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Abstract: We propose an experimental study of adaptive time-stepping methods for efficient mod-
eling of the aggregation-fragmentation kinetics. Precise modeling of this phenomena usually requires
utilization of the large systems of nonlinear ordinary differential equations and intensive compu-
tations. We study the performance of three explicit Runge-Kutta time-integration methods and
provide simulations for two types of problems: finding of equilibrium solutions and simulations for
kinetics with periodic solutions. The first class of problems may be analyzed through the relaxation
of the solution to the stationary state at large time. In this case, the adaptive time-stepping may
help to reach this state using big steps reducing cost of the calculations without loss of accuracy.
In the second case, the problem becomes numerically unstable at certain points of the phase space
and may require tiny steps making the simulations very time-consuming. Adaptive criteria allows to
increase the steps for most of the remaining points and speedup simulations significantly.
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Awnnorarnusi: Mbl npejjiaraeM 3KCIEPUMEHTAJbHOE HUCCJIEIOBAHIE METOJ0B WHTEIPUPOBAHUS II0
BpeMeHrn C AJANTUBHBIMU IMAaraMu 10 BpPEeMEHH I 3(PEPEKTUBHOTO MOMAEIUPOBAHUS KUHETUKI
arperanuu-gparMesTanuu. ToYHOe MOJIETMPOBAHUE ITOIO ABJIEHUS OOBITHO TPeOyeT UCIO/Ib30BaHUS
OOJIBIIINX CUCTEM HeJIMHEIHBIX OOBIKHOBEHHBIX AU depeHnnaabHbIX yPABHEHN U MHTEHCUBHBIX BbI-
qucaenuii. Mbl mccemeyeM MpOu3BOIUTENHHOCTh TPEX SIBHBIX MeTOn0B PyHre—KyTThl m mpoBogumMm
MOJIEJIMPOBAHYE JJIsl ABYX THUIIOB 33J[a4: HAXOXKEHNEe PABHOBECHBIX DPEIEHUI 1 MOJIETUPOBAHNE JIJIst
KUHETUKHA C IMEePUOIUYECKUME pelleHnsaMu. IlepBolii Kiace 3aad MOXKeT ObITH IIPOaHAIU3UPOBAH
TTOCPEJICTBOM PEJIAKCAITNN PEIIeHNsT K CTAIMOHAPHOMY COCTOSHUIO Ha OOJBITNX BpeMeHax. B sTom
clIydae aJalTUBHBIE BPEMEHHBIE Iard MOTYT IIOMOYb JTOCTHYDb ITOTO COCTOSIHUS C MCIOJIH30BAHUEM
OOJIBIIIUX II1ar0B, CHUYKAsi CTOMMOCTD BBIUYKMCJIEHUN 6€3 moTepru TOYHOCTH. BOo BTOpOM ciiyuae 3aja4a
OKa3bIBAETCs UNCIEHHO HEYCTOWYHUBON B OMPEIETEHHBIX TOYKAX (ha30BOTO MPOCTPAHCTBA U MOXKET
TOTPebOBATH KPOIIETHBIX IIArOB, UTO JIeJIaeT MOIEINPOBAHNE C TIOCTOSTHHBIMU ITAraMi O9€Hb TPY/IO-
eMKHUM. AJIalITUBHbIE KPUTEPHUH MTO3BOJIAIOT YBEJIUIUTD MIArd JJIsi OOJBITHHCTBA OCTABIIAXCST TOYEK
¥ 3HAYUTETHHO YCKOPUTH MOJETUPOBAHUE.

KuroueBbie cioBa: meronbl Pyrre-KyTThl ¢ aJalTUBHBIMEU IIAraMu, arperaiusi, (pparMeHTaIms,
KUHETUYIeCKNE ypaBHEHUs, HeJImHeHbIe quddepeHnuaibHble YpaBHEHUS.

Baarogapaoctu: Pabora A. II. CmupHoBa ObLIa IOJIepKaHa I'PAHTOM POCCHIICKOTO Hay4YHOTO
douma npoekr Nt 24-11-00058 (https://www.rscf.ru/project/24-11-00058/). C. A. Marseen
osraromapur A. 1. OcuHCKOTO 3a TOJIE3HbIE 00CY XK ICHU .

Hns nurupoBauusi: Marsees C.A., 2Kumua B.A., Cvmupros A.Il., AjanTupHble maru 1o BpeMeHu

JIJIsl arperanuoHHO-(PParMeHTAIMOHHON KuHeTuky // BoraucimresbHble METOIbI U IPOrPAMMUPOBa-
aue. 2024. 25, Ne 3. 347-356. doi 10.26089/NumMet.v25r327.

1. Introduction. Kinetic processes of aggregation and fragmentation often can be described with the
use of nonlinear ordinary differential equations. These processes are widespread in nature and important for
many industrial applications [1, 2]. The smallest possible aggregates are usually called monomers. They may
coalesce due to the collisions and generate larger aggregates. Further, these particles can also collide with
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each other and grow up to larger particles consisting of thousands or even millions of monomers. If one knows
or fixes the kinetic rates K;; (kernel) for the reactions [i] + [j] — [¢ + j] with some formal expression (e.g.
K;j = (i/5)"® + (j/i)'/3 + 2), then the basic equations are well-known as Smoluchowski equations [3]:

9]
dng 1
dt = 5 E Ki,jninj — Ng E KSJTL@', s = 1,2,...,00. (1)
i+j=s =
“birth” of particle of size s  “‘death” of particles of size s

These equations describe evolution of the concentrations ns(t) of the particles of size s due to their “birth” after
the coalescence of smaller aggregates and due to their “death” after merging events. All interactions in such
system are assumed to be pairwise, mass-conserving and spatially homogeneous.

Fixing some initial conditions as n(t = 0), one gets the Cauchy problem for this formally infinite system
of nonlinear ODEs. This problem can be solved analytically only in the very rare special cases (e.g. constant
kinetic rates with monodisperse or exponential initial conditions [4]). Hence, there is a certain need in efficient
numerical algorithms for their investigation. Asymptotic and scaling features of the solutions ns(t) for s > 1,
t > 1 are important for physicists [5, 6]. However, their justification often may require utilization of enormous
finite sub-systems

dng 1
& 9 g K;nin; — N E K in, s=1,2,..., M. (2)
i+j=s =
“birth” of particle of size s  “death” of particles of size s

These systems of ODEs with M > 1 allow to approximate the solution of initial equations (2) rather well for
the large time intervals [6-8|. Straight-forward computations with the classical Runge-Kutta methods for these
large systems require too much computing resources that should be likely reduced (each computation of the
right-hand side takes O(M?) operations). A family of efficient methods allowing to evaluate the right-hand side
for O(M Rlog M) operations was proposed for the case of the low-rank kernels

KiJ = Z Ui,ava,j, R < M.

These methods allow to do computations with hundreds of thousands kinetic equations on basic laptops [9].
Coupling of the low-rank decompositions with the time-integration methods has already been utilized for a
broad class of problems. They include the irreversible aggregation with sources and sinks of particles [10]

dng
dt

=3 Z K jning — ngZKQ,anr Lov s=12.0M, (3)

l+‘7 s =1 sources

and aggregation-shattering kinetics [11, 12]

%: 777,12[(11711 + ZZ Z+] z]nnJ+AZ]Kljn]7

z>2 j=2 j=2
collisional aggregation new monomers after collisional shattering events
(4)
M
dns
=3 E K; jnin; — nsg Kqin; — )\nsg K ing, s=2,3,..., M.
Z+j s i —
collisional aggregation terms shattering into monomers

The parameter 0 < A < 1 in (4) corresponds to intensity of binary collisional shattering events. Other studies
also include temperature-dependent Smoluchoswki equations [13, 14] and spatially inhomogeneous problems [15].

Despite application of the low-rank decompositions leads to the drastic speedup of computations, most of
interesting experiments were done with the simplest constant time-steps that often might be a bottleneck for
research.
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In case of the irreversible aggregation problem (3) with multiple sources of particles [10], there exist complex
stationary particle size distributions that seem to be extremely difficult to construct accurately using alternative
approaches such as miscellaneous Monte Carlo methods [16-19] or coarse-graining approaches [20, 21]|. Unfor-
tunately, these stationary and quasi-stationary solutions may require to produce simulations for extremely large
final times and number equations [10, 22].

At the same time, the dynamic oscillations are possible in aggregation models [11, 23|. For instance,
the simulations for the periodic solutions arising in the aggregation-shattering kinetics (4) require very tiny
time-steps [11]. Otherwise, the simulations with constant larger time-steps become numerically unstable and
crash.

Adaptive schemes for the numerical integration of differential equations allow to automatically select the
time-step depending on the characteristics of the system. These schemes are especially useful when the system
has a variable sensitivity to changes over time or when an accurate solution is needed in certain time domains.
One example of adaptive integration schemes is the Runge-Kutta method with automatic step selection (adap-
tive Runge—Kutta method see e.g. [24, 25]). In this method, the integration step is varied in such a way as to
control the approximation error. For small time changes in the system, the integration step can be increased
to save the computing resources, and for the fast dynamics the integration step can be reduced to ensure the
accuracy of the solution.

Adaptive time integration schemes are widely used in various fields, such as modeling of dynamic systems,
numerical solution of differential equations in physics, biology, economics and other sciences. They allow to
effectively and accurately simulate the behavior of systems with variable conditions.

There exists an old empirical criteria for stable calculations with Euler scheme for the choice of time-step

-1

M
T(t) < a- maxZKi,jnj(t)
j=1

with @ < 1. In practice, one may set 1/10 < a < 1/4, but reaching the peak performance might require
additional fine-tuning [6, 13]. Such a criteria is rather often used, but it cannot be generalized for the higher
order methods as well as was elaborated only for the irreversible aggregation models.

We conduct a numerical investigation showing that adaptive time-steps can be successfully applied to
these problems. In this work we

1. implement the adaptive time-steps for the second, fourth order Runge-Kutta and for the Runge—Kutta—
Fehlberg methods in application to aggregation kinetics;

2. show that there is a computational speedup with adaptive-time steps for the problems with stationary
and oscillating solutions by dozens of times;

3. present that the relaxation dynamics of the solutions to the stationary state for the large 7' > 1 can be
tracked with adaptive-time steps.

2. Methods. In order to solve any of the listed problems (1)—(4) by any time-integration method, we
firstly re-write them in a compact operator form:

dn

g
dt (n)7
(5)
n(t =0) = ny,
where m(t) corresponds to the vector of concentrations [n(t),...,na(t)]T and S(n) denotes the right-hand

side for the system of target ODEs. In this work, we do not discuss the complexity of evaluation of S(n)
but only refer to the original work [9], where we have shown that its calculation process requires O(M R log M)
operations for the low-rank kernels with rank R < M. We utilize this approach and concentrate on investigation
of performance of the time-integration methods. Namely, we use the following explicit schemes:
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o the second-order Runge-Kutta method (RK2)

ki =7-S(n"),
ky=1-8(n" +ky),
ki + ko

nktl = pk 4 .

o the fourth-order Runge-Kutta method (RK4)

1
kg =T- S(nk + ikl)’

1
k3 =T- S(nk + 5’62),

k4=7‘-S(nk—|—k3),
k+1:nk_’_k1+2k2+2k3+k4.

" 6

o the Runge-Kutta-Fehlberg method (RKF45) [26]
kl =T- S

k2f75n+ k)

3ky + 9k
=T- S <nk + ! + 2) 5
1932k — 7200k, + 7296k
_ k 1 2 3
A= S(" + 2197 )’
3680 845
_ k " —
5 =T:" S (n + — 8k2 513 k3 4104k34>
3544 1859, 11
k
= f—k 2k k ky— —k
TS ("’ PR T oses s T i0a ™ T 10 5>’
6656 28561 9 2
MRKS5 —nk+—k:1+ k3+ k4— 7k5+7k6,

135 12825 56430 50 55
step with the fifth order of accuracy for adaptive criteria.

1408 2197 1
k+1 e _
o= +_216k1 2565°8  amoa™ ~ 5k

final step with the fouth order of accuracy, if criteria is fulfilled

Thus, we seek to apply the adaptive criteria for choosing the time-integration step 7 in order to reduce number
of calls of S(n) during the simulations.

In case of the RK2 and the RK4 methods we utilize the general trick for automatic selection of the step-size
(see e.g. Ch. 8, Par. 3 of [24] or [25]) doing a pair of steps with 7/2, obtaining a vector n¥*1 and a single step 7

getting nFt1. After it, the relative convergence error should be investigated according to basic theory and the
time step is updated according to simple equation [27]
tol 1/p
Tnew:s'Told'<|ﬁk+1_nk+1||2> s (6)
where tol is the tolerance specified by the user, p is the order of the method (p = 2 for the RK2 and p = 4 for
the RK4), || - ||2 is Euclidian norm and 0 < s < 1 is a safety factor (we use s = 1/4).

Finally, if the error exceeds the pre-selected tolerance, the time-step should be halved and the refinement
test will have to be repeated. If the error is less than the tolerance criteria, then the next step can be done with
twice larger 7 and the refinement criteria should be checked again.
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For the RKF45 we follow the original criterion from paper by Fehlberg [26]: the current iteration of the
method has to be repeated until the estimate of the error becomes less than the maximum permissible one as we
set tol parameter. In this case, for each attempt the step decreases in proportion to the fifth root of the ratio of
the maximal permissible error to the current one. For example, if the error exceeds the permissible level by two
times, then the step is reduced by approximately 20%. If the error becomes smaller than the target level, then
we increase the step size according to the rule. For instance, if the error is two times less than the permissible
one, then the step increases by about 3%. If the errors are equal, then the step is reduced by 10%.

3. Numerical experiments.

3.1. Complex steady-state for irreversible
aggregation with multiple sources. At first, we
study the performance of the adaptive time-integration
methods in application to irreversible aggregation equa-
tions with multiple sources (3). These equations can be
probed with various kernels including the constant one

Ki,j = 1,
the ballistic one
1 1

. 1/342
Kij= (Zl/3 _|_j1/3) Pt

or with the family of the generalized Brownian kernels

Km:(;) +<‘7> ., 0<a<1/2, ¢=0.

7

In recent work [10], we have found complex stationary
solutions for these equations for all types of these kernels
for a case of two constant sources of particles

1, k=1,
P.={p, k=100,
0, k= 1,100.

Such complex stationary particle size distributions (see
Figure 1) correspond to the equilibrium state between
the injection and sink processes for ¢ — oo leading to a
system of nonlinear equations

M

1
0= 5 Z Ki7jninj — Ng ZKs,ini + Py,
i+j=s =1
s=1,2,..., M. (7)

The solutions of this system do not depend on the ini-
tial conditions for ODEs (hence, we consider them as
monosdisperse one, namely ng(t = 0) = d5,1, where
d;,; is a Kronecker symbol). Finding such particle size
distributions is an extremely tough problem via Monte
Carlo simulations. This is primarily caused by their
highly oscillating form and long relaxation times. They
were found with use of the deterministic iterative meth-
ods in application to (7): one can apply Anderson ac-
celeration [10] or Newton method [22]. The iterative
approach is very efficient and can be easily coupled with

100,
10—1_
1072
1073

—— p_1=1,p 100 =0.1
—— p_1=1,p_100 = 0.01
—— p_1=1,p_100 = 0.001
— Kk*H(-3/2)

Nk

10!

1071

1031

nk(t)

10751

1077_

— n_1
—— n_100
n_1000
—— n_10000
n_20000

250

1071

107

150 200

b)

100

time

3.0 —— p_1=1,p_100 =0.1
: — p.1=1,p_100 = 0.01
— p_1=1,p_100 = 0.001

ekl b e M

2.51
2.0

1.01

0.5+

0.01

0 200 400

c)
Figure 1. The problem with monodisperse conditions
M = 32768 and a constant power of the source of
monomers P; = 1 and several values of Pigp from 1072 to

600 800

time

107!: a) the numerical stationary solutions oscillate for a
wide range of the particle sizes in agreement with [10]
and relax to the scaling ng ~ k32 k> 1; b) dynamics
of the concentrations nk(t) for multiple masses;
¢) the adaptive time-step increases quite rapidly and
oscillates around 1.5 units of dimensionless ¢ for a long
interval of model time
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Table 1. Computational times in seconds and numbers of requests to the right-hand side with the constant kernel
K;; =1, M = 32768, and T € [0,1000]

Scheme ‘ Const. 7 =0.01 ‘ tol =104 ‘ tol =107 ‘ tol =108 ‘
RK2 131.5 / 40000 2.737 / 784 | 17.66 / 4888 | 135.1 / 46882
RK4 255.4 / 80000 | 3.633 / 1056 | 19.18 / 5780 | 177.5 / 54180

RKF45 397.6 / 120000 | 3.223 / 876 | 3.557 / 972 | 4.579 / 1260

Table 2. Computational times in seconds and number of requests to the right-hand side for the Brownian kernel with
Kij=(i/5)"? + (j/i)'/®, M = 32768, and T € [0, 1000]

Scheme | Const. 7=0.01 | tol=10"* | tol=10"° | tol=10"% |
RK2 | 279.33 / 40000 | 35.52 / 5036 | 51.61 / 8784 | 305.94 / 49862
RK4 | 482.12 / 80000 | 46.95 / 7508 | 70.60 / 11792 | 340.5 / 58788

RKF45 | 690.5 / 120000 | 58.23 / 9966 | 57.25 / 9924 | 58.29 / 10056

low-rank methods for evaluation of the right-hand size S(n). It allows to obtain the numerical solutions for the
large systems even with million of equations.

However, the relaxation dynamics (see panel in the center of the Figure 1) cannot be tracked with older
methodology at all. At the same time, stationary solutions are reachable only for the large times and adaptive
time-stepping methods become a necessary tool allowing to obtain the results in reasonable computing times.
We sum up the results of our benchmarks in Table 1 and Table 2. Both computational times in seconds and
number of evaluations of the right-hand side decrease significantly.

3.2. Aggregation-shattering with dynamic oscillations. The second example of a complex model for
application of the adaptive time-stepping rules are the kinetic equations for aggregation-shattering processes (4).
Dynamic oscillations are possible for this model [11] with non-local kernels

i e} j 87
K’L": - - 5 >]. 2,
! (J) +<Z> o«

with small shattering rates 0 < A < A* <« 1 and various initial conditions (in this work we study the monodis-
perse case ng(t = 0) = dx,1, where d; ; is a Kronecker symbol).
In Figure 2 we demonstrate the slow relaxation of the solution of the aggregation-shattering equations to
the stationary state
~ 1.—B =Nk
n,~k"-e , kB> 1.

This observation is in agreement with previously elaborated theory [12] for the constant kernel (5 = 3/2 for
a =0 and A = 0.01). We see that this relaxation is slow and takes a lot of time. Utilization of the adaptive

1024
10'4
g = 100_
10714

tol = 1le-6

tol = le-4

10—2, tol = le-2

ot 23 95 97 99 gll 913 o5 0 2000 4000 6000 8000 time
a) b)

Figure 2. Numerical experiments for the constant kernel with o = 0, M = 32768 and A = 0.01 and monodisperse initial
conditions: a) very slow relaxation of ny for k > 1 to the stationary distribution ny o k™32 the scaling becomes
stable only for T'= 10" and the solutions become close to the basic asymptotic form only for very large T’

b) the time steps grow up to very large values if the adaptive time-stepping rule is applied
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1.0
1072,
0.87
0.6
=4 - 1077
0.4 1
0.21 1074,
0 25 50 75 100 125 150 175 time 0 25 50 75 100 125 150 175 time
a) b)

Figure 3. Numerical experiments for the generalized Brownian kernel with o = 0.95, M = 32768 and A\ = 0.01 and
monodisperse initial conditions: a) dynamic oscillations of the total density N(¢) are in agreement with baseline
paper [11]; b) the adaptive time steps also oscillate with time and lead to speedup the computations

time-steps allows to track this transition dynamics with good accuracy within modest computing time. The
previously elaborated iterative methods (see e.g. [21, 22]) allow to obtain only the numerical approximations of
the final stationary particle size distributions in contrast with our approach.

The small non-monotonicity in the numerical solution for 7' = 5000 (see Figure 2) qualitatively agrees
with the experimental data of the Voyager Radio Science Subsystem [28] for the Saturn’s A ring, that can be
seen in the related plot for this model from [12]. Thus, we may infer that the real particle size distribution is
close to the dynamic equilibrium predicted by theory, but it takes a long time to reach it.

In Figure 3 we demonstrate the results of our experiments for the kernel with o = 0.98 and A = 0.01. In this
case, the equations (4) lead to the dynamic oscillations. These oscillations were observed only numerically [11]
and seem to arise via Hopf bifurcation. The dynamic oscillations are also possible for the open irreversible
aggregation model with the sources and sinks [23], but the aggregation-shattering kinetics is mass-conserving
and such cyclic solutions even more interesting.

The corresponding simulations based on the second order Runge-Kutta method require tremendously
small constant time-steps for stable calculations. Thus, even experiments for oscillations with twenty or forty
thousand kinetic equations may take dozens of hours of computations.

On the right panel of Figure 3 we see that the adaptive steps also oscillate with time and change almost by
two orders of magnitude during each cycle. Application of the adaptive criteria allows to speedup these tough
calculations by 10-15 times as we show in the Table 3. Based on this observation, we see that computations
can be significantly accelerated without loss of their accuracy.

4. Conclusion. In this work we have studied the performance of several explicit time-integration methods
with adaptive time-stepping criteria in application to problems of aggregation-fragmentation kinetics. Based on
our numerical experiments, we conclude that complicated calculations for different models can be accelerated
by dozens of times.

We also demonstrate that application of the time-integration methods with adaptive time-steps allows to
obtain the dynamics of relaxation process for the problems with stationary solutions using modest computing
resources. Utilization of chosen dynamic time-stepping criteria allows us to exploit the higher-order Runge—
Kutta methods instead of the well-known classical criteria for the simplest Euler scheme.

Table 3. Timings in seconds of numerical computations for the aggregation-shattering problem with dynamic
oscillations (a = 0.95, M = 32768, A = 0.01). The same calculations with constant time-steps 7 = 5107
(the numerical integration becomes instable for the larger time-steps) require approximately 23 hours

Scheme ‘ tol = 107* ‘ tol =106 ‘ tol =108 ‘
RK2 4160 4217 5250
RK4 6399 6084 6520

RKF45 9924 9700 9869
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Robust implementation of any implicit time-integration is an interesting direction for future research. It
might be useful for the spatially inhomogeneous coagulation equations [2] playing important role in ecological
modeling [29]. This task seems to be challenging due to a certain need in efficient and highly accurate methods
solving the systems of non-linear equations generated by Smoluchowski operator [22]. The cost of internal
iterations within implicit time-steps has to be smaller than straight-forward sequence of explicit time-steps.
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