𝑧2+𝜀(24𝛽−16𝑧)

16𝜀2 𝑑𝛽,

𝑃 (𝑧, 𝜉) =

𝑧∫︁
𝜉

𝐹 (𝛽, 𝜉)𝑒
𝛽2−𝑧2+16𝜀(𝛽−𝑧)

16𝜀2 𝑑𝛽 − 1

8𝜀2

[︂
3 +

𝜉

𝜀
+

𝜉2

8𝜀2

]︂
𝑒

𝜉2−𝑧2+16𝜀(𝜉−𝑧)

16𝜀2 .

Проинтегрировав равенство (11) и использовав условие 𝜙(0) = 0, получим интегральное уравнение
Вольтерра второго рода для искомой функции 𝜙 (𝑧):

𝜙 (𝑧) = 𝑓(𝑧) +

𝑧∫︁
0

𝐾(𝑧, 𝜉)𝜙(𝜉) 𝑑𝜉, 0 ⩽ 𝑧 ⩽
𝑇

𝜀
, (12)

где 𝑓(𝑧) =

𝑧∫︁
0

ℎ(𝛾) 𝑑𝛾 и 𝐾(𝑧, 𝜉) =

𝑧∫︁
𝜉

𝑃 (𝛾, 𝜉) 𝑑𝛾. При этом 𝑓(𝑧) ∈ 𝐶

[︂
0,

𝑇

𝜀

]︂
и 𝐾(𝑧, 𝜉) непрерывно при

0 ⩽ 𝜉 ⩽ 𝑧 ⩽
𝑇

𝜀
.

3. Результаты расчетов для обратной задачи. Численный метод решения обратной задачи
основан на реализации итерационного метода решения уравнения (12):

𝜙𝑛+1 (𝑥) = 𝑓(𝑥) +

𝑥∫︁
0

𝐾(𝑥, 𝜉)𝜙𝑛(𝜉) 𝑑𝜉, 𝑛 = 0, 1, 2, . . . . (13)

В качестве начального приближения берется функция 𝜙0(𝑥) = 0.

Критерий останова итерационного процесса: max |𝜙𝑁+1 (𝑥)−𝜙𝑁 (𝑥) | ⩽ 10−3, 0 ⩽ 𝑥 ⩽
𝑇

𝜀
. Численный

метод был программно реализован на языке Python.

𝜙(𝑥)

𝜙𝜀
5(𝑥), 𝜀 = 0.7

𝜙𝜀
10(𝑥), 𝜀 = 0.7

𝜙𝜀
25(𝑥), 𝜀 = 0.7

0.0 1.0

0.0

1.0

𝑥

a)

𝜙
(𝑥
)

b)

𝜙(𝑥)

𝜙𝜀
5(𝑥), 𝜀 = 0.5

𝜙𝜀
20(𝑥), 𝜀 = 0.5

𝜙𝜀
30(𝑥), 𝜀 = 0.5

0.0 1.0

0.0

1.0

𝑥

𝜙
(𝑥
)

Рис. 1. Численное решение обратной задачи для гиперболического уравнения: a) при 𝜀 = 0.7; b) при 𝜀 = 0.5

Fig. 1. Numerical solution of the inverse problem for a hyperbolic equation: a) at 𝜀 = 0.7; b) at 𝜀 = 0.5
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Рассмотрим примеры численного решения обратной задачи для гиперболического уравнения. Схе-
ма вычислительного эксперимента была такова. Задавались функция 𝜙(𝑥), числа 𝜀, 𝑇 . С ними решалась
задача (1)–(3) и определялась функция 𝑔(𝑡). Далее по этой функции определялась функция 𝑓(𝑥). С функ-
цией 𝑓(𝑥) реализовывался итерационный метод (13) и находилось приближенное решение обратной задачи
𝜙𝜀
𝑁 (𝑥). Затем приближенное решение 𝜙𝜀

𝑁 (𝑥) сравнивалось с точным 𝜙(𝑥).
Пусть заданы 𝜙(𝑥) = 𝑒−𝑥2

sin𝜋𝑥 и 𝑇 =
𝜋

3
.

На рис. 1 a представлены результаты решения обратной задачи для 𝜀 = 0.7, число итераций 𝑁 = 25:
точное решение 𝜙(𝑥), совпадающее с ним на рис. 1 a приближенное решение 𝜙𝜀

25(𝑥) и промежуточные
итерации 𝜙𝜀

5(𝑥), 𝜙𝜀
10(𝑥).

На рис. 1 b представлены результаты решения обратной задачи для 𝜀 = 0.5, число итераций 𝑁 = 30:
точное решение 𝜙(𝑥), совпадающее с ним на рис. 1 b приближенное решение 𝜙𝜀

30(𝑥) и промежуточные
итерации 𝜙𝜀

5(𝑥), 𝜙𝜀
20(𝑥).

𝜙(𝑥)

𝜙𝜀
25(𝑥), 𝜀 = 0.7

𝜙𝜀
32(𝑥), 𝜀 = 0.5

𝜙𝜀
44(𝑥), 𝜀 = 0.3

0.0 4.0

0.0

0.5

𝑥

𝜙
(𝑥
)

Рис. 2. Вычислительный эксперимент с применением
уравнения (12) для приближенного решения обратной

задачи для уравнения теплопроводности

Fig. 2. A computational experiment using equation (12)
to approximate the solution of the inverse problem for

the thermal conductivity equation

Рассмотрим возможность применения уравне-
ния (12) для приближенного решения обратной зада-
чи для уравнения теплопроводности. Схема вычис-
лительного эксперимента была такова. Для заданной
функции 𝜙(𝑥) решалась задача Коши (4), (5) и опре-
делялась функция 𝑔(𝑡) = 𝑣𝑥(0, 𝑡). Далее с этой функ-
цией 𝑔(𝑡) вычислялась функция 𝑓(𝑥), и с ней реали-
зовывался итерационный метод (13), откуда находи-
лась функция 𝜙𝜀

𝑁 (𝑥), являющаяся решением обрат-
ной задачи для гиперболического уравнения. Затем
эта функция сравнивалась с функцией 𝜙(𝑥) при раз-
личных значениях параметра 𝜀.

Пусть в задаче (4), (5) заданы 𝜙(𝑥) = 𝑥𝑒−𝑥2

и 𝑇 = 4. На рис. 2 представлены заданная функ-
ция 𝜙(𝑥) и приближенные функции 𝜙𝜀

𝑁 (𝑥) при 𝜀 =

0.7, 0.5, 0.3.
Из графика, приведенного на рис. 2, видно, что

при малых значениях 𝜀 функция 𝜙𝜀
𝑁 (𝑥) дает доста-

точно хорошее приближение к 𝜙(𝑥) и может рассмат-
риваться как приближенное решение обратной зада-
чи для уравнения теплопроводности.

4. Заключение. Рассмотрена обратная зада-
ча определения начального условия для сингулярно
возмущенного гиперболического уравнения с малым
параметром. Основной теоретический результат состоит в сведении исходной задачи к интегральному
уравнению Вольтерра второго рода, что позволило построить численный алгоритм на основе итерацион-
ного метода.

Проведенные вычислительные эксперименты подтвердили эффективность предложенного подхода.
Показано, что с увеличением числа итераций приближенное решение сходится к точному, причем скорость
сходимости зависит от значения малого параметра 𝜀. Численные расчеты продемонстрировали стремление
решения обратной задачи для гиперболического уравнения к решению обратной задачи для параболиче-
ского уравнения при уменьшении значений малого параметра. Это дает основание использовать данный
подход для приближенного решения существенно некорректной обратной задачи для уравнения тепло-
проводности.
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