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perreHust B (hUKCHPOBAHHON MpocTpaHcTBeHHOM Touke. OCHOBHOI pe3ysbraT paboThl COCTOUT B CBe-
JIEHUN UCXOTHON HEKOPPEKTHOM 3aa4Un K NHTErPAJILHOMY ypPaBHEHUIO Bosbreppa BTOPOro poja, Jist
YUCJIEHHOTO PeIleHusi KOTOPOro pa3paboTaH WUTepanuoHHBbIN MeToxa. [IpoBeseHbl BhIYUC/IMTETLHBIE
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1. Bemenue. Teopusi 06paTHBIX 38144 I yPABHEHII MATEMATHIECKON (DU3UKY ABJISETCA OIHUM U3 aK-
TyaJbHBIX HAIIPABJICHUN COBPEMEHHOH IPUKJIAIHON MaTeMaTuku. VccieoBaHIIO 0OPATHBIX 3a/ad ITOCBSIIIEHO
04eHb GoutbIoe Komaecto pabot (cm. [1-6] u nmerontyrocst Tam 6ubmorpaduio). SHAUATETBHBIN BKJIA B T€O-
puio 0OpaTHBIX 3324 ObLI BHECEH B pe3yJibrare pa3paboTKN METOMA UX IPUOJIMKEHHOTO PEIeHNs], OCHOBAHHOTO
Ha 3aMeHe HCXOMHOIo JuddepeHnuajibHoro ypaBHeHIs CUHTIYISPHO BO3MYIIEHHBIM. JIAHHBINA 1T0/IX0J, M3BECT-
HBIIl KAK MeToJ| KBa3noOpalleHusi, ObLI IPeUIoKeH B [7] u monydni nasnbHeiimee passurue B paborax [8—11] u
psne IPYyruX UCCIIeI0BAHUIA.

B MeTos1e KBaznoOOpaIieHnst CHHTYJISIPHO BO3MYIIIEHHOE YPaBHEHNE UCIIOIB3YETCs JJIst IIOCTPOEHHS TPUOJIU-
2KEHHOT'O PEeIIeHns], a MAJIBIl ITapaMeTp sBJISeTCs UCKYCCTBEHHO BBEJCHHBIM [IapaMeTPOM MeToja. Bmecre ¢ TeM
CYIIEeCTBYeT KJiacC OOPATHBIX 3a/a4 /I CUHTYJISPHO BO3MYINIEHHLIX YDPaBHEHUI MAaTeMaTHYeCKoil (DU3MKH, B
KOTOPBIX MaJIblii TapaMeTp BXOJWT B UCXO[HOe ypaBHeHwme. VcciemoBanmio oOpaTHBIX 3aad JJisi CHHTYJISPHO
BO3MYIIIEHHBIX YPABHEHHUH B YACTHBIX IPOM3BOJHBIX MOCBsIIIEHb! paboTsl [12-16].

MeTo KBa3nOOpAIIEHNST, KAK [IPABUJIO, IPUMEHSIETCS K OOPATHBIM 33/[@4aM, B KOTOPBIX HCKOMast (pyHKIUs
U JIOTIOJIHATEIbHAsT NH(MOPMAIHS, UCIOJIb3yeMas JJIsi OIPE/IeIEHUS NCKOMO (DYHKITIH, 3aBUCAT OT OJMHAKOBBIX
nepeMeHHbIX. B paborax [17, 18] paccMmarpuBaiduch oOpaTHbIE 3aJ@9u JJIsi CHHTYJISIPHO BO3MYIIEHHBIX ypaB-
HEHUil runepboIMIECKOro TUIA, B KOTOPBIX MCKOMbIE (DYHKIINU 3aBUCAT OT IPOCTPAHCTBEHHON II€PEMEHHOM, a
JIOTIOJTHUTE/IbHAS HWHMOPMAITUS [IPEICTABIIeT co00l DYHKIMIO BpeMenn. Kpome TOro, n3yvaiach BO3MOKHOCTH
[IPUMEHEHUsT Pa3pabOTaHHBIX METOJIOB JIJIs PEIIEeHIs aHAJOIUIHBIX O0PATHBIX 3a/a4 JJIsl YPaBHEHUs TeIIONPO-
BosHoctH. lannas paboTa MpoJIoJKaeT MCCIeI0OBAHNE B TOM HAIIPABJIEHUH.

PaccMoTpum cieyrontyio 3agaay Ko i runep6oImuecKoro ypaBHeHHs ¢ MAJILIM HAPaMeTPOM £2 HpH
cTapuieil Npou3BOAHONI:

Uy +up = Uy, TER, 0Kt LT, (1)
U($,O) = @(x)a z €R, (2)
u(z,0) = ¢"(z), z€R, (3)

e p(x) € C?(R), ¢ — MOMOKUTETLHBI MAJTLIH TApaMeTp.
Bagauay (1)—(3) MOXKHO paccMaTpUBaTH KAK CHHIYIIsIPHOE Bo3MyIleHue 3a1aau Ko s napabomaeckoro
ypaBHEHUSI
Ve =Vge, TER, 0<Kt<T, (4)

v(z,0) = p(x), z€R (5)

Cxonnmocts pernenus 3agadn Komu (1)—(3) x pemternio 3amaau Konm (4), (5) nmpu € — 0 nokazana B [17].

Cdopmynupyem obparnyio 3amaay jia 3agauan Komm (1)—(3). Ilyers B 3amaue (1)—(3) 3aman masbiii na-
pamerTp €, a dyHkims ¢(x) HemsBecTHA. Tpebyercs onpenesnTs GYHKIMO (X)), eciu 3aJaHa JOIOJHATEIbHAS
undopMarys o perrennn 3agaqn (1)—(3):

ug(0,t) = g(t), 0<t<T, (6)

re g(t) —3amannasa GyHkms. JIErko BUAETH, 9TO pelenne 06pATHO 3a/1a91 B TAKOH MOCTAHOBKE HEEJMHCTBEH-
HO. YTOOBI YCTPAHUTE 3Ty HEEIMHCTBEHHOCTD, Jajiee OyaeM cauTaTh GyHKImo ¢(x) HedeTHOH. AHagormaHas
obpaTHast 3aa4a ¢ YeTHOH yHKIwmeil ¢(x) ¢ yeaosuem u(0,t) = g(t) B7mecro (6) 6bl1a pacemorpena B [17].

ITesbro maHHOM cTATHU ABJISETCS pa3paboTKa IMCIEHHOTO MeToja perenust obparroit 3amaan (1)—(3), (6)
JUIS THIepOOIMYECKOrO yPAaBHEHH, a TaKzKe JEeMOHCTPAIUSA BO3MOMKHOCTH IIPUMEHEHHS 3TOI0 METOMA JJIA Pe-
miernst obparHoii 3amaun (4)—(6) 1yisi ypaBHEHUS TEIIOIPOBOIHOCTH.

2. BeiBog uHTErpaJibHOro ypaBHeHus st pyHkmun (). [lycrs dyuxnus u(x,t) ymosiaerBopser
ypasaernio (1) u ycaosusm (2), (3), (6). BeiBesem unTerpasbHoe ypaBHeHue Juist GyHKIMN ().

Pacemorpum dynrkimo p(x, t) = e2eZ u(x,t). Tak kak dyHKIMs u(x, t) sBsiercs pemenueM 3anaqan (1)—(3),
To dbyukiws p(z,t) upepcrasisier coboii pelleHue cienyomel 3aiadm:

1 1
ptt_@p:?pmmv reR, 0<t<T,

p(fE,O) = 90(56)’ z € R,

1
pt(1'70) = QON(SC) + @S@(fﬂ), r €R.
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HcnonbzoBas Jyist ee penneHnst u3secTHyoo dopmyay [19, ¢. 269], moaydum npejcTaBieHne JJlsl PEIIeHsI
samaan (1)—(3)

_t t and U/ T o 3P
ua )= n £ Polete) L = (T 5))ea<s>czf+

e [ (Ve ) [0+ he] e @

rae Io(x) u I (x) — mogudunuposanubie Gyukuuu Beccesis HyIeBOro u mepBoro MopsaKoB cooTBeTcTBeHHO [20)].
Brisegem unrerpaibioe ypasuenue g dyuknuu o(x). pomuddepennuposas pasercrso (7) no mepe-
MeHHOH ¥, npuMeHuB dopmyasl [21] aust Mmomudunuposanubx Gyukimit Beccestst

Iyi(2) = Lsa(2) =22 L,(), Lo (@) + L (@) = 20(2),  L(@) + = L (2) = L1 (a),

nostoxkus & = 0 u ucnonb3osas yciaosue (6), mMeem:

0= (oo (O e () (D)

+ -

163 1 /12 2¢2 8 1 12 2¢2

EA = AVA ks 13 A= AVA ks 13
HpI/IHSIB BO BHHMaHUE YE€THOCTL IIOJIbIHTEr'PDaJIbHBIX BI)Ipa}KeHI/Iﬁ 1 BBE€/Z HOBYIO II€EpEMEHHYIO 2 = —,
€

IIOJTy IUM:

| Ph(2VE-€) | ih(2vP-E) .
+@/ Ey 5W(f)df+@/ Ry () de, 0<z< - (8)
0 0 e
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ITpeo6pasyem nHTErpad, CoepKanmii BTopyo npon3soaayo dyukiuu ¢(€). [IpouHTerpuposas 1o 4actsiMm
¥ UCIIOJIb30BaB CBOMCTBA MOAMMUIINPOBAHHBIX (yHKIHiIT Beccens, nmeem:

r (25 22 _52)

E J % 22 _ 52 ftp"(i) d§ =
. 1 z I (2715 22 §2> 62 I (i 22 _ £2
== — S5 ’ d _
86<‘0( ) 450/ Ly/22 ¢ 2¢2 (% 22_£2>2 ©'(§) dg

rmae

F(z6) 1)1 11(25 2_52)5 ) % N 1 12 (2e 2= el3s 2 £
Z = —_—— — —_—— p—
’ e )8 Lyz2-¢2 962 | = 8e3 (L o 52)2 2t 12¢2

2e

3
768s> L /2 _ g2 19265 (1 55\ ¢
2e % 6
224 16¢ez
JomuoxkuM 06e qacTy ypasHeHust (9) Ha e 162
221 16ez 1 z 22116z 1 22 22116z
o' (z)e 16T + ggo’ (2) {1 + g} e 162 4 @ap(z) {3 + -+ 82] e 162 =
z
1 2 22416ez 22416e2 T
= Zglen)ed e 1 T [ PG op©d, 0<<T 0)
€ €
0

d 22416ez 22416ez 1 z 22416ez
Bamerus, aro o O (z)e 162 | =" (2)e 162 4+ —¢' (2) [1 + 87] € 167 | M IPOMHTEIPUPOBAB yPaB-
z € €

Henre (10) ¢ ycnosuem ¢’ (0) = g(0), nmeem:

22+416ez 2 +16e
¢ T g0+ s oo [s D ] S s -
0

z . B
G ﬁﬁwdﬂ// S (B, 0p(6) dsds, 0< =<

0 0

=
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Nnn

z

o(2) = h(z) + / Pz €)p(0)de, 0<z<

0

- (1)

rie
z
_ 22416e2 1 B2—224e(248-162)

h(z) = g0) T 4 2 [ glepe™ T RET 0,

0

z
B2 22416e(8—2) 1 [ £ & } €222 416e(¢—2)
e )

P(va):/F(ﬁvg)erﬁ_@ 3+g+@ 1622
3

ITpounrerpuposas pasenctso (11) u ncnosnbzosas yciosue ¢(0) = 0, MOJIyInM HHTErpaJbHOE YPABHEHHE
Bouibreppa Broporo posa jiist BiCKoMoit dbyHkimu ¢ (z):

o) = 1)+ [[KGEOe©d 0<z< T, (12)
0

z

h(y)dy m K(z,§) = /P(’y,{) dvy. Tlpu srom f(z) € C [0, Z] u K(z,€) HenpepbiBHO Ipu
3

rne f(z) =

(").\ ~ O\N

0<§<z2<

3. Pe3yabpTraThl pacueToB Jisi oOpaTHOU 3amaduu. UWCIeHHBINT MeTos penrenns oOpaTHON 3a1atdu
OCHOBaH HA PEATU3AINU UTEPAIMOHHOIO MeTo/la perneHus ypasuenus (12):

oy (1) = f(2) + / K(2,€)pn()de, n=0,1,2,... . (13)
0

B kadecTBe HavajbHOro npubauzkenus 6epercs dyukims @o(x) = 0.

T
Kpurepuii octanosa ureparuonnoro nporecca: max [on 41 () —on (2) | <1073, 0 <z < . Yucsrenmerit

MEeTO/T OBIT TPOrPAMMHO peau30BaH Ha s13bike Python.

1.0

0.0

a) b)

Puc. 1. YucnenHoe perienne o0paTHON 3a7a4uu [yl TUIEPOOIMIecKoro ypasaernus: a) upu € = 0.7; b) npu € = 0.5

Fig. 1. Numerical solution of the inverse problem for a hyperbolic equation: a) at ¢ = 0.7; b) at e = 0.5
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PaccMoTpuM IIpuMephl YHMCJIEHHOIO PEIleHns 00paTHON 3aa4uu Jijid runepooindeckoro ypasuenus. Cxe-
Ma BBIYHMCJIUTETHHOTO SKCIEPUMEHTa ObLTa TakoBa. 3ajaBainch GyHkmms ¢(x), uncna e, T. C HIMEI pemaach
zazada (1)—(3) u oupenensuiacs byuxnus g(t). Jasee no aroii dyukuuu onpenessiack byuknus f(z). C dyHk-
nueit f(x) peasm3oBbIBaJICS UTEPAMOHHDBIA MeTox (13) u HAXOAMI0Ch NTPUOIMIKEHHOE pelienne 00paTHON 3a1a9u
5 (x). Barem npubinzkenHoe peeHue @5 () CPABHUBAIOCH C TOYHBIM ¢ ().
T

2 .
Tsinmexul = —.

3

Ha puc. 1 a nupencrasiiensl pe3yabTaThl perieHus ooparTHoit 3aga4u s € = 0.7, yncio urepanuit N = 25:

ITycre 3a7anbl @(z) = e~

TOYHOE peleHue (), COBIAJAoNiee ¢ HUM Ha pUC. 1a MpubnKeHHOe pelleHne ¢5s (L) U IpOMeXKyTOIHbIE
(1 £
urepanuu o5 (z), ¢io().
Ha puc. 1b npejcraBienbl pe3yabTaThl perieHus: obparHoit 3amadn g € = 0.5, qucso urepanuit N = 30:
TOYHOE pelenue (), CoBIaIamoliee ¢ HUM Ha puC. 1b npubimkenHoe pernenne ¢5(z) W IPOMEXKYTOIHDIE
(1 £
urepanun o5 (z), ¢50().
PaccMOTpEM BO3MOXKHOCTL IPUMEHEHUsI ypaBHe-
Hus (12) jyis npubJzKeHHOro pernenust 06paTHO 33/~

YU IS ypABHEHUsI TeTIonpoBogHocTr. Cxema BbIIUC- 05
JIUTEJLHOTO 3KCIePUMEHTa ObLIa TakoBa. J[jis 3a1aHHO
dbyuxmn ¢(z) pemanace 3anaua Kommn (4), (5) u omnpe-
nessiiack dyskus g(t) = v, (0,t). Janee ¢ aroii PyHK-
nueit g(t) Boraucisnacs Gyukuus f(z), u ¢ Heii peau-
30BBIBAJICS HTEPAIMOHHBIH MeTos (13), oTKya maxomu- &
sach GyHKIM 5 (2), ABIdOmascsa pemeHneM obpar- >
HOM 33129 JJIst TUIEPOOIMIECKOTO YPaBHEHUsI. 3aTeM
5Ta DYyHKIMsI CpaBHUBAJIACH ¢ QyHKIWEH ¢(2) pu pas-
JINYHBIX 3HAYEHUSIX ITAPAMETPA E.

ITycts B 3amaqe (4), (5) 3amansl @(x) = ze ™
u T = 4. Ha puc. 2 npejicraBjeHbl 3ajaHHas (DyHK- 0.0
mus p(x) u upubiaukenusle GyHKIuN @5 (x) npu € =
0.7, 0.5, 0.3. 0.0 a: 4.0

W3 rpacduka, npuBeeHHOrO Ha pUC. 2, BUIHO, 9TO

[IpY MaJIbIX 3HAdYeHusAX & PyHKuus @5 (x) Jaer gocra-
TOYHO XOpoIliee NPUOJIUKEHUE K () 1 MOKET PACCMaT-
pHUBaThCs KaK IPUOJIMKEHHOE PellleHne 00paTHON 331~
YW J1J1s YPABHEHUS TEILJIONPOBOAHOCTH.

4. 3akJiao4dyeHue. PaccmoTpena obpaTtHas 3a1a-
9a OIpeJie/IeHNsT HAYAJIBHOTO YCJIOBUST JJIsi CUHTYJISIPHO

Puc. 2. BerunciurenpHBIN S5KCIIEPIMEHT C IPUMEHEHUEM
ypaBHeHust (12) jyist npubinrKeHHOro perieHust 06paTHON
3aJlauy JJIsl ypaBHEHUs TEIIOIPOBOJHOCTHI

Fig. 2. A computational experiment using equation (12)
to approximate the solution of the inverse problem for
the thermal conductivity equation

BO3MYIIIEHHOI'O I'UIIEPOOIMIECKOTO yPABHEHHS C MAJIBIM

napamerpoM. OCHOBHOW TEOPETUYECKU PE3YJIbTaT COCTOUT B CBEJIEHUM HUCXOJHON 3a/[adM K WHTErPAIbLHOMY
ypaBHeHuio Bosbreppa BTOPOro pofa, 9To MO3BOJIMIO MOCTPOUTH YUCJICHHBINA AJITOPUTM Ha OCHOBE UTEPAIUOH-
HOT'O METOJIA.

[IpoBesieHHbIe BBIYUCIUTENBHBIE SKCIEPUMEHTHI TOATBEPAMIN 3DPEKTUBHOCTD PEJTIOKEHHOTO MTOIXO/IA.
[Tokazano, 9T0 ¢ yBeJMYeHrEM IUCTIa UTEPAIHI TPUOIMKEHHOE PEIIEHNE CXOIUTCS K TOUHOMY, IPUIEM CKOPOCTh
CXOJIMMOCTH 3aBUCUT OT 3HAYEHUS MAJIOrO TapaMeTpa €. UuC/IeHHbIe pACUeThI TPOIEMOHCTPUPOBAJIA CTPEMJIEHIE
pertenust 0OpaTHOM 3a/1a9u I THIEPOOINIECKOTO YPAaBHEHUsT K PEIIeHnIo 00paTHOHN 3a1a4uu Jij1s rrapabosutie-
CKOT'O YPaBHEHUsI ITPU YMEHBIIIEHUN 3HAYEHUIl MaJIoro mapamMeTrpa. JTo JaeT OCHOBAHUE HMCIIOJb30BATH JTAHHBIN
ITOJIXOJ, JiJisi TTPUOJIMZKEHHOT'O PEIleHnsi CYIECTBEHHO HEKOPPEKTHOI OOpaTHON 3aaun Jjis yPABHEHHUS TEILIO-
IIPOBOJIHOCTH.
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