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Awnnorarus: B 510i1 cTarhe MbI IpeJCTaB/ISIEM METO/I BIYMCJ/IEHUsI CTAIMOHAPHBIX COCTOSIHUIA ypaB-
nenus Kieitna—lopona—Poka ¢ MOMOIIBI0O HEHPOHHBIX ceTeit. MeTo OblT anmpodupoBaH Ha JIBYX
XOPOIIIO U3BECTHBIX CUCTEMAX: PEJSITUBUCTCKON OECCIIMHOBOM YACTHUIE B KYJIOHOBCKOM IIOTEHIINAJIE U
OJTHOMEPHOM PEJISTUBHUCTCKOM T'apMOHMYECKOM OCHLIATOpe. IIpecraBiernl pe3yabraThl 00y deHust
HEHPOHHOI ceTH JJIsi THX JBYX CHCTEM, a TaKyKe aHaJIn3 mporecca obydenusi. Meros HeApOHHBIX
cereil MOKA3bIBAET XOPOIIEE COOTBETCTBHE C PE3YJIbTATAMH AHAJUTHUYECKUX BBIYUC/ICHUN (€Cjau OHU
MOI'YT OBbITh HANJIEHBI B fBHOM BHJIE), YTO OTKPLIBAET HEPCIEKTUBLI JJI PEIICHUs] 0OJIee CIIOKHBIX
3aJ1a4 B 00JIACTH KBAHTOBOH (DU3MKM M KBAHTOBOW XUMUMU.
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1. Introduction. Machine learning models and algorithms have been applied in various fields of
physics [1-3]. Machine learning has its advantages and shortcomings over numerical methods [4, 5], com-
plements and develops methods of computational physics. In quantum theory, there are some equations that
are difficult to solve analytically. In 2017, two physicists, Giuseppe Carlo and Matthias Troyer, proposed the
Neural Network Quantum States method (NNQS) [6, 7]. This method is based on the use of neural networks to
approximate the ground state of a quantum system. The NNQS method has been shown to be very effective in
solving difficult problems in quantum physics [8-11]. Nowadays, the NNQS is used in many problems: PauliNet
[12], a deuteron [13], quantum wells [14], etc. The variational principle for quantum field theories was proposed
in [15].

The Schrodinger equation is a well-known equation that plays a crucial role in quantum mechanies [16, 17],
but Schrodinger equation is not relativistic, which is noticeable in some systems, for example, an atom. The
relativistic Klein-Gordon—Fock equation [18-21] describes spinless particles but can be generalized for particles
with integer and half-integer spins and has many applications for describing macroscopically isotropic crystals,
pi-mesons, and Cooper pairs. A physics-informed neural network (PINN) approach has been considered in [22].
In the case of the Klein-Gordon—Fock equation, it is difficult to write out the Hamiltonian explicitly; only
the square of the Hamiltonian is obvious. Additionally, the Klein—-Gordon—Fock equation contains two extra
degrees of freedom [23, 24|, which makes it challenging to apply variational techniques based on searching for
the minimum energy. In this article, we will discuss and analyze methods for overcoming the above-mentioned
issues and investigate two well-known physical systems: the relativistic spinless particle in a Coulomb potential
and the one-dimensional relativistic harmonic oscillator.

2. Method.

2.1. Theory. The KGF equation is a four-dimensional equation (z1, 2, x3,t coordinates). However, in
this paper, we will focus on using neural networks to study quantum systems with stationary solutions. These
systems do not include time derivatives, so we will not consider them in this discussion. Many three-dimensional
problems can be simplified to one dimension, for example, in the case of a particle in a spherically symmetric
potential. We will demonstrate this below.

In relativistic quantum mechanics, for a free particle with rest mass m, the relationship between energy
FE and momentum p is

E? = p*c® + m*ct, (1)
where c is the speed of light in a vacuum. If the particle is in a potential V(z), the expression (1) is modified
in the following way:

[E —V]? =p?c? + m?c. (2)
The corresponding wave equation in one dimension is
d2
B~ VPula) = | -1+ et (), ®

where % is the reduced Planck constant, 1(z) is the wavefunction.
It is a so-called relativistic Klein-Gordon-Fock equation. We can rewrite it in the Schrodinger-like
form [25, 26]

mZ d?
Eueb(2) = | =gtz + Vo) | o), o
where we denote 5 5 4
Eof = —5—5— (5)
2EV (z) — V?
Vi = 22V VD) (
N r? d?
Heﬂ‘:—%ﬁ—i—‘/@ﬂ(l‘), (7)
H.
Eeg = W = Ey, (8)

Ejy is the minimum energy for our system. Since the energy E is extracted from Feg, and Vg also contains
E, strictly speaking, this is not the eigenvalue problem. Nevertheless, in practice, this procedure works for a
number of problems, as we will see below.
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2.2. Learning process. To solve our prob- Optimize (AdamW)
lems we apply the PyTorch library of the Python
programming language. A neural network is a tool /_L )
which can be used to find the wavefunctions of sta- O Total Loss
tionary states. We want to select a neural network 7Y
that will lead us to the bound states. Therefore, we . Q ()
solve the optimization problem and reduce a loss Q =|< | Hogt|t) >
function, i.e. minimize the energy. However, as < Yl >
mentioned above, when solving the KGF equation, Input Output
we face the problem of quadratic energy, which leads layer layer
to modes with negative and positive total ener- (coordinate) 9 (wavefunction
gies. To eliminate negative modes, we introduce an Hidden value at z)
ansatz for wavefunctions ¥ (z) = network(x) - f(z), layer

where f(z) is the envelope, or analytical approxima-
tion, or network from the Shrédinger solution, and Figure 1. The neural network architecture used
network(x) is a neural network. The coordinate of in our study and the optimization process

point x is the input of the neural network, and in are illustrated in the feedback loop.

the output we get the value of the wavefunction at

this point, the phase of the wavefunction is not required, so only the real-valued wavefunction is considered.
The loss function solely depends on the solutions obtained by the neural network while the training process is
fully data-free. This formulation results in an unsupervised learning method. We also tested the energy values
in a set of points different from those used during training, and obtained similar results. In all cases, we apply
a multilayer perceptron (MLP) with one hidden layer (50-100 nodes for different problems), see Fig. 1. In our
opinion, a single hidden layer is sufficient for our tasks, although two hidden layers could also be appropriate.
We use the hyperbolic tangent (tanh(z)) as the activation function. There are other activation functions avail-
able, such as ReLU, SiLU, and others. The choice of them depends on the specific task. In our research, we
choose the hyperbolic tangent activation function because of its symmetrical domain of definition. Additionally,
we use a scheduler to decrease the learning rate and Lo regularization [27, 28] to avoid instabilities associated
with the growth of weights

LQ, regul — 5\ Z &57 (9)

where &; are the weights of the NN, and A is the Lagrange multiplier which is introduced for optimization,
namely for minimization of the predefined loss function. We found it necessary to implement a regularization in
a custom loss function. With the AdamW optimizer [29], one can use weight decay instead of Lo regularization.
We apply the AdamW optimizer in our experiments. In the code, we left the regularization in case of other
optimizer. Since the effective potential V.g includes the total energy of the particle, we iteratively replace it
with the previous value during training. The initial energy E is set to be closed to mc?, since the effective
potential V.g contains E as a variable. In our work, we use the term “epoch” to refer to one cycle of weight
optimization, based on minimizing a sum of loss functions across the coordinate mesh z;.

3. Application.

3.1. Relativistic spinless particle in a Coulomb potential. Historically, Schrodinger solved the
problem of the relativistic hydrogen atom in the formulation of wave quantum mechanics. For the Coulomb
potential, the transformed equation (4) is similar to the Schrodinger equation, and an exact expression for the
energy can be obtained (the spinless relativistic electron model) [26]

2

Ey, = L - mc2, (10)
22042
)
RO

with

=1+t l+12—222 (11)
P=ET g 2 an

where n is the principal quantum number, [ is the azimuthal quantum number, o & 1/137 is the fine-structure
constant, Z is the charge number.
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The neural network becomes unstable around Z = 70 with [ = 0. This can be explained by the impact of
the large attractive potential contributions. The manifestation of this feature is also contained in the analytical
solution (10), (11) for [ = 0 and for the large values of Z ¢; becomes complex. Therefore, there are different
constraints on Z for each value of [. The physical reason of this feature is the incorrectness of the application
of a single-particle equation in strong fields [26], which leads to large fluctuations in the field, including the
number of particles.

Let us set m = ¢ = h = 1, e? = . For the stationary case the problem is formulated in three-dimensional
space. Since the potential has spherical symmetry, then the variables in the equation are split and, as a
result, the separated parts of the original equation can be solved independently. Therefore, we can write down
the wavefunction as ¥(r,0, ) = R(r)Y;™(0,¢), where R(r) is the radial part, and Y;"(f, @) is the spherical
harmonic function of degree { and order m, r is the radius,  is the polar angle, ¢ is the azimuthal angle. For
the radial part R,;(r) we introduce v, (r) = 7Ry;(r). Now the Klein-Gordon-Fock equation can be reduced to
a one-dimensional equation for ), [26] with

2
Heg = — ;;2 + i I+ 1) + Vegr, V(T)=—?, (12)
where Vg is defined by (6).
Since we are working in spherical coordinates and with the Coulomb interaction, the above integrals

Wt | Fs | o) = 7{; (o) i) (gt + 1)+ Var ) e, (13
0

where we have integrated the first term by parts, 8 is the neural network parameters.
Applying discretization, we get

dipn, 2 1
(Yo | Hett | o) %Z [ { Yuto(r )} +¢72Lz,9(7“i)<2 Ql(l+1)+‘/:3ff(rz)):|u (14)
i=1 =T
N,
(nio | Ynre) = Y withpy 4(r;) = N, (15)
i=1
(¢ | Hew | )
Loss = + Lo, regul, 16
W) e (16)
w; is the mesh weights, IV, is the number of nodes, N is the normalization factor, and Lo yegul is the regularization

from (9).

At this stage, we take an additional step and add the envelope to the NNQS when calculating losses. The
envelope is a function that multiplies NN, and its purpose is to satisfy boundary conditions. In our case, we
should require 1,,;(0) = 0. This can be achieved by specifying the asymptotics at zero in the standard way:

Vi (r) — Y (r)rt L

1 1 ak A o(r) >
We denote Uyg = N sz¢nl o(r:) (2 2l(l +1)+ Veff(h‘))’ =N Z { }T_ri.

i=1
We use the ansatz 1, 6(r) = network(r) - r'*!, analyze the behavior of the NNQS wavefunctions after

training and compare the obtained energies with the exact formula (Fig. 2, red dotted line) for Z = 50. In
Fig. 2 a the normalized NNQS wavefunction for the n = 1,1 = 0 state is presented, and the difference between
the relativistic ¥ yorm and non-relativistic 1s, cases is noticeable. In Fig. 3, the loss function during training
is shown. In Fig. 3 we are observing a break. It is well known that there is not a single pattern for the
behavior of the loss function. This pattern (break) can be caused by the presence of a strong local minimum
in a relatively simple solution. As a result, our model becomes stuck in this area for some time before it finds
a more complex solution. From Fig. 2 ¢, one can see that the energy value is in good agreement with the exact
formulas (10), (11) without perturbation theory and approximations. If we expand the expression (10) in small

fine structure constant, we get
Z%a? 2n 3
En~772221 = _ )5, 17
SR { T (21+1 4)} (17)
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Figure 2. The NNQS wavefunction and the training process for n = 1,1 = 0, Z = 50: a) the normalized NNQS
wavefunction ¥norm (blue line) and the non-relativistic wavefunction s, (red dotted line); b) the NNQS wavefunction;
c) the energy E (blue line), the “kinetic” energy K (yellow line), Ueg (green line), and Eineory (red dotted line, see (10)).

For n =1, | =0, Z = 50 the comparison with exact 0.00 Loss
formula (10) gives us 6% accuracy. This is essential — Loss
when considering more subtle effects. _0.02

In Fig. 4a,b the NNQS wavefunction for n = 2,
[ = 1is presented. Relativistic corrections are now less
noticeable, which is consistent with the analytical so- E —0.049
lution. The KGF equation is invariant with respect to E
the replacement of the sign of the wavefunction (), ks —0.061
so arbitrariness in the sign is acceptable. g

Now let’s move on to the first excited state with > —0.08]
n = 2, = 0. The approach is almost identical to the
procedure of finding the ground state wavefunction, —0.101
but now we want to find an independent orthogonal
solution —0.121

(10,6 | a0.6') = 0, (18) 10° 100 10> 10° 10* 10° Epoch

Figure 3. The loss function during training

h d / th functi f th
where 106 and 1299 are the wavefunctions o e form=1,1=0, 7 =50,

ground and first excited states respectively. The obvi-
ous way to impose orthogonality is to add (18) to the loss function using a Lagrange multiplier:

3 * !’ ! 2
(20,0 | Hest | ¥20,07) i (Y100 | ¥20,60)

L reguls ].9
(120,00 | ¥20,07) (20,0 | V20.6') (W10.6 | Y10.9) + L2, regul (19)

Loss =

where A is the Lagrange multiplier.

In Fig. 5 the NNQS wavefunction for the n = 2, [ = 0 state is presented, relativistic corrections are more
noticeable compared with the case of n =2, =1.

As one can see from Fig. 4 ¢ and Fig. 5 ¢, the energy levels of the states 191 and 19 differ. This is a result
of the influence of the centrifugal potential.

In Fig. 6 and 7, the wavefunctions and energy levels for two states (n = 1, [ =0and n =2, [ =1
correspondingly) with Z = 1 are given. The difference from Schrodinger’s wavefunctions is tiny, which is
expected, see the equation (17).

Levels with large numbers may be investigated similarly.
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Figure 4. The NNQS wavefunction and the training process for n = 2,1 =1, Z = 50: a) the normalized NNQS
wavefunction ¥norm (blue line) and the non-relativistic wavefunction g (red dotted line);
b) the NNQS wavefunction; c) the energy E (blue line), the “kinetic” energy K (yellow line),
Ueg including a centrifugal potential 1(I 4 1)/(2r?) (green line), and Egneory (red dotted line, see (10)).

Normalized wavefunction NNQS wavefunction
V() 5
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— Ueff
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g 0.02 1 === Ltheory
0.00 =
g
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T Epoch
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Figure 5. The NNQS wavefunction and the training process for n = 2,1 = 0, Z = 50: a) the normalized NNQS
wavefunction ¥Norm (blue line) and the non-relativistic wavefunction s, (red dotted line); b) the NNQS wavefunction;
¢) the energy F (blue line), the “kinetic” energy K (yellow line), Ueg including a centrifugal
potential I(I +1)/(2r?) (green line), and Eineory (red dotted line, see (10)).

3.2. Relativistic 1D harmonic oscillator. Here we solve the Klein—-Gordon-Fock equation for the
harmonic oscillator (HO) in 1D for a single particle using the NNQS method. The non-relativistic Hamiltonian is

R d? 1
+ —mw?a?, (20)

g &
2mdxz? 2

where m is the particle mass, and w is the frequency.
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Normalized wavefunction NNQS wavefunction
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Figure 6. The NNQS wavefunction and the training process for n = 1,1 =0, Z = 1: a) the normalized NNQS
wavefunction ¥)Norm (blue line) and the non-relativistic wavefunction ¥sn (red dotted line); b) the NNQS wavefunction;
c) the energy E (blue line), the “kinetic” energy K (yellow line), Ues (green line), and Fineory (red dotted line, see (10)).

Normalized wavefunction NNQS wavefunction
2.0
401 —— YNorm 3.0 — YNNQS —F
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Figure 7. The NNQS wavefunction and the training process for n =2, =1, Z = 1: a) the normalized NNQS
wavefunction ¥)Norm (blue line) and the non-relativistic wavefunction ¥sn (red dotted line); b) the NNQS wavefunction;
c) the energy E (blue line), the “kinetic” energy K (yellow line), Ueg including a centrifugal potential I(I + 1)/(2r?)
(green line), and Eineory (red dotted line, see (10)).

We work in a m = ¢ = h =1 unit system. The loss function is

7/} Heff QZ}
Loss = L) ) 0) = 107 4 Lo g (21)
(W )
where p is the hyperparameter (a machine learning parameter that is used to control the learning process) at
N,

1
the the normalization term. We denote U.g = N Z wﬂ/’il,a (13 ) Vs (7).
i=1
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In the previous problem, we have not added normalization to simplify the learning process. Normalization
during the learning process makes the search for the optimal function more difficult, but it can be applied after
training to help improve convergence. It can also be incorporated into a loss function, as we have done. In
Fig. 8-10 we compare the obtained wavefunctions and energies with non-relativistic cases.

For the ground state, we choose the following ansatz

Yo.6(z) = network(x) - exp(—wz?/2).

Normalized wavefunction NNQS wavefunction
0.25
b wNorm —_— wNNQS
0.5 ——- 1bgn 0.5
0.20 1
0.4 0.4
[}
=
£ 0.151
0.3 0.3 s
& & 8
= = &
0.2 0.2 g 0.10 1
Z —F
0.1 0.1 — Veft
0.05 4 K
- E
0.0 0.0 ’
. ‘ ‘ . ; - 0.00 . ; ;
-10 0 10 -10 0 10 10° 10" 10®* 10°
T T Epoch
a) b) c)

Figure 8. The NNQS wavefunction and the training process for n = 0, w = 0.25: a) the normalized NNQS wavefunction
YNorm (blue line) and the non-relativistic wavefunction s, (red dotted line); b) the NNQS wavefunction (blue line); c)
the energy F (blue line), the “kinetic” energy K (yellow line), Ueg (green line) and the energy Eo
in the non-relativistic case (red dotted line).
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—20 0 20 —20 0 20 10° 10t 10% 10°
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Figure 9. The NNQS wavefunction and the training process for n = 0, w = 0.05: a) the normalized NNQS wavefunction
YNorm (blue line) and the non-relativistic wavefunction sy (red dotted line); b) the NNQS wavefunction (blue line);
c) the energy F (blue line), the “kinetic” energy K (yellow line), Uesg (green line) and the energy Fo
in the non-relativistic case (red dotted line).
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Figure 10. The NNQS wavefunction and the training process for n = 1, w = 0.05: a) the normalized NNQS
wavefunction ¥norm (blue line) and the non-relativistic wavefunction tgn (red dotted line); b) the NNQS wavefunction
(blue line); c) the energy E (blue line), the “kinetic” energy K (yellow line), Ues (green line) and the energy Ei
in the non-relativistic case (red dotted line).

We additionally investigate other similar ansatzes, for example, ¥ ¢(z) = network(z) - exp(—wz?/3) and
neural network based on the Shrodinger equation, and obtain the same results. The closer the ansatz is to
true dependence, the faster the learning and more accurate the approximation of the neural network. It should
also be pointed out that our problem has only quasi-stationary states, even in perturbation theory there is the
same feature [30]. The potential mw?2?/2 is not limited from above and we get strong fields, which leads to
quasi-stationarity. Therefore, the selection of the ansatz and the training is not arbitrary.

For the case w = 0.25 we get the energy for the ground state Enn o = 0.11940. In its turn, the expression
for energy levels, obtained in the first order approximation in the perturbation theory, with [16, 31|
1 ) 3h%w?

~ 2
Epert,n ~ h&)(n + 5 — W(2n +2n + 1)7 (22)

gives Epert,0 ~ 0.11914 vs Enpn,o =~ 0.11940 (see Fig. 8), E,, = hw(n—k%) is the energy levels of the non-relativistic
harmonic oscillator. All red dotted lines in Fig. 8 correspond to the Shrédinger solution.

Now let us consider the first excited state. The approach is almost identical to the procedure of finding
the ground state wavefunction, but we need to impose the orthogonality requirement

(Yo,0 | Y1,0r) = 0,

where 199,11, are the wavefunctions of the ground and first excited states, respectively. An easy way to
impose this condition is to make v; antisymmetric (taking into account that vy is symmetric),

1o (x) = 1o (x) — Y100 (—2).

We choose the ansatz based on the antisymmetry of the wavefunction and the solution of the Schrodinger
equation.

Setting w = 0.05 (see Fig. 9, 10), we obtain the following results: Enn, =~ 0.024768, Exn,1 =~ 0.073865.
Comparison with the results calculated by the perturbation theory (22) gives:

Enno ~ 0.024768 vs Eper0 ~ 0.024766,
Enna ~ 0.073865 vs Fperi1 ~ 0.073828.
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Figure 11. Comparison of the learning process from the epochs at n = 0, w = 0.05 for: a) a single-layer neural network
and b) a two-layer neural network. Number of nodes in hidden layers is 100.

As we can see, the higher the energy level and frequency, the more the perturbative theory differs from
the NNQS method. It should be noted that although the architecture of a neural network does affect the
learning process, it does not significantly impact the final result. For example, Fig. 11 presents a comparison
of the learning process with a single-layer neural network (a) and a two-layer neural network (b). A two-layer
neural network reaches a solution at 20,000 epochs, while a single-layer network reaches it at 5,000 epochs. It
is well known that with an increase in the number of layers, a neural network is able to describe more complex
functions. However, the learning process becomes more expensive. The learning process also depends on the
weight initialization and seed parameters.

4. Error analysis. We evaluate the accuracy and stability of our method and analyze the standard
deviation of the normalized wavefunctions, the relative standard deviation of energy at different initial weights
of the neural network, optimizer parameters, and seeds. The corrected sample standard deviation is

1 &
sd = T; — )2, 23
N, 12 (23)
i=1
N oo
where Ny is the size of sample, x; are the observed values of the sample items, and T = Z — is the mean
i=1"°

value of these observations. The results for Ny = 30 samples are presented below.

In Fig. 12a a the standard deviation of the normalized wavefunction for a relativistic spinless particle in
a Coulomb potential with n = 1,1 = 0 is shown. The relative standard deviation of sdg/Fmean (use E instead
of x in (23)) for this state is 0.07%. The analogous characteristics for a relativistic harmonic potential with
n = 0, w = 0.05 are demonstrated in Fig. 12b. The relative standard deviation of energy for this state is
0.0025%. We also obtain quite small deviations for other states.

5. Conclusion. In this work, the NNQS for the Klein—-Gordon—Fock equation is proposed, which extends
the previously proposed method based on solving the non-relativistic Schrodinger equation [6]. The paper
is devoted to solving two problems. The first problem describes a relativistic spinless particle in a Coulomb
potential. There is an exact analytical formula for energy levels. The analysis and calculations show a good
agreement between the neural network and analytical expressions and, simultaneously identifying features of
solutions associated with strong fields. The second problem describes a relativistic 1D harmonic oscillator.
The neural network wavefunctions and energy levels of a relativistic 1D harmonic oscillator are compared with
the results calculated by the perturbation theory. We also observe a good agreement with the various initial
ansatzes.
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Figure 12. The standard deviation of the normalized wavefunctions for:
a) a relativistic spinless particle in a Coulomb potential with n =1, =0, Z = 50, N, = 30;
b) a relativistic particle in a harmonic potential with n = 0, w = 0.05, N, = 30.

The method developed by us allows to find the “exact” expressions for wavefunctions and energy levels

of relativistic particles. It is not necessary to use the perturbation theory, which simplifies the calculations in
quantum chemistry [32] and other related fields. This method can also detect the energy level instabilities and

can

be applied to other types of potentials and systems. The program code is available on GitHub (https:

//github.com/alexkalitenko125/NNQS_for_Klein-Gordon-Fock_equation).
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