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1. Introduction. Machine learning models and algorithms have been applied in various fields of
physics [1–3]. Machine learning has its advantages and shortcomings over numerical methods [4, 5], com-
plements and develops methods of computational physics. In quantum theory, there are some equations that
are difficult to solve analytically. In 2017, two physicists, Giuseppe Carlo and Matthias Troyer, proposed the
Neural Network Quantum States method (NNQS) [6, 7]. This method is based on the use of neural networks to
approximate the ground state of a quantum system. The NNQS method has been shown to be very effective in
solving difficult problems in quantum physics [8–11]. Nowadays, the NNQS is used in many problems: PauliNet
[12], a deuteron [13], quantum wells [14], etc. The variational principle for quantum field theories was proposed
in [15].

The Schrödinger equation is a well-known equation that plays a crucial role in quantum mechanics [16, 17],
but Schrödinger equation is not relativistic, which is noticeable in some systems, for example, an atom. The
relativistic Klein–Gordon–Fock equation [18–21] describes spinless particles but can be generalized for particles
with integer and half-integer spins and has many applications for describing macroscopically isotropic crystals,
pi-mesons, and Cooper pairs. A physics-informed neural network (PINN) approach has been considered in [22].
In the case of the Klein–Gordon–Fock equation, it is difficult to write out the Hamiltonian explicitly; only
the square of the Hamiltonian is obvious. Additionally, the Klein–Gordon–Fock equation contains two extra
degrees of freedom [23, 24], which makes it challenging to apply variational techniques based on searching for
the minimum energy. In this article, we will discuss and analyze methods for overcoming the above-mentioned
issues and investigate two well-known physical systems: the relativistic spinless particle in a Coulomb potential
and the one-dimensional relativistic harmonic oscillator.

2. Method.

2.1. Theory. The KGF equation is a four-dimensional equation (𝑥1, 𝑥2, 𝑥3, 𝑡 coordinates). However, in
this paper, we will focus on using neural networks to study quantum systems with stationary solutions. These
systems do not include time derivatives, so we will not consider them in this discussion. Many three-dimensional
problems can be simplified to one dimension, for example, in the case of a particle in a spherically symmetric
potential. We will demonstrate this below.

In relativistic quantum mechanics, for a free particle with rest mass 𝑚, the relationship between energy
𝐸 and momentum 𝑝 is

𝐸2 = 𝑝2𝑐2 +𝑚2𝑐4, (1)

where 𝑐 is the speed of light in a vacuum. If the particle is in a potential 𝑉 (𝑥), the expression (1) is modified
in the following way:

[𝐸 − 𝑉 ]2 = 𝑝2𝑐2 +𝑚2𝑐4. (2)

The corresponding wave equation in one dimension is

[𝐸 − 𝑉 ]2𝜓(𝑥) =

[︂
−ℏ2𝑐2

𝑑2

𝑑𝑥2
+𝑚2𝑐4

]︂
𝜓(𝑥), (3)

where ℏ is the reduced Planck constant, 𝜓(𝑥) is the wavefunction.
It is a so-called relativistic Klein–Gordon–Fock equation. We can rewrite it in the Schrödinger-like

form [25, 26]

𝐸eff 𝜓(𝑥) =

[︂
− ℏ2

2𝑚

𝑑2

𝑑𝑥2
+ 𝑉eff(𝑥)

]︂
𝜓(𝑥), (4)

where we denote

𝐸eff =
𝐸2 −𝑚2𝑐4

2𝑚𝑐2
, (5)

𝑉eff =
2𝐸𝑉 (𝑥)− 𝑉 2(𝑥)

2𝑚𝑐2
, (6)

𝐻̂eff = − ℏ2

2𝑚

𝑑2

𝑑𝑥2
+ 𝑉eff(𝑥), (7)

𝐸eff =
⟨𝜓 | 𝐻̂eff | 𝜓⟩

⟨𝜓 | 𝜓⟩
⩾ 𝐸0, (8)

𝐸0 is the minimum energy for our system. Since the energy 𝐸 is extracted from 𝐸eff, and 𝑉eff also contains
𝐸, strictly speaking, this is not the eigenvalue problem. Nevertheless, in practice, this procedure works for a
number of problems, as we will see below.
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Figure 1. The neural network architecture used
in our study and the optimization process

are illustrated in the feedback loop.

2.2. Learning process. To solve our prob-
lems we apply the PyTorch library of the Python
programming language. A neural network is a tool
which can be used to find the wavefunctions of sta-
tionary states. We want to select a neural network
that will lead us to the bound states. Therefore, we
solve the optimization problem and reduce a loss
function, i.e. minimize the energy. However, as
mentioned above, when solving the KGF equation,
we face the problem of quadratic energy, which leads
to modes with negative and positive total ener-
gies. To eliminate negative modes, we introduce an
ansatz for wavefunctions 𝜓(𝑥) = network(𝑥) · 𝑓(𝑥),
where 𝑓(𝑥) is the envelope, or analytical approxima-
tion, or network from the Shrödinger solution, and
network(𝑥) is a neural network. The coordinate of
point 𝑥 is the input of the neural network, and in
the output we get the value of the wavefunction at
this point, the phase of the wavefunction is not required, so only the real-valued wavefunction is considered.
The loss function solely depends on the solutions obtained by the neural network while the training process is
fully data-free. This formulation results in an unsupervised learning method. We also tested the energy values
in a set of points different from those used during training, and obtained similar results. In all cases, we apply
a multilayer perceptron (MLP) with one hidden layer (50–100 nodes for different problems), see Fig. 1. In our
opinion, a single hidden layer is sufficient for our tasks, although two hidden layers could also be appropriate.
We use the hyperbolic tangent (tanh(𝑥)) as the activation function. There are other activation functions avail-
able, such as ReLU, SiLU, and others. The choice of them depends on the specific task. In our research, we
choose the hyperbolic tangent activation function because of its symmetrical domain of definition. Additionally,
we use a scheduler to decrease the learning rate and 𝐿2 regularization [27, 28] to avoid instabilities associated
with the growth of weights

𝐿2, regul = 𝜆̃
∑︁
𝑖

𝛼̃2
𝑖 , (9)

where 𝛼̃𝑖 are the weights of the NN, and 𝜆̃ is the Lagrange multiplier which is introduced for optimization,
namely for minimization of the predefined loss function. We found it necessary to implement a regularization in
a custom loss function. With the AdamW optimizer [29], one can use weight decay instead of 𝐿2 regularization.
We apply the AdamW optimizer in our experiments. In the code, we left the regularization in case of other
optimizer. Since the effective potential 𝑉eff includes the total energy of the particle, we iteratively replace it
with the previous value during training. The initial energy 𝐸 is set to be closed to 𝑚𝑐2, since the effective
potential 𝑉eff contains 𝐸 as a variable. In our work, we use the term “epoch” to refer to one cycle of weight
optimization, based on minimizing a sum of loss functions across the coordinate mesh 𝑥𝑖.

3. Application.

3.1. Relativistic spinless particle in a Coulomb potential. Historically, Schrödinger solved the
problem of the relativistic hydrogen atom in the formulation of wave quantum mechanics. For the Coulomb
potential, the transformed equation (4) is similar to the Schrödinger equation, and an exact expression for the
energy can be obtained (the spinless relativistic electron model) [26]

𝐸𝑛𝑙 =
𝑚𝑐2√︃

1 +
𝑍2𝛼2

(𝑛− 𝛿𝑙)2

−𝑚𝑐2, (10)

with

𝛿𝑙 = 𝑙 +
1

2
−

√︃(︂
𝑙 +

1

2

)︂2

− 𝑍2𝛼2, (11)

where 𝑛 is the principal quantum number, 𝑙 is the azimuthal quantum number, 𝛼 ≈ 1/137 is the fine-structure
constant, 𝑍 is the charge number.
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The neural network becomes unstable around 𝑍 = 70 with 𝑙 = 0. This can be explained by the impact of
the large attractive potential contributions. The manifestation of this feature is also contained in the analytical
solution (10), (11) for 𝑙 = 0 and for the large values of 𝑍 𝛿𝑙 becomes complex. Therefore, there are different
constraints on 𝑍 for each value of 𝑙. The physical reason of this feature is the incorrectness of the application
of a single-particle equation in strong fields [26], which leads to large fluctuations in the field, including the
number of particles.

Let us set 𝑚 = 𝑐 = ℏ = 1, 𝑒2 = 𝛼. For the stationary case the problem is formulated in three-dimensional
space. Since the potential has spherical symmetry, then the variables in the equation are split and, as a
result, the separated parts of the original equation can be solved independently. Therefore, we can write down
the wavefunction as Ψ(𝑟, 𝜃̃, 𝜙) = 𝑅(𝑟)𝑌 𝑚

𝑙 (𝜃̃, 𝜙), where 𝑅(𝑟) is the radial part, and 𝑌 𝑚
𝑙 (𝜃̃, 𝜙) is the spherical

harmonic function of degree 𝑙 and order 𝑚, 𝑟 is the radius, 𝜃̃ is the polar angle, 𝜙 is the azimuthal angle. For
the radial part 𝑅𝑛𝑙(𝑟) we introduce 𝜓𝑛𝑙(𝑟) = 𝑟𝑅𝑛𝑙(𝑟). Now the Klein–Gordon–Fock equation can be reduced to
a one-dimensional equation for 𝜓𝑛𝑙 [26] with

𝐻̂eff = −1

2

𝑑2

𝑑𝑟2
+

1

2𝑟2
𝑙(𝑙 + 1) + 𝑉eff, 𝑉 (𝑟) = −𝑍𝛼

𝑟
, (12)

where 𝑉eff is defined by (6).
Since we are working in spherical coordinates and with the Coulomb interaction, the above integrals

⟨𝜓𝑛𝑙,𝜃 | 𝐻̂eff | 𝜓𝑛𝑙,𝜃⟩ =
∞∫︁
0

{︂
1

2

(︂
𝑑𝜓𝑛𝑙,𝜃(𝑟)

𝑑𝑟

)︂2

+ 𝜓2
𝑛𝑙,𝜃(𝑟)

(︂
1

2𝑟2
𝑙(𝑙 + 1) + 𝑉eff

)︂}︂
𝑑𝑟, (13)

where we have integrated the first term by parts, 𝜃 is the neural network parameters.
Applying discretization, we get

⟨𝜓𝑛𝑙,𝜃 | 𝐻̂eff | 𝜓𝑛𝑙,𝜃⟩ ≈
𝑁𝑟∑︁
𝑖=1

𝑤𝑖

[︂
1

2

{︂
𝑑𝜓𝑛𝑙,𝜃(𝑟)

𝑑𝑟

}︂2

𝑟=𝑟𝑖

+ 𝜓2
𝑛𝑙,𝜃(𝑟𝑖)

(︂
1

2𝑟2𝑖
𝑙(𝑙 + 1) + 𝑉eff(𝑟𝑖)

)︂]︂
, (14)

⟨𝜓𝑛𝑙,𝜃 | 𝜓𝑛𝑙,𝜃⟩ ≈
𝑁𝑟∑︁
𝑖=1

𝑤𝑖𝜓
2
𝑛𝑙,𝜃(𝑟𝑖) ≡ 𝑁, (15)

𝐿𝑜𝑠𝑠 =
⟨𝜓 | 𝐻̂eff | 𝜓⟩

⟨𝜓 | 𝜓⟩
+ 𝐿2, regul, (16)

𝑤𝑖 is the mesh weights, 𝑁𝑟 is the number of nodes, 𝑁 is the normalization factor, and 𝐿2, regul is the regularization
from (9).

At this stage, we take an additional step and add the envelope to the NNQS when calculating losses. The
envelope is a function that multiplies NN, and its purpose is to satisfy boundary conditions. In our case, we
should require 𝜓𝑛𝑙(0) = 0. This can be achieved by specifying the asymptotics at zero in the standard way:

𝜓𝑛𝑙(𝑟) −→ 𝜓𝑛𝑙(𝑟)𝑟
𝑙+1.

We denote 𝑈eff =
1

𝑁

𝑁𝑟∑︁
𝑖=1

𝑤𝑖𝜓
2
𝑛𝑙,𝜃(𝑟𝑖)

(︂
1

2𝑟2𝑖
𝑙(𝑙 + 1) + 𝑉eff(𝑟𝑖)

)︂
, 𝐾 =

1

2𝑁

𝑁𝑟∑︁
𝑖=1

𝑤𝑖

{︂
𝑑𝜓𝑛𝑙,𝜃(𝑟)

𝑑𝑟

}︂2

𝑟=𝑟𝑖

.

We use the ansatz 𝜓𝑛𝑙,𝜃(𝑟) = network(𝑟) · 𝑟𝑙+1, analyze the behavior of the NNQS wavefunctions after
training and compare the obtained energies with the exact formula (Fig. 2, red dotted line) for 𝑍 = 50. In
Fig. 2 a the normalized NNQS wavefunction for the 𝑛 = 1, 𝑙 = 0 state is presented, and the difference between
the relativistic 𝜓𝑁𝑜𝑟𝑚 and non-relativistic 𝜓𝑆ℎ cases is noticeable. In Fig. 3, the loss function during training
is shown. In Fig. 3 we are observing a break. It is well known that there is not a single pattern for the
behavior of the loss function. This pattern (break) can be caused by the presence of a strong local minimum
in a relatively simple solution. As a result, our model becomes stuck in this area for some time before it finds
a more complex solution. From Fig. 2 c, one can see that the energy value is in good agreement with the exact
formulas (10), (11) without perturbation theory and approximations. If we expand the expression (10) in small
fine structure constant, we get

𝐸𝑛𝑙 ≈ −𝑚𝑐
2

2𝑛2
𝑍2𝛼2

{︂
1 +

𝑍2𝛼2

𝑛2

(︂
2𝑛

2𝑙 + 1
− 3

4

)︂}︂
. (17)
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Figure 2. The NNQS wavefunction and the training process for 𝑛 = 1, 𝑙 = 0, 𝑍 = 50: a) the normalized NNQS
wavefunction 𝜓Norm (blue line) and the non-relativistic wavefunction 𝜓Sh (red dotted line); b) the NNQS wavefunction;
c) the energy 𝐸 (blue line), the “kinetic” energy 𝐾 (yellow line), 𝑈eff (green line), and 𝐸theory (red dotted line, see (10)).
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Figure 3. The loss function during training
for 𝑛 = 1, 𝑙 = 0, 𝑍 = 50.

For 𝑛 = 1, 𝑙 = 0, 𝑍 = 50 the comparison with exact
formula (10) gives us 6% accuracy. This is essential
when considering more subtle effects.

In Fig. 4 a, b the NNQS wavefunction for 𝑛 = 2,
𝑙 = 1 is presented. Relativistic corrections are now less
noticeable, which is consistent with the analytical so-
lution. The KGF equation is invariant with respect to
the replacement of the sign of the wavefunction ±𝜓(𝑥),
so arbitrariness in the sign is acceptable.

Now let’s move on to the first excited state with
𝑛 = 2, 𝑙 = 0. The approach is almost identical to the
procedure of finding the ground state wavefunction,
but now we want to find an independent orthogonal
solution

⟨𝜓10,𝜃 | 𝜓20,𝜃′⟩ = 0, (18)

where 𝜓10,𝜃 and 𝜓20,𝜃′ are the wavefunctions of the
ground and first excited states respectively. The obvi-
ous way to impose orthogonality is to add (18) to the loss function using a Lagrange multiplier:

𝐿𝑜𝑠𝑠 =
⟨𝜓20,𝜃′ | 𝐻̂eff | 𝜓20,𝜃′⟩

⟨𝜓20,𝜃′ | 𝜓20,𝜃′⟩
+ 𝜆

⟨𝜓10,𝜃 | 𝜓20,𝜃′⟩2

⟨𝜓20,𝜃′ | 𝜓20,𝜃′⟩⟨𝜓10,𝜃 | 𝜓10,𝜃⟩
+ 𝐿2, regul, (19)

where 𝜆 is the Lagrange multiplier.
In Fig. 5 the NNQS wavefunction for the 𝑛 = 2, 𝑙 = 0 state is presented, relativistic corrections are more

noticeable compared with the case of 𝑛 = 2, 𝑙 = 1.
As one can see from Fig. 4 c and Fig. 5 c, the energy levels of the states 𝜓21 and 𝜓20 differ. This is a result

of the influence of the centrifugal potential.
In Fig. 6 and 7, the wavefunctions and energy levels for two states (𝑛 = 1, 𝑙 = 0 and 𝑛 = 2, 𝑙 = 1

correspondingly) with 𝑍 = 1 are given. The difference from Schrödinger’s wavefunctions is tiny, which is
expected, see the equation (17).

Levels with large numbers may be investigated similarly.
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Figure 4. The NNQS wavefunction and the training process for 𝑛 = 2, 𝑙 = 1, 𝑍 = 50: a) the normalized NNQS
wavefunction 𝜓Norm (blue line) and the non-relativistic wavefunction 𝜓Sh (red dotted line);

b) the NNQS wavefunction; c) the energy 𝐸 (blue line), the “kinetic” energy 𝐾 (yellow line),
𝑈eff including a centrifugal potential 𝑙(𝑙 + 1)/(2𝑟2) (green line), and 𝐸theory (red dotted line, see (10)).

−0.3

−0.2

−0.1

0.0

0.1

𝜓(𝑥)

0 20 40 60 80
𝑥

a)

Normalized wavefunction

𝜓Norm

𝜓Sh

−0.20

−0.15

−0.10

−0.05

0.00

0.05

0.10

𝜓(𝑥)

0 20 40 60 80
𝑥

b)

NNQS wavefunction

𝜓NNQS

−0.04

−0.02

0.00

0.02

0.04

N
um

er
ic

al
va

lu
e

100 101 102 103 104
Epoch

c)

𝐸

𝑈eff

𝐾

𝐸theory

Figure 5. The NNQS wavefunction and the training process for 𝑛 = 2, 𝑙 = 0, 𝑍 = 50: a) the normalized NNQS
wavefunction 𝜓Norm (blue line) and the non-relativistic wavefunction 𝜓Sh (red dotted line); b) the NNQS wavefunction;

c) the energy 𝐸 (blue line), the “kinetic” energy 𝐾 (yellow line), 𝑈eff including a centrifugal
potential 𝑙(𝑙 + 1)/(2𝑟2) (green line), and 𝐸theory (red dotted line, see (10)).

3.2. Relativistic 1D harmonic oscillator. Here we solve the Klein–Gordon–Fock equation for the
harmonic oscillator (HO) in 1D for a single particle using the NNQS method. The non-relativistic Hamiltonian is

𝐻̂ = − ℏ2

2𝑚

𝑑2

𝑑𝑥2
+

1

2
𝑚𝜔2𝑥2, (20)

where 𝑚 is the particle mass, and 𝜔 is the frequency.
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Figure 7. The NNQS wavefunction and the training process for 𝑛 = 2, 𝑙 = 1, 𝑍 = 1: a) the normalized NNQS
wavefunction 𝜓Norm (blue line) and the non-relativistic wavefunction 𝜓Sh (red dotted line); b) the NNQS wavefunction;

c) the energy 𝐸 (blue line), the “kinetic” energy 𝐾 (yellow line), 𝑈eff including a centrifugal potential 𝑙(𝑙 + 1)/(2𝑟2)

(green line), and 𝐸theory (red dotted line, see (10)).

We work in a 𝑚 = 𝑐 = ℏ = 1 unit system. The loss function is

𝐿𝑜𝑠𝑠 =
⟨𝜓 | 𝐻̂eff | 𝜓⟩

⟨𝜓 | 𝜓⟩
+ 𝜇(⟨𝜓 | 𝜓⟩ − 1)2 + 𝐿2, regul, (21)

where 𝜇 is the hyperparameter (a machine learning parameter that is used to control the learning process) at

the the normalization term. We denote 𝑈eff =
1

𝑁

𝑁𝑟∑︁
𝑖=1

𝑤𝑖𝜓
2
𝑛𝑙,𝜃(𝑟𝑖)𝑉eff(𝑟𝑖).
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In the previous problem, we have not added normalization to simplify the learning process. Normalization
during the learning process makes the search for the optimal function more difficult, but it can be applied after
training to help improve convergence. It can also be incorporated into a loss function, as we have done. In
Fig. 8–10 we compare the obtained wavefunctions and energies with non-relativistic cases.

For the ground state, we choose the following ansatz

𝜓0,𝜃(𝑥) = network(𝑥) · exp(−𝜔𝑥2/2).
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Figure 8. The NNQS wavefunction and the training process for 𝑛 = 0, 𝜔 = 0.25: a) the normalized NNQS wavefunction
𝜓Norm (blue line) and the non-relativistic wavefunction 𝜓Sh (red dotted line); b) the NNQS wavefunction (blue line); c)

the energy 𝐸 (blue line), the “kinetic” energy 𝐾 (yellow line), 𝑈eff (green line) and the energy 𝐸0

in the non-relativistic case (red dotted line).
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Figure 9. The NNQS wavefunction and the training process for 𝑛 = 0, 𝜔 = 0.05: a) the normalized NNQS wavefunction
𝜓Norm (blue line) and the non-relativistic wavefunction 𝜓Sh (red dotted line); b) the NNQS wavefunction (blue line);

c) the energy 𝐸 (blue line), the “kinetic” energy 𝐾 (yellow line), 𝑈eff (green line) and the energy 𝐸0

in the non-relativistic case (red dotted line).
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Figure 10. The NNQS wavefunction and the training process for 𝑛 = 1, 𝜔 = 0.05: a) the normalized NNQS
wavefunction 𝜓Norm (blue line) and the non-relativistic wavefunction 𝜓Sh (red dotted line); b) the NNQS wavefunction

(blue line); c) the energy 𝐸 (blue line), the “kinetic” energy 𝐾 (yellow line), 𝑈eff (green line) and the energy 𝐸1

in the non-relativistic case (red dotted line).

We additionally investigate other similar ansatzes, for example, 𝜓0,𝜃(𝑥) = 𝑛𝑒𝑡𝑤𝑜𝑟𝑘(𝑥) · exp(−𝜔𝑥2/3) and
neural network based on the Shrödinger equation, and obtain the same results. The closer the ansatz is to
true dependence, the faster the learning and more accurate the approximation of the neural network. It should
also be pointed out that our problem has only quasi-stationary states, even in perturbation theory there is the
same feature [30]. The potential 𝑚𝜔2𝑥2/2 is not limited from above and we get strong fields, which leads to
quasi-stationarity. Therefore, the selection of the ansatz and the training is not arbitrary.

For the case 𝜔 = 0.25 we get the energy for the ground state 𝐸𝑁𝑁,0 ≈ 0.11940. In its turn, the expression
for energy levels, obtained in the first order approximation in the perturbation theory, with [16, 31]

𝐸pert,𝑛 ≈ ℏ𝜔
(︂
𝑛+

1

2

)︂
− 3ℏ2𝜔2

32𝑚𝑐2
(2𝑛2 + 2𝑛+ 1), (22)

gives 𝐸pert,0 ≈ 0.11914 vs 𝐸𝑁𝑁,0 ≈ 0.11940 (see Fig. 8), 𝐸𝑛 = ℏ𝜔(𝑛+ 1
2 ) is the energy levels of the non-relativistic

harmonic oscillator. All red dotted lines in Fig. 8 correspond to the Shrödinger solution.
Now let us consider the first excited state. The approach is almost identical to the procedure of finding

the ground state wavefunction, but we need to impose the orthogonality requirement

⟨𝜓0,𝜃 | 𝜓1,𝜃′⟩ = 0,

where 𝜓0,𝜃, 𝜓1,𝜃′ are the wavefunctions of the ground and first excited states, respectively. An easy way to
impose this condition is to make 𝜓1 antisymmetric (taking into account that 𝜓0 is symmetric),

𝜓1,𝜃′(𝑥) → 𝜓1,𝜃′(𝑥)− 𝜓1,𝜃′(−𝑥).

We choose the ansatz based on the antisymmetry of the wavefunction and the solution of the Schrödinger
equation.

Setting 𝜔 = 0.05 (see Fig. 9, 10), we obtain the following results: 𝐸𝑁𝑁,0 ≈ 0.024768, 𝐸𝑁𝑁,1 ≈ 0.073865.
Comparison with the results calculated by the perturbation theory (22) gives:

𝐸𝑁𝑁,0 ≈ 0.024768 vs 𝐸pert,0 ≈ 0.024766,

𝐸𝑁𝑁,1 ≈ 0.073865 vs 𝐸pert,1 ≈ 0.073828.
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Figure 11. Comparison of the learning process from the epochs at 𝑛 = 0, 𝜔 = 0.05 for: a) a single-layer neural network
and b) a two-layer neural network. Number of nodes in hidden layers is 100.

As we can see, the higher the energy level and frequency, the more the perturbative theory differs from
the NNQS method. It should be noted that although the architecture of a neural network does affect the
learning process, it does not significantly impact the final result. For example, Fig. 11 presents a comparison
of the learning process with a single-layer neural network (a) and a two-layer neural network (b). A two-layer
neural network reaches a solution at 20,000 epochs, while a single-layer network reaches it at 5,000 epochs. It
is well known that with an increase in the number of layers, a neural network is able to describe more complex
functions. However, the learning process becomes more expensive. The learning process also depends on the
weight initialization and seed parameters.

4. Error analysis. We evaluate the accuracy and stability of our method and analyze the standard
deviation of the normalized wavefunctions, the relative standard deviation of energy at different initial weights
of the neural network, optimizer parameters, and seeds. The corrected sample standard deviation is

𝑠𝑑 =

⎯⎸⎸⎷ 1

𝑁𝑠 − 1

𝑁𝑠∑︁
𝑖=1

(𝑥𝑖 − 𝑥)2, (23)

where 𝑁𝑠 is the size of sample, 𝑥𝑖 are the observed values of the sample items, and 𝑥 =

𝑁𝑠∑︁
𝑖=1

𝑥𝑖
𝑁𝑠

is the mean

value of these observations. The results for 𝑁𝑠 = 30 samples are presented below.
In Fig. 12 a a the standard deviation of the normalized wavefunction for a relativistic spinless particle in

a Coulomb potential with 𝑛 = 1, 𝑙 = 0 is shown. The relative standard deviation of 𝑠𝑑𝐸/𝐸mean (use 𝐸 instead
of 𝑥 in (23)) for this state is 0.07%. The analogous characteristics for a relativistic harmonic potential with
𝑛 = 0, 𝜔 = 0.05 are demonstrated in Fig. 12 b. The relative standard deviation of energy for this state is
0.0025%. We also obtain quite small deviations for other states.

5. Conclusion. In this work, the NNQS for the Klein–Gordon–Fock equation is proposed, which extends
the previously proposed method based on solving the non-relativistic Schrödinger equation [6]. The paper
is devoted to solving two problems. The first problem describes a relativistic spinless particle in a Coulomb
potential. There is an exact analytical formula for energy levels. The analysis and calculations show a good
agreement between the neural network and analytical expressions and, simultaneously identifying features of
solutions associated with strong fields. The second problem describes a relativistic 1D harmonic oscillator.
The neural network wavefunctions and energy levels of a relativistic 1D harmonic oscillator are compared with
the results calculated by the perturbation theory. We also observe a good agreement with the various initial
ansatzes.
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Figure 12. The standard deviation of the normalized wavefunctions for:
a) a relativistic spinless particle in a Coulomb potential with 𝑛 = 1, 𝑙 = 0, 𝑍 = 50, 𝑁𝑠 = 30;

b) a relativistic particle in a harmonic potential with 𝑛 = 0, 𝜔 = 0.05, 𝑁𝑠 = 30.

The method developed by us allows to find the “exact” expressions for wavefunctions and energy levels
of relativistic particles. It is not necessary to use the perturbation theory, which simplifies the calculations in
quantum chemistry [32] and other related fields. This method can also detect the energy level instabilities and
can be applied to other types of potentials and systems. The program code is available on GitHub (https:
//github.com/alexkalitenko125/NNQS_for_Klein-Gordon-Fock_equation).
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