
396 ВЫЧИСЛИТЕЛЬНЫЕ МЕТОДЫ И ПРОГРАММИРОВАНИЕ / NUMERICAL METHODS AND PROGRAMMING
2024, 25 (4), 396–412. doi 10.26089/NumMet.v25r430

doi 10.26089/NumMet.v25r430

Non-conservation of linear momentum in widely used
hierarchical methods in gravitational gas dynamics

Marat Sh. Potashov
Keldysh Institute of Applied Mathematics RAS, Moscow, Russia
National Research Center “Kurchatov Institute”, Moscow, Russia

ORCID: 0000-0002-0564-1101, e-mail: marat.potashov@gmail.com

Andrey V. Yudin
National Research Center “Kurchatov Institute”, Moscow, Russia

ORCID: 0000-0002-0986-4257, e-mail: yudin@itep.ru

Abstract: The paper considers the implementation of the fast multipole method (FMM) in the
PHANTOM code for the calculation of forces in a self-gravitating system. The gravitational interaction
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силы гравитационного взаимодействия разделяются на ближние и дальние в зависимости от
величины углового параметра иерархического kd-дерева. Показано, что для любой пары ячеек
kd-дерева для взаимно-обратного взаимодействия выполняется третий закон Ньютона. Однако
для всей системы импульс не сохраняется, что приводит к возникновению нефизической силы,
из-за которой мигрирует центр масс. Для компактных объектов, таких как пара нейтронных
звезд, смещение центра масс системы сравнимо с их радиусами на временах нескольких де-
сятков кеплеровских оборотов. Такое смещение не получается уменьшить увеличением числа
частиц при значениях углового параметра больших, чем 0.2. В свою очередь, для параметра с
меньшими значениями время расчета становится нереалистично большим.
Ключевые слова: tree code, быстрый метод мультиполей, FMM, сохранение импульса, N-body,
гидродинамика сглаженных частиц, SPH, PHANTOM.
Для цитирования: Поташов М.Ш., Юдин А.В. Несохранение импульса в широко использу-
емых иерархических методах в гравитационной газовой динамике // Вычислительные методы
и программирование. 2024. 25, № 4. 396–412. doi 10.26089/NumMet.v25r430.

1. Introduction. The number of computations required to accurately calculate the forces in a self-
gravitating system, acting between a set of 𝑁 particles, grows with the increase of the number of particles
as a function of 𝒪(𝑁2). This makes calculations involving tens of thousands of particles practically impossi-
ble. Several alternatives have been proposed to solve the problem of quadratic growth in computational costs
for self-gravity. These include the tree-code method [1], the fast multipole method (FMM) [2–4], and hybrid
methods combining elements of particle mesh approaches [5] and the FMM [6, 7].

The computational complexity of Barnes-Hut method [1] is 𝒪(𝑁 log𝑁). Many FMM implementations,
including those presented in [8–10], yield a linear complexity 𝒪(𝑁). Moreover, there are even such realizations
of FMM [11] whose computational cost achieves 𝒪(𝑁0.87) operations with comparable errors.

The aforementioned methods are based on the concept of collecting particles into hierarchically structured
groups (cells) forming a tree. This enables to carry out the costly computational calculations, wherein the forces
of gravitational attraction are taken into account at the level of the cell as a whole, rather than on an individual
particle basis. Different codes use various kinds of trees. An octree, which is generated by dividing each cell
into eight subcells, is considered within the tree-code [1, 8, 9] and Octo-Tiger [12]. The binary kd-tree [13] is
employed by the code PKDGRAV3 [14], which is used in cosmological simulations. Additionally, it is utilised in
codes based on the method of the smoothed particle hydrodynamics (SPH) such as [10] and PHANTOM [15, 16].

This article discusses the implementation of the FMM in the 3D SPH magnetohydrodynamic code PHAN-
TOM. In computational astrophysics, the FMM is one of the most prevalent, while the PHANTOM code is successfully
used in various fields of astrophysics [17–22]. The current implementation of FMM in PHANTOM in Cartesian
coordinates demonstrates the complexity 𝒪(𝑁 log𝑁). However, as will be showed, this implementation does
not conserve the total linear momentum of the system. This article complements and revises an earlier paper
[23].

The article is structured in the following way. In the section 2 we briefly describe the PHANTOM code and
its implementation of the method for calculating the self-gravity forces. In the section 3 we prove the fulfillment
of Newton’s third law for any pair of kd-tree cells in the case of mutual interaction. In section 4 it is shown that
the way of describing the interaction for the whole system in the PHANTOM code does not satisfy the third law,
resulting in the generation of a non-physical force. In the section 5 we demonstrate how the center of mass of
the system migrates due to this force. In the section 6 the non-conservation of linear momentum for the whole
system in the PHANTOM calculations is illustrated by the example of a single neutron star (NS). It is also shown
which factors affect this non-conservation. In the final section 7 we conclude that there is a need to change the
code PHANTOM, for example, based on the works [8, 9].

2. Description of the self-gravity forces in PHANTOM. The PHANTOM code uses SPH — it’s a Lagrangian
meshless method. Particles in the SPH method are volumetric elements of the medium with unspecified shape,
which are assigned to physical characteristics: coordinates, speed, mass, density, characteristic size, temperature,
pressure and so on. A restriction is introduced in PHANTOM: all particles have the same mass. Discrete repre-
sentation of the medium as a set of smoothed particles implies replacement of continuous characteristics 𝑓(𝑟)
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by piecewise-constant quantities 𝑓𝑖. For each particle 𝑖, these values are calculated by summing the values 𝑓𝑗
of neighbouring particles 𝑗, where each summand is weighted by a special function called the smoothing kernel.
The approximation of spatial derivatives in the right-hand sides of the conservation laws equations in SPH is
achieved by transferring the particle coordinate derivatives to the derivative of the smoothing kernels. Using
the solutions of the equations of motion, continuity, and energy in the form of the SPH approximation, one can
define how the density, temperature, and pressure of matter described by SPH particles will change [15].

Henceforth, we’ll use a system of units, in which the unit of time is

𝑢time =

√︃
𝑢3
dist

G𝑢mass
, (1)

where 𝑢dist and 𝑢mass are the units of distance and mass respectively and 𝐺 is the Newtonian constant of
gravitation.

To obtain the acceleration of SPH-particles 𝑎grav caused by the self-gravitational forces, we need to find
the gravitational potential Φ that satisfies the Poisson equation, which is written in our system of units as

∇2Φ = 4𝜋𝜌(𝑟), (2)

where 𝜌 is the density of the matter. Then the corresponding acceleration will be 𝑎grav = −∇Φ.
The elliptic type equation (2) implies an instant action. Consequently, the solution must be global for

the whole system. One chosen particle is affected by all other particles, both near and far. Such a solution is
found in PHANTOM by representing of the total acceleration of the SPH-particle as the sum of the accelerations
resulting from the short-range and long-range interactions:

𝑎grav = 𝑎short + 𝑎long. (3)

The splitting (3) is dictated by the considerations of computational optimization. The way of calculating the
two types of acceleration is different.

To determine which interactions are considered to be short-range and which are to be long-range, the
following procedure is performed. All SPH-particles of the system are hierarchically grouped into cells of the
kd-tree. The algorithm recursively cuts the cells through their centers of mass and forms new subcells by
splitting the longest axis into two parts in order to leave the cells with a more compact shape. This allows to
reduce errors when cutting off their multipole expansion [10]. The procedure stops for cells containing not more
than 10 SPH-particles. Such cells are called leaf cells, and those higher up in the hierarchy are called super-cells.

Let us consider two arbitrary not necessarily leaf cells 𝛼 and 𝛽, the distance between their centers of mass
is denoted by 𝑟. The particles of the first cell interact with the second cell in a short-range manner when one
of the two criteria is satisfied. The first of them is the tree opening criterion:

𝜃2 <
(︁𝑠𝛽
𝑟

)︁2

, (4)

where 0 ⩽ 𝜃 ⩽ 1 is the tree opening parameter. Here 𝑠 is the size of the cell, which is equal to the minimum
radius of the sphere centered on the center of mass of the cell, and containing all its SPH-particles. Note also
that for 𝜃 = 0, the tree opening criterion (4) is always satisfied and 𝑎grav = 𝑎short. In this case, all accelerations
in the system are calculated by direct summation.

The second criterion describes the possibility of intersecting smoothing spheres for SPH-particles of dif-
ferent cells:

𝑟2 <
[︀
𝑠𝛼 + 𝑠𝛽 +max(𝑅kernℎ

𝛼
max, 𝑅kernℎ

𝛽
max)

]︀2
. (5)

Here ℎmax is the maximum smoothing length among all the particles in the cell, and 𝑅kern is the dimensionless
cut-off radius of the smoothing kernel 𝑊 (ℎ). A sphere of radius 𝑅kernℎ is a compact support of the kernel
𝑊 (ℎ). If distances from the center of the particle are larger than 𝑅kernℎ, all physical quantities described by
SPH-particle are assumed to be zero.

The near acceleration 𝑎short is calculated by direct summation over neighbouring particles (see [16, 24]).
Gravitational potential for SPH-particles, smoothed by the kernel 𝜑(𝜖) for points with 𝑟 > 𝑅kern𝜖, behaves like
1/𝑟. A function has no compact support. If one uses only near acceleration to calculate the gravitational force
for the whole system, then all the conservation properties are fulfilled, namely conservation of linear momentum,
angular momentum and energy [16, 24].
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The following procedure is used to calculate the long-range acceleration component 𝑎long in PHANTOM. The
components of the gravitational acceleration of a particular cell 𝛼 caused by the gravitational attraction of
another cell 𝛽 are obtained by multipole expansion of the acceleration in powers of 1/𝑟:

𝑎𝛽→𝛼,𝑖(𝑟) = −
𝑀𝛽

𝑟2
𝑟̂𝑖 +

1

𝑟4

(︂
𝑟̂𝑘𝑄𝛽,𝑖𝑘 −

5

2
𝑟̂𝑖𝑟̂𝑗 𝑟̂𝑘𝑄𝛽,𝑗𝑘

)︂
. (6)

Here 𝑟 is a vector connecting the centers of mass of cells 𝛼 and 𝛽, 𝑟 is its length, and 𝑟̂𝑖 are the components of
the corresponding unit vector, 𝑀𝛽 is the total mass of the cell 𝛽,

𝑄𝛽,𝑖𝑗 =
∑︁
𝑦∈𝛽

𝑚p

[︀
3𝑦𝑖𝑦𝑗 − 𝑦2𝛿𝑖𝑗

]︀
(7)

is the quadrupole moment of the cell 𝛽, 𝑦 is the radius vector starting at the center of mass of the cell to some
particle inside the cell, and 𝑚p is the mass of the particle, which in PHANTOM is assumed to be the same for all
particles.

Consider some SPH-particle inside the cell 𝛼 with the radius vector 𝑥 starting at the center of mass of the
cell 𝛼. The components of the gravitational acceleration of this SPH-particle caused by interaction with the 𝛽

cell are obtained by Taylor expansion of 𝑎𝛼→𝛽,𝑖 up to the second order for small displacements 𝑥 from 𝑟:

𝑎𝛽→𝛼,𝑖(𝑟,𝑥) = 𝑎𝛽→𝛼,𝑖(𝑟) + 𝑥𝑗
𝜕𝑎𝛽→𝛼,𝑖(𝑟)

𝜕𝑟𝑗
+

1

2
𝑥𝑗𝑥𝑘

𝜕2𝑎𝛽→𝛼,𝑖(𝑟)

𝜕𝑟𝑗𝜕𝑟𝑘
. (8)

This approach is called the fast multipole method [2]. In PHANTOM it is implemented in Cartesian coordi-
nates. Using the notation of the paper [11], one can state that the steps required to determine the acceleration
𝑎long in PHANTOM are: step P2M (particle to multipole), consisting in calculation of 𝑄𝑖𝑗 in accordance to equa-
tion (7), step M2L (multipole to local expansion), involving the use of equation (6), and finally step L2P (local
expansion to particle) that includes the utilization of equation (8).

In the next section we prove the fulfillment of Newton’s third law for any pair of cells, all particle accel-
erations in which are described by the formula (8).

3. Symmetric interaction of a pair of kd-tree cells. Consider a pair of kd-tree cells 𝛼 and 𝛽 (see Fig-
ure 1), which are sufficiently distant from each other so that their parameters do not satisfy the criteria (4), (5).
In this case, we will refer to such cells as well-separated. The minimum radius of the sphere located at the center
of mass of the cell 𝛽 containing all its SPH-particles, designated as 𝑠𝛽 , and the maximum smoothing length
among all particles of the cell 𝛽, designated as ℎ𝛽

max, are shown in Fig. 1. The cells 𝛼 and 𝛽 are not necessarily
leaf cells. We denote the total cell masses as 𝑀𝛼 and 𝑀𝛽 correspondingly.

Let the radius vectors of SPH-particles inside the cells 𝛼 and 𝛽 originating from their centers of mass be
denoted by 𝑥 and 𝑦, respectively. Let us also introduce a vector 𝑟 between the centers of mass of the cells 𝛼

𝑥

𝑟

𝑟𝑦𝑥

𝑦

𝑆𝛽

𝑅kernℎ
𝛽
max

𝛼 𝛽

Figure 1. Gravitational interaction of SPH-particles of the cell 𝛼 with SPH-particles of the kd-tree cell 𝛽.
Details in the text.
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and 𝛽 and its length 𝑟 = |𝑟|. Then the distance between two arbitrary particles of different cells is

𝑟𝑦𝑥 = |𝑟 + 𝑥− 𝑦|. (9)

In order to determine the potential created by all particles of the cell 𝛽 at the point 𝑥 of the cell 𝛼, we need
to find the solution of the Poisson equation (2) in the outer region of the 𝛽 zone. We will assume the potential
to be equal to zero at infinity. The solution of such a problem (see, e.g., [25]) is defined by the expression

Φ𝛽→𝛼(𝑥) =

∫︁
𝛽

𝜌(𝑦)𝐺(𝑟 + 𝑥,𝑦)d3𝑦, (10)

where 𝐺(𝑟+𝑥,𝑦) is the Green’s function of the Laplace operator, which is symmetric with respect to permutation

(𝛼,𝑥, 𝑟) ⇆ (𝛽,𝑦,−𝑟). (11)

It can be shown [24] that for a variable smoothing length ℎ(𝑦) which depends on the density and is a function
of the spatial variable, the expression (10) in the SPH approximation converts to

Φ𝛽→𝛼(𝑟,𝑥) =
∑︁
𝑦∈𝛽

𝑚p𝐺(𝑟 + 𝑥,𝑦), (12)

where
𝐺(𝑟 + 𝑥,𝑦) = −𝜑(𝑟𝑦𝑥, ℎ(𝑥)) + 𝜑(𝑟𝑦𝑥, ℎ(𝑦))

2
. (13)

Here the smoothing kernel 𝜑 for the potential is determined from the solution of the Poisson equation

𝑊 (𝑧, ℎ) =
1

4𝜋𝑧2
𝜕

𝜕𝑧

(︂
𝑧2

𝜕𝜑

𝜕𝑧

)︂
,

where 𝑧 ≡ 𝑟𝑦𝑥. For the standard smoothing kernels 𝑊 (𝑧, ℎ) and from (13) for

𝑟𝑦𝑥 > 𝑅kernℎ (14)

one can obtain (see [16, 24])

𝐺(𝑟 + 𝑥,𝑦) = − 1

𝑟𝑦𝑥
. (15)

The 𝑖-component of the acceleration of a SPH-particle at the point 𝑥 caused by its attraction by the entire
cell 𝛽 is

𝑎𝛽→𝛼,𝑖(𝑟,𝑥) = −
𝜕Φ𝛽→𝛼(𝑟,𝑥)

𝜕𝑥𝑖
= −

∑︁
𝑦∈𝛽

𝑚p
𝜕𝐺(𝑟 + 𝑥,𝑦)

𝜕𝑥𝑖
. (16)

The components of the total force acting on the cell 𝛼 from the side of cell 𝛽 are obtained by summing (16) for
all SPH-particles of the cell 𝛼:

𝐹𝛽→𝛼,𝑖(𝑟) = −
∑︁

𝑥∈𝛼,𝑦∈𝛽

𝑚2
p

𝜕𝐺(𝑟 + 𝑥,𝑦)

𝜕𝑥𝑖
. (17)

Due to the symmetry of the Green’s function with respect to permutation (11), the resulting expression is
symmetric: 𝐹𝛽→𝛼,𝑖 = 𝐹𝛼→𝛽,𝑖. Since inequality (14) is fulfilled for well-separated cells, the Green’s function has
a simple form (15). Therefore, the gravitational interaction force (17) between such cells does not depend on
the parameters of the SPH method. This approach is consistent with the N-body formalism.

By summing (16) over all cells 𝛽, we get the total acceleration of the SPH-particle at the point 𝑥.
Even taking into account the symmetry of the Green’s function with respect to permutation (11), it is clear
that to calculate the behavior of all 𝑁 SPH-particles in the system it is necessary ∝ 𝑁2 times to take the
derivative of it at large 𝑁 . As was described in section (1), several alternative methods have been proposed
to solve the problem of quadratic computational complexity. Some of them demonstrate the complexity of
𝒪(𝑁0.87) for comparable errors. This speed gain is largely due to the recursive way of traversing the tree and
finding mutually-symmetrically interacting cells [8]. However, all these methods share a common property: they
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replace the “particle–particle” interactions with other types of interactions, such as “particle–cell” and “cell–cell”
interactions. To implement this, a multipole extension is used.

The Taylor expansion of Green’s function (15) around 𝑟 to order 𝑝 reads

𝐺(𝑟 + 𝑥,𝑦) =

𝑝∑︁
|𝑛|=0

𝑝−|𝑛|∑︁
|𝑚|=0

𝑥𝑛𝑦𝑚

𝑛!𝑚!

𝜕|𝑛|+|𝑚|𝐺(𝑟 + 𝑥,𝑦)

𝜕𝑥𝑛𝜕𝑦𝑚

⃒⃒⃒⃒
𝑦=0
𝑥=0

+𝑅𝑝(𝑟 + 𝑥,𝑦). (18)

Here we use multi-indices notation (see, e.g., [11, 26]), which is more convenient than tensor notation in this
case. The first sum corresponds to a triple summation for each component of 𝑥, where the sum of the indices
|𝑛| = 𝑛𝑥1

+ 𝑛𝑥2
+ 𝑛𝑥3

⩽ 𝑝. The second sum corresponds to a triple summation for component of 𝑦, where the
sum of the indices |𝑚| = 𝑛𝑦1

+𝑛𝑦2
+𝑛𝑦3

⩽ 𝑝− |𝑛|. The residual term of the Taylor formula is 𝑅𝑝. Let us define
the following notations:

𝑥𝑛 ≡ 𝑥
𝑛𝑥1
1 𝑥

𝑛𝑥2
2 𝑥

𝑛𝑥3
3 , 𝑦𝑚 ≡ 𝑦

𝑛𝑦1
1 𝑦

𝑛𝑦2
2 𝑦

𝑛𝑥3
3 ,

𝑛! ≡ 𝑛𝑥1
!𝑛𝑥2

!𝑛𝑥3
!, 𝑚! ≡ 𝑛𝑦1

!𝑛𝑦2
!𝑛𝑦3

!,

𝜕𝑥𝑛 ≡ 𝜕𝑥
𝑛𝑥1
1 𝜕𝑥

𝑛𝑥2
2 𝜕𝑥

𝑛𝑥3
3 , 𝜕𝑦𝑚 ≡ 𝜕𝑦

𝑛𝑦1
1 𝜕𝑦

𝑛𝑦2
2 𝜕𝑦

𝑛𝑥3
3 .

(19)

The gradient of the Green’s function at the point 𝑥 = 𝑦 = 0 depends only on 𝑟

𝜕|𝑛|+|𝑚|𝐺(𝑟 + 𝑥,𝑦)

𝜕𝑥𝑛𝜕𝑦𝑚

⃒⃒⃒⃒
𝑦=0
𝑥=0

= (−1)|𝑚|𝜕𝑛+𝑚𝐺(𝑟, 0), (20)

where we use the following shortened form:

𝜕𝑛+𝑚𝑓 ≡ 𝜕|𝑛|+|𝑚|𝑓

𝜕𝑟𝑛+𝑚
, (21)

𝜕𝑟𝑛+𝑚 ≡ 𝜕𝑟
𝑛𝑥1

+𝑛𝑦1
1 𝜕𝑟

𝑛𝑥2
+𝑛𝑦2

2 𝜕𝑟
𝑛𝑥3

+𝑛𝑦3
3 . (22)

Substituting (18) into (12) and taking into account (20), after regrouping the terms we have

Φ𝛽→𝛼(𝑟,𝑥) =

𝑝∑︁
|𝑛|=0

𝑥𝑛

𝑛!

𝑝−|𝑛|∑︁
|𝑚|=0

𝑀𝑚𝜕𝑛+𝑚𝐺(𝑟, 0) +
∑︁
𝑦∈𝛽

𝑚p𝑅𝑝(𝑟 + 𝑥,𝑦), (23)

where

𝑀𝑚 =
∑︁
𝑦∈𝛽

𝑚p
(−1)|𝑚|

𝑚!
𝑦𝑚 (24)

are multipole moments. Setting 𝑝 = 3 in the formula (23) and neglecting the octopoles 𝑀3 = 0, we obtain the
expressions from [8, 9].

Differentiating the gravitational potential (23) with respect to 𝑥𝑖 and taking into account (16), we get

𝑎𝛽→𝛼,𝑖(𝑟,𝑥) =

𝑝−1∑︁
|𝑛|=0

𝑥𝑛

𝑛!
𝜕𝑛𝑎𝛽→𝛼,𝑖(𝑟) + 𝑅̃𝑝(𝑟,𝑥), (25)

where

𝑎𝛽→𝛼,𝑖(𝑟) = −
𝑝−1−|𝑛|∑︁
|𝑚|=0

𝑀𝑚𝜕𝑚+1𝐺(𝑟, 0) (26)

and 𝑅̃𝑝(𝑟,𝑥) is a residual term. For 𝑝 = 3, the series (25) is similar to the acceleration expression in PHAN-
TOM (8). However, there are differences. In the equation (8) the highest degree of 1/𝑟 in the third term of the
corresponding Hessian matrix is equal to 6. In the equation (25) this degree derived from 𝜕3𝐺(𝑟, 0) is equal to
4.

To obtain the desired degrees, we carry out the following procedure: we write out the series (25) for 𝑝 = 5,
discarding all terms with 𝑛 = 3, 𝑛 = 4, 𝑚 = 3, 𝑚 = 4, excluding octopoles and higher orders of 𝑥 and 𝑦. The
final series differs from the series (25) at 𝑝 = 3 in that it has three additional terms with pairs of indices

(𝑛,𝑚) = (1, 2); (2, 1); (2, 2), (27)
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whose sum is less than the value of the residual term 𝑅̃3(𝑟,𝑥), remaining within this error. The final expressions
are

𝑎𝛽→𝛼,𝑖(𝑟,𝑥) ≈
2∑︁

|𝑛|=0

𝑥𝑛

𝑛!
𝜕𝑛𝑎𝛽→𝛼,𝑖(𝑟) (28)

and

𝑎𝛽→𝛼,𝑖(𝑟) =

2∑︁
|𝑚|=0

𝑀𝑚𝜕𝑚+1𝐺(𝑟, 0). (29)

They coincide with expressions (8) and (6) respectively.
One can give another description of the difference between the approaches (24)–(26) and (6)–(8). We will

call all particles of the cell 𝛼 as sinks and particles of the cell 𝛽 as sources. Then the approach (24)–(26) involves
a Taylor expansion over small displacements from 𝑟 of both source and sink so that their combined order is not
greater than (𝑝− 1). And the approach (6)–(8) is a successive expansion first by small displacements from 𝑟 of
the source to order (𝑝− 1) and only then by small displacements of the receiver to order (𝑝− 1).

Now let’s go back to the expression (18). It is symmetric with respect to permutation (11) at every order
of precision. However, the symmetry of this expression will not be changed if we carry out the procedure
described above by adding to the series (18) at 𝑝 = 3 the pairs (27), which are symmetric by indices as well.
Substitution of the Green’s symmetric function modified in this way into (16) gives us accelerations from PHAN-
TOM (8). Furthermore, substituting it into (17), we will conclude that the Newton’s third law is fulfilled for any
pair of cells, where the acceleration of particles is described by the formula (8).

4. Asymmetric interaction of kd-tree cells. In the previous section, we saw that the total force of
interaction for any pair of cells is zero. This implies that if only the pairs of mutually interacting cells will
appear in the calculation for estimating of the self-gravity forces for each particle at each computational time
step, then all forces in the whole system will be compensated with machine accuracy. At least with the accuracy
of the errors resulting from the summation of a large amount of floating-points numbers [27–29].

In PHANTOM, at each calculation step after updating the kd-tree a paired well-separated remote cell is
sought each leaf cell. It is important that such a pair is searched for only for leaf cells, but not for super-cells.
As a result, in this method the direct pairs “leaf cell← super-cell” will be encountered, but the reverse pairs will
never be considered, which leads to asymmetry. The tree opening criterion (4) is also asymmetric in PHANTOM
because it contains parameters of one cell only. An example of symmetric criteria is considered in [8, 30].

A model of such a situation is illustrated in Fig. 2. A leaf cell 𝛼 with mass 𝑀𝛼 is attracted by the super-cell
𝛽 with mass 𝑀𝛽 with a force 𝐹𝛽→𝛼. Let the centers of masses of the cells 𝛼 and 𝛽 be at the distance 𝑟. The
super-cell consists of two leaf cells 𝛽1 and 𝛽2, which attract 𝛼 with the forces 𝐹𝛼→𝛽1 and 𝐹𝛼→𝛽2 respectively.
The masses of these cells 𝑀𝛽1 and 𝑀𝛽2 add up to 𝑀𝛽 . Let’s assume that 𝑀𝛽2 > 𝑀𝛽1 . Let the radius vector of
the center of mass of the cell 𝛽1 originating from the center of mass of the cell 𝛽 be 𝑥. Then the radius vector

leaf super
leaf

leaf

𝐹𝛼→𝛽1

𝐹𝛼→𝛽

𝐹𝛼→𝛽2

𝛼 𝛽

𝛽1

𝛽2

Figure 2. Non-symmetric gravitational interaction between SPH-particles of the leaf cell 𝛼 and SPH-particles of the
supercell 𝛽 of the kd-tree. Details in the text.
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of the center of mass of the cell 𝛽2 originating from the center of mass of the cell 𝛽 is −𝑥𝑀𝛽1/𝑀𝛽2 , by the
definition of the center of mass 𝛽.

The 𝑖-component of the total force acting on the center of mass of the whole system is

𝐹𝑖 = 𝐹𝛽→𝛼,𝑖+𝐹𝛼→𝛽1,𝑖 + 𝐹𝛼→𝛽2,𝑖 =∑︁
𝑥∈𝛼

𝑚p𝑎𝛽→𝛼,𝑖 +
∑︁
𝑥∈𝛽1

𝑚p𝑎𝛼→𝛽1,𝑖 +
∑︁
𝑥∈𝛽2

𝑚p𝑎𝛼→𝛽2,𝑖,
(30)

where the expressions for accelerations are taken from (8) or, equivalently, from (28). The summation is carried
out over the internal particles of each cell. All cell mass centers lie in the same plane 𝑃 (Fig. 2 plane). Without
limiting generality, let us arrange the coordinate system so that one axis passes through the centers of masses
of the cells 𝛼 and 𝛽, the second axis lies in the plane 𝑃 , and the third axis is perpendicular to 𝑃 .

Expanding 𝐹𝑖 in a Taylor series by small displacement 𝑥 up to third order and writing out the leading
terms, we get

𝐹1 ≈
2

𝑟5
𝑀𝛼𝑀𝛽

𝑀𝛽1

𝑀𝛽2

(︂
1− 𝑀𝛽1

𝑀𝛽2

)︂
(2𝑥2

1 − 3𝑥2
2)𝑥1,

𝐹2 ≈
3

2𝑟5
𝑀𝛼𝑀𝛽

𝑀𝛽1

𝑀𝛽2

(︂
1− 𝑀𝛽1

𝑀𝛽2

)︂
(𝑥2

2 − 4𝑥2
1)𝑥2.

(31)

The force component 𝐹3 is zero with this accuracy. It is important to note that the expressions (31) do not
involve the quadrupole moments of the cells, which means that the location of SPH-particles within each cell
does not affect the force.

Maximizing the norm 𝐹 of the vector 𝐹 for different 𝑥, we obtain its following upper bound

𝐹 ≈ 4

𝑟5
𝑙3𝑀𝛼𝑀𝛽

𝑀𝛽1

𝑀𝛽2

(︂
1− 𝑀𝛽1

𝑀𝛽2

)︂
, (32)

where 𝑙 = |𝑥| is the distance from the center of mass of the cell 𝛽 to the center of mass of the most distant cell.
The resulting non-physical uncompensated force acts on each of the SPH-particles of the pair 𝛼, 𝛽. We will call
such a pair of cells asymmetric.

Let us repeat this reasoning for the case if there are more than two leaf cells inside a supercell 𝛽, and
instead of a leaf cell 𝛼, there can be a supercell with child leaf cells 𝛼1, 𝛼2, . . . . Assuming that cells with indices
𝛼1, 𝛽1 have the smallest masses, we get a generalization of the expression (32)

𝐹 ≈ 4
∑︁
𝛼,𝛽

𝑀𝛼𝑀𝛽

𝑟5𝛼𝛽

[︃
𝑀𝛼1

𝑙3𝛼1

𝑀𝛼 −𝑀𝛼1

(︁
1− 𝑀𝛼1

𝑀𝛼 −𝑀𝛼1

)︁
+

+
𝑀𝛽1

𝑙3𝛽1

𝑀𝛽 −𝑀𝛽1

(︁
1− 𝑀𝛽1

𝑀𝛽 −𝑀𝛽1

)︁]︃
.

(33)

Here 𝑙𝛼1 and 𝑙𝛽1 are the distances from the centers of mass of 𝛼 and 𝛽 to the centers of mass of the lightest distant
cells, respectively. Summation is performed over all possible asymmetric pairs 𝛼, 𝛽, the distances between which
are 𝑟𝛼𝛽 . If a cell 𝛼 in some summand is a leaf cell, the first summand in square brackets in (33) is assumed to
be zero, indicating that its size is also zero. It was not implied here that all cells necessarily lie in the same
plane.

At some computational step there can be both asymmetric and symmetric pairs of cells. At the next step
of the computation, when the kd-tree is updated, the number of pairs may change. For example, there may be
a new asymmetric pair of cells oriented differently in space, or several pairs. The center of mass of the whole
system (the whole kd-tree) experiences a “kick” 𝐹 at each step in different directions. It can be said that an
uncompensated random force will act on the system as a whole, causing it to shift from its initial position. The
system ceases to be conservative, and we lose one of the main advantages of the SPH approach compared to
the mesh method.

It is important to note that if in (30) instead of (8) we used the accelerations from (25) at 𝑝 = 3, the
resulting force would also be non-zero. Discarding terms with 1/𝑟5 and above in the formula (30) does not solve
the problem of the additional non-physical force. In the next section we will consider how the center of mass of
the system will migrate due to its action.
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5. Displacement of the system’s center of mass. Now let’s see how far the system as a whole shifts
when it periodically receives a “kick” by a force described by an isotropic random variable 𝑓𝑖, whose modulus is
uniformly distributed from zero to 𝐹 . The time-average impact of such a force is ⟨𝑓𝑖⟩ = 0, and the RMS impact
is ⟨𝑓2

𝑖 ⟩ = 𝐹 2/3. Assume that the calculated time steps are equal for simplicity. Then, for each ∆𝑡, the system
receives a momentum 𝑓𝑖∆𝑡, or, similarly, it receives an additional velocity ∆𝑣𝑖 = 𝑓𝑖∆𝑡/𝑀 , where 𝑀 is the mass
of the system and

⟨∆𝑣2𝑖 ⟩ =
𝐹 2

3𝑀
∆𝑡2. (34)

We will consider one velocity component, e.g. 𝑥-component. The magnitudes of the velocity “kicks” at
successive times are ∆𝑣1, ∆𝑣2, and so on. The velocity on the interval from 𝑘 to 𝑘 + 1 is

𝑣𝑘,𝑘+1 =

𝑘∑︁
𝑖=1

∆𝑣𝑖,

and the displacement is 𝑆𝑘,𝑘+1 = 𝑣𝑘,𝑘+1∆𝑡. The displacement on the interval from one to 𝑘 + 1 is

𝑆1,𝑘+1 =

𝑘∑︁
𝑖=1

𝑆𝑖,𝑖+1 = ∆𝑡

𝑘∑︁
𝑖=1

∆𝑣𝑖(𝑘 − 𝑖+ 1).

The average displacement ⟨𝑆𝑖⟩ is zero because ⟨∆𝑣𝑖⟩ = 0, but the average square of the displacement is not zero

⟨𝑆2
1,𝑘+1⟩ = ∆𝑡2

𝑘∑︁
𝑖=1

⟨∆𝑣2𝑖 ⟩(𝑘 − 𝑖+ 1)2,

where we take into account that ⟨∆𝑣𝑖∆𝑣𝑗⟩ = 0 at 𝑖 ̸= 𝑗. The value ⟨∆𝑣2𝑖 ⟩ can be considered independent on 𝑖.
Then

⟨𝑆2
1,𝑘+1⟩ = ∆𝑡2⟨∆𝑣2𝑖 ⟩

𝑘∑︁
𝑖=1

𝑖2.

The sum here is 𝑘(𝑘 + 1)(2𝑘 + 1)/6 ≃ 𝑘3/3 for 𝑘 ≫ 1 and 𝑘 = 𝑇/∆𝑡, where 𝑇 is the observation time of the
system. Finally, for the total displacement

⟨𝑟2⟩ = ⟨𝑆2
𝑥⟩+ ⟨𝑆2

𝑦⟩+ ⟨𝑆2
𝑧 ⟩,

we obtain √︀
⟨𝑟2⟩ = 𝐹

𝑀

√︂
∆𝑡

3
𝑇

3
2 . (35)

The amount of momentum transferred is random. This means that the velocities are the sum of many “jumps”
in momentum space. We can state that the action of a chaotic force on a system leads to random walks in
momentum space. Hence

⟨𝑣2𝑘,𝑘+1⟩ = 𝑘⟨∆𝑣2𝑖 ⟩,

where ⟨𝑣2𝑘,𝑘+1⟩ is the average square of the speed that the system has in the interval from 𝑘 to 𝑘 + 1. If we
rewrite the latter expression as a function of time and take into account (34), we get

√︀
⟨𝑣2⟩ = 𝐹

𝑀

√︂
∆𝑡

3
𝑇

1
2 . (36)

This shows that the velocity increases infinitely with time. Using (36) we can also define the standard deviation
of the random variable of the linear momentum of the system√︀

⟨𝑝2⟩ = 𝑀
√︀
⟨𝑣2⟩. (37)

A non-diffusive random walk law |𝑟(𝑇 )| ∝ 𝑇 3/2 follows from equation (35) (in the case of diffusion it
would be |𝑟(𝑇 )| ∝ 𝑇 1/2). This deviation arises because the system “remembers” the prehistory of its motion,
accumulating momentum while violating the condition of independence of successive steps. The displacement
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of the system’s center of mass due to a small chaotic change in its velocity for each counting step is called a
random memory walk [31].

Now that we know what the force of the “kick” depends on, let’s find out what affects its frequency. In
PHANTOM, at the end of each numerical step, the ∆𝑡 of the next step is determined as the minimum of all kinds
of time step constraints on all SPH-particles. Usually, the strictest constraint during the calculation follows
from the Courant–Friedrichs–Lewy condition [16]. Using this condition, we obtain

∆𝑡 = 𝐶cour min
p

ℎp

max
𝑛

𝑣sig,pn
, (38)

where 𝐶cour = 0.3 by default [32],

ℎp = ℎfact

(︂
𝑚p

𝜌p

)︂ 1
3

(39)

is the smoothing length, ℎfact is a numerical parameter close to unity and

𝑣sig,p𝑛 = 𝛼AV
p 𝑐s,p + 𝛽AV |𝑣pn · 𝑟̂pn| (40)

is the maximum signal speed, which is a multiplier in the artificial viscosity tensor [16]. Here 𝛼AV
p , 𝛽AV are

dimensionless constants of order of unity, the exact values of which are not important now,

𝑣pn ≡ 𝑣p − 𝑣n, 𝑟̂pn ≡ (𝑟p − 𝑟n) / |𝑟p − 𝑟n| ,

and the speed of sound is

𝑐s,p =

√︃
𝛾𝑃p

𝜌p
, (41)

where 𝑃p is pressure, and 𝜌p is a density. The artificial viscosity for the SPH method contains both a linear
velocity term at the multiplier 𝛼AV

p , analogous to shear and bulk viscosity, and a second-order Von Neumann-
Richtmyer-like term [33] that prevents particle interpenetration. Let us restrict ourselves to the case of the
polytropic equation of state of matter

𝑃p = 𝐾𝜌𝛾p. (42)

Combining (39)–(42) and substituting into (38) for the case of hydrostatic equilibrium (when 𝑣pn = 0), we
obtain

∆𝑡 ∝ 𝑚
1
3
p 𝜌

(1−𝛾)
2 − 1

3 . (43)

In the next section we will explicitly demonstrate the displacement of the system’s center of mass in the
PHANTOM calculations.

6. Non-conservation of the total linear momentum of the system in PHANTOM. To illustrate the
non-conservation of the total momentum, we will consider the model of a single NS. To do this, in PHANTOM
we will “assemble” a ball out of 𝑁 SPH-particles with radius 𝑅 = 10 km and mass 𝑀 = 1𝑀⊙, with a density
profile satisfying the equation of state polytropes with 𝑛 = 1 (adiabatic index of the matter 𝛾 = 2). This simple
polytrope well describes the equation of state of NS in the intermediate mass range 1𝑀⊙ ⩽ 𝑀 ⩽ 2𝑀⊙ [34]. All
SPH-particle masses assumed to be the same and equal to

𝑚p ≡𝑀/𝑁. (44)

The particles are initially arranged uniformly and isotropically in space and then distributed in accordance with
the requirements of the given density profile and radius with preservation of the relative arrangement along
the mass coordinate (stretch mapping, [16]). The initial velocities of all particles are zero. The constructed
star is already close to equilibrium. The diameter of a star in equilibrium is of the order of the critical Jeans
wavelength. This means that it is impossible to place disturbances inside the star that would increase and it is
always stable with respect to fragmentation into many small parts [36]. The goal is to bring the NS to a state
of complete equilibrium. This process is called relaxation in PHANTOM.

The relaxation simulation starts from the aforesaid initial model and the complete system of dynamic
equations of motion of self-gravitating particles is solved in the SPH approximation. This system is described
by equations (23) and (24) and their SPH approximation is given by equations (34) and (35) in [16].
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In the following calculations the cubic spline kernel 𝑀4 is used [16, eq. (17); 35] and the compact support
of the function implies that 𝑅kern = 2. The choice of ℎfact = 1.2 for the 𝑀4 cubic spline kernel is based on the
fact that it is slightly less than the maximum neighbour number that can be used while remaining stable to
the pairing instability [15, 16, 37]. The mean neighbour number can be estimated as 𝑁̄neigh = 4

3𝜋 (𝑅kernℎfact)
3,

which for 𝑀4 kernel corresponds to 57.9 neighbours for particles with a uniform density distribution. The actual
number of neighbours of SPH-particle occurring in calculations for the case of NS with 𝑁 = 5000 is ∼ 65+15

−13

and with 𝑁 = 150000 is ∼ 63+10
−11. As one can see, these values are in good agreement with the estimate 𝑁̄neigh.

The average smoothing length is ℎp ≈ 0.97 km for 𝑁 = 5000. It follows from equations (39) and (44) that
ℎp decreases with increasing 𝑁 as 𝑁−1/3. Therefore, for the full range of 𝑁 considered below, the values of ℎp

are significantly smaller than 𝑅, which results in the existence of pairs of well-separated cells.
The calculation results for the cases with different numbers of SPH-particles are presented below.

The distance unit is 𝑢dist = 1 km, the mass unit is 𝑢mass = 1𝑀⊙, the time unit in accordance with (1) is
𝑢time = 2.75 · 10−6 s, and the tree opening parameter 𝜃 from (4) is 0.5. We take the duration of the simulation
from the following considerations: a close binary system of identical NSs with the above parameters makes
dozens of orbital revolutions in a time ∼ 4 · 104 [𝑢time].

The flattening (𝑎− 𝑏)/𝑎 is demonstrated at Fig. 3, where 𝑎 and 𝑏 are the semi-axes of the star’s ellipsoid.
Here, the NS quickly reaches an equilibrium state at 𝑡 ≈ 5000 [𝑢time] and until the end of the simulation the
star moves as a whole slightly pulsating.

The behavior of the random variables over time is presented at Fig. 4 and 5: 𝑟com/𝑅 is the deviation of the
center of mass of the NS from the initial position, normalized to its radius, and 𝑝 is the linear momentum of the
NS for six different numbers of SPH-particles at 𝜃 = 0.5. The standard deviation of the random variable 𝑟com
is defined in (35), and the standard deviation of the momentum is taken from (37). It can be seen (Fig. 4) that
the NS is shifted from its initial position by a distance comparable to its size! Neither the linear momentum
of the system (Fig. 5) nor the angular momentum are conserved (Fig. 6). The latter means that the matter
inside the NS has a non-zero angular velocity. However, the study of this observation is beyond the scope of
the present article.

If we perform the same calculation with the parameter 𝜃 = 0 for the tree opening criterion (4), when all
gravitational forces in the system are calculated by direct summation, then there will be no such a displace-
ment of the center of mass of the system (see Fig. 7). This proves that the main influence on the effect of
non-conservativity is exerted by the gravitational forces of long-range interaction and the displacement is not

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

|𝑎
−

𝑏|
𝑎

0 5000 10000 15000 20000 25000 30000

time, [unit]

𝑁 = 5000

Figure 3. Flattening of the neutron star ellipsoid calculated at SPH-particle number 𝑁 = 5000 and 𝜃 = 0.5.
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Figure 4. The displacement of the center of mass of a single neutron star normalized by its radius calculated for six
different numbers of SPH-particles at 𝜃 = 0.5.
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Figure 5. The linear momentum of a single neutron star calculated for six different numbers of
SPH-particles at 𝜃 = 0.5.

connected with SPH properties of the system.
Let us estimate which parameters affect the magnitude of the total linear momentum of the star using the

results of the section 4. For estimation, we assume that all leaf cells have the same mass

𝑀𝑙 = 10𝑚p. (45)

Although in practice there are cells in which the number of SPH-particles is less than 10, the vast majority
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Figure 6. The angular momentum of a single neutron star calculated for six different numbers of
SPH-particles at 𝜃 = 0.5.
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Figure 7. The displacement of the center of mass of a single neutron star normalized by its radius and calculated for
three different values of 𝜃 with the number of particles 𝑁 = 100000. CPU time consumptions on AMD Ryzen 7 2700X

Eight-Core Processor machine are presented for all three considered values of 𝜃.

contains just the maximum allowable number of particles when constructing a kd-tree. Then, let’s introduce
the numbers of leaf cells in super-cells 𝛼 and 𝛽 are 𝑁𝛼 = 𝑀𝛼/𝑀𝑙 and 𝑁𝛽 = 𝑀𝛽/𝑀𝑙 respectively. Finally,
remembering that 𝑙𝛼1

, 𝑙𝛽1
are the distances to the most distant leaf cells, we will assume that they are also the

characteristic sizes 𝑠𝛼1
and 𝑠𝛽1

of their parent cells, respectively. If 𝛼 is a leaf cell in some term, then we will
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assume that its size is zero. Then (33) will have the following form

𝐹 ≈ 4𝑀2
𝑙

∑︁
𝛼,𝛽

𝑁𝛼𝑁𝛽

𝑟5𝛼𝛽

[︃
𝑠3𝛼

(𝑁𝛼 − 2)

(𝑁𝛼 − 1)2
+ 𝑠3𝛽

(𝑁𝛽 − 2)

(𝑁𝛽 − 1)2

]︃
. (46)

When the total number of particles 𝑁 changes in any super-cell, the number of its leaf cells will change as a
piecewise-constant function taking values close to the function proportional to 𝑁/10. This means that 𝑁𝛼 and
𝑁𝛽 are close to the linear function of 𝑁 . Further, since every pair of cells in the sum (46) by construction does
not satisfy the tree opening criterion (4), then (𝑠𝛼/𝑟𝛼𝛽)

3 and (𝑠𝛽/𝑟𝛼𝛽)
3 are majorized by the parameter 𝜃3/2.

It follows from (44) and (45) that 𝑀𝑙 ∝ 𝑀/𝑁 , and any distance between cells 𝑟𝛼𝛽 ∝ 𝑅. The number of pairs
of asymmetric cells in the sum (46) varies proportionally to the function 𝑁𝜎+1, where 0 ⩽ 𝜎 ⩽ 1, and depends
on the value of the parameter 𝜃, which determines the number of interaction participants. Summarizing the
foregoing, we get that

𝐹 ∝ (𝑀/𝑅)2𝑁𝜎. (47)

Assuming that the average density of NS is

𝜌 = 𝑀

(︂
4

3
𝜋𝑅3

)︂−1

, (48)

it is possible to obtain from (44) and (43) that

∆𝑡 ∝𝑀
(1−𝛾)

2 𝑅1− 3(1−𝛾)
2 𝑁− 1

3 . (49)

Finally, substituting (47) and (49) into (35), we get√︀
⟨𝑟2⟩ ∝𝑀

(5−𝛾)
4 𝑅

3(𝛾−3)
4 𝑁𝜎− 1

6𝑇
3
2 . (50)

The obtained formula (50) is also true for any ball of SPH-particles. Let us write out three special cases: for NS
intermediate mass (𝛾 = 2) √︀

⟨𝑟2⟩ ∝
(︂
𝑀

𝑅

)︂ 3
4

𝑁𝜎− 1
6𝑇

3
2 , (51)

for a white dwarf (WD) (𝛾 = 5/3) √︀
⟨𝑟2⟩ ∝ 𝑀

5
6

𝑅
𝑁𝜎− 1

6𝑇
3
2 , (52)

and for relativistic matter (Chandrasekhar WD or a large hot star) (𝛾 = 4/3)√︀
⟨𝑟2⟩ ∝𝑀

11
12𝑅− 5

4𝑁𝜎− 1
6𝑇

3
2 . (53)

It is clear from (52) that if our ball from the example above with 𝜃 = 0.5 is “stretched” by a factor of 600 to the
size of the WD, leaving the mass of 1𝑀⊙, the displacement error will also decrease by a factor of ∼ 600 and
will be only ∼0.0003% of the radius of the WD ∼ 6000 km at ∼ 4 · 104 [𝑢time]. This means that the PHANTOM
code can be used without corrections for objects like WD, not to mention large stars (53) or planetary nebulae.

However, from (51) it follows that for 𝜎 > 1/6, no changes in 𝑁 can eliminate the error in the displacement
of the center of mass for NS. To estimate 𝜎 we construct the fit 𝑁𝜎 of the function 𝐹 (𝑁) = max

𝑖
𝑓𝑖(𝑇,𝑁). For

random variables of modulus of the uncompensated force 𝑓𝑖(𝑇,𝑁) with 𝜃 = 0.5 (see Fig. 8) the value of 𝜎 is
about 0.55. The same fitting for different values of tree opening parameter 𝜃 shows that 𝜎 is a monotonically
increasing function of 𝜃. At 𝜃 = 0.2 this function takes the value 𝜎 ≈ 0.15, which is slightly less than 1/6 ≈ 0.16.

Thus, for values of the tree opening parameter 𝜃 ≳ 0.2, the standard deviation
√︀
⟨𝑟2⟩ will grow with

increasing 𝑁 , while for small 𝜃 ≲ 0.2 it will decrease. One can always find such a pair 𝑁 and 0 < 𝜃 < 0.2, where
the error for NS becomes negligible.

However, we can see from the formula (51) that for any small 𝜃 the lower bound on the standard deviation√︀
⟨𝑟2⟩ is a very slow function 𝑁−1/6. Thus, to reduce the error by one order the number of SPH-particles should

be increased by 6 orders of magnitude. In its turn, for any fixed 𝑁 , the decrease of 𝜃 leads to an increase of the
radius 𝑟 ∼ 1/𝜃 of the short-range interaction region and to the dominance of 𝑎short defined in (3). This leads to
a significant rise in computation time (see Fig. 7). This means that in order to use PHANTOM in calculations for
objects like NS, it is necessary to correct the system for non-conservativity problems we demonstrated above.
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Figure 8. The modulus of the uncompensated force acting on the center of mass of a single neutron star
calculated for three different numbers of SPH-particles at 𝜃 = 0.5.

7. Conclusion. In this article, we discussed a way to implement the FMM in the PHANTOM code for
calculation of the self-gravity forces. The code is widely used in various fields of astrophysics [17–22].

The standard implementation of the FMM (see, e.g., [8, 9]) implies the second order Taylor expansion of
the gravitational interaction force between two cells of the kd-tree by small displacements of the source-particle
and the sink-particle expressed through the vector 𝑟 connecting the centers of these cells. Thus, the maximum
degree of 1/𝑟 will be 4. In contrast, in PHANTOM, such expansion is carried out step-by-step. The initial step is
to perform the second order Taylor expansion for the small displacements of the source-particle. Afterwards,
the second order Taylor expansion is carried out for the small displacements of the sink-particle. The maximum
degree of 1/𝑟 in this case will be 6. In this paper, it was shown that even with this method of recording the
force for any pair of kd-tree cells, in the case of mutual interaction the Newton’s third law is satisfied. However,
linear momentum is not conserved for the entire system. This fact is explained by that only pairs of kd-tree cells
“leaf cell ← super-cell” are considered in PHANTOM. Reverse pairs are not considered. In contrast, the method
outlined in [8, 9] involves recursive tree-walk, whereby all possible symmetric pairs of well-separated cells of all
types are considered, in accordance with the symmetric opening criterion.

It was shown in the paper that an additional non-physical force, resulting from the non-conservation of
linear momentum, causes the system as a whole to migrate. The law of this migration is described by random
memory walk. Using the example of a system describing a NS, it was demonstrated how the magnitude of the
mean-square displacement of the center of mass of the star from its initial position depends on the mass of the
star, its radius, and the number of SPH-particles in it. For nebulae, hot stars and even WD such a shift can be
considered to be negligibly small. However, in the case of using PHANTOM for hydrodynamic modelling of objects
with NS characteristics, the shift may be actually significant. Thus, for a pair of NS, the displacement of the
center of mass is comparable to the radius of NS at the time of a few tens Keplerian revolutions of the pair.

It was explained that increasing the number of SPH-particles does not lead to a decrease of this displace-
ment at values of the tree opening parameter 𝜃 ≳ 0.2. The displacement error reduces as the tree opening
parameter 𝜃 ≲ 0.2 become smaller, but this leads to a significant growth in computation time. This means that
the PHANTOM requires a correction using the method [8, 9]. However, it is well known that the FMM method,
even in its realisation [8, 9], is inherent in the non-conservation of the angular momentum of the system [38].
This aspect requires further investigation. For conservativity in both linear and angular momentum the current
implementation of PHANTOM requires corrections.
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