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1. Introduction. In this paper the problem of image denoising and deblurring is revisited. The actual and
potential applications of image denoising and deblurring to many areas of science and technology, especially
to geophysics and medical diagnostics, are numerous. As an example, we refer to a relatively new medical
diagnostic modality, cardiac CT [1]. As early as 2014, the invention of the dual-source multi-slice computed
tomography gave rise to an alternative to the conventional invasive cardiac angiography and, in essence, led to
emerging into medical diagnostics a new imaging modality, the Electron Beam Computer Tomograph (EBCT)
(see, e.g., [2]) that has no moving parts. This allowed for increasing the temporal resolution and, as a result,
to overcome the low heartbeat requirement and reduce the contrast media administration. However, despite
the significant progress in cardiac CT, the conventional heart angiography is still advantageous, especially for
planning surgeries. Indeed, the temporal resolution of the latter is about 10–15 ms, whereas it is 65–75 ms for
a cardiac CT. The spatial resolution of the conventional angiography is 0.1–0.2 mm, while it is about 0.3–0.5
mm in a cardiac CT. As a consequence, the reconstructed images are usually more noisy and blurred. Thus,
the problem of image denoising and deblurring remains one of the top priorities for the cardiac CT imaging
modalities. The main challenge is to enhance significantly their temporal and spatial resolutions.

In this paper a data-driven model of an observed image 𝑣 is utilized

𝑣 = 𝐴𝑣 +𝒩 ,

where 𝐴 : 𝐿2(Ω) → 𝐿2(Ω) is a linear bounded operator, 𝑣 is the ground truth image, and 𝒩 is a random noise.
Here, Ω ⊂ R2 is supposed to be a bounded connected domain with the Lipschitz boundary 𝜕Ω. The problem
is as follows: given the triple (𝐴, 𝑣,𝒩 ), find some approximations of 𝑣. Clearly, if 𝐴 = 𝐼, then the problem
represents image denoising. If 𝐴 is a linear integral operator with a 𝐿2-kernel, then image deblurring takes
place. If 𝐴 (or 𝐴*𝐴) is not invertible or an inverse of 𝐴 is not continuous, then the problem is ill-posed in the
sense of Hadamard. Therefore, it is natural to use Tikhonov regularization, i.e., to minimize a functional

𝑇𝛼(𝑣) = ‖𝐴𝑣 − 𝑣‖2𝐿2(Ω) + 𝛼𝑆(𝑣), (1)

where 𝛼 = const > 0 is the regularization parameter, and 𝑆 is a stabilizer. However, it is well known that
if 𝑆(𝑣) = ‖𝑣‖2𝐿2 , then a reconstructed image is not regular, and if 𝑆(𝑣) = ‖𝑣‖2𝐻1 , then too much regularity is
imposed. In both cases, obtaining high-resolution images is highly problematic.

To overcome these drawbacks, the idea of utilizing the one dimensional Arzela variation as 𝑆 was pioneered
in [3–5]. Later, the total Vitalli and Hardi variations were exploited in two dimensions in [6]. In [7], the Phillips’
(residual) method [8] was applied to obtain sought approximations. As follows from [9], this method is equivalent
to the unconstrained problem of minimizing (1), where the stabilizer was chosen to be the total variation defined
by Giusti [10]. Introducing the space of functions of bounded variation (BV-space) is associated with the fact
that this functional may have no minimizers in the non-reflexive Banach space 𝑊 1,1(Ω). Moreover, the BV-
space is a natural framework for image processing since it allows for edges, i.e., the curves in an image along
which ∇𝑣 is large. The following question arises about constructing a minimizing sequence for (1). Since 𝑇𝛼(𝑣)

is not differentiable, it may seem that a subgradient method may be used for this purpose. However, it is not
a descent method, which means that the values of 𝑇𝛼 may increase. Also, the convergence of any subgradient
method is much more slower than a Newton-like method. Therefore, even leaving aside the difficulties in the
numerical implementation of a subgradient method, it is used in computations only in combination with the
primal or dual decomposition techniques (see, e.g., [11]). Moreover, these combinations suffer from the so-called
staircase phenomenon, which means that they tend to create constant patches in a reconstructed image. As
it was observed and proved in [12], the structure of these approximations is such that in two dimensions their
gradients are parallel to one of the coordinate axes. The similar results were obtained in [13] for a discrete
analogue of the Tikhonov functional. In addition, a loss of contrast in the restored images was also observed.

This is what motivated the interest in the PDF-based methods which are free from the need to compute the
subgradient of 𝑇𝛼(𝑣). All such methods utilize an Euler–Lagrange equation for 𝑇𝛼. For 𝑆(𝑣) =

∫︀
Ω
|∇𝑣|𝑑𝑥, 𝑣 ∈

𝐶1(Ω), |∇𝑣| > 0 the Euler–Lagrange equation is formally derived as

−2𝐴*(𝐴𝑢− 𝑣) + 𝛼∇ ·
(︂

∇𝑢

|∇𝑢|

)︂
= 0. (2)

A fairly large number of models based on the Euler–Lagrange equation are available in the mathematics lit-
erature. They are referred to as the total variation flow models. In [14] it was proposed a general approach
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to constructing such models. As an example, we indicate a total variation flow model associated with (2) and
represented by the evolution problem

𝑢𝑡 = 𝛼∇ ·
(︂

∇𝑢

|∇𝑢|

)︂
− 2𝐴*(𝐴𝑢− 𝑣) in Ω× (0,∞), (3)

∇𝑢 · 𝜈 = 0 on 𝜕Ω× (0,∞), (4)

𝑢(·, 0) = 𝑣 in Ω× {0}, (5)

where 𝜈 is the outward normal to 𝜕Ω. It is well known (see, e.g., [14]) that under certain conditions, the
equilibrium solutions of (3)–(5) approximate the minimizers of (1), so that the staircase effect is suppressed,
sometimes significantly, and the loss of contrast is compensated but often incompletely and not in all cases.

To expand the scope of effective applications of PDF-based models to image denoising and deblurring, we
propose to utilize properties of a geometric equation 𝑢𝑡 + 𝐹 (∇𝑢,∇2𝑢) = 0, i.e., an evolution equation for the
level surface of 𝑢 [15, 16]. Within the framework of the example indicated above, a geometric equation is given
by

𝑢𝑡 = |∇𝑢|
[︂
𝛼∇ ·

(︂
∇𝑢

|∇𝑢|

)︂
− 2𝐴*(𝐴𝑢− 𝑣)

]︂
. (6)

Here, 𝑢𝑡/|∇𝑢| is the normal speed of the level surface of 𝑢, and 𝐻 = ∇ · (∇𝑢/|∇𝑢|) is the mean curvature of
this surface. This equation describes motion of the level surface of 𝑢 by its mean curvature at every point where
|∇𝑢| ̸= 0. The term |∇𝑢|𝐻 diffuses in the direction orthogonal to ∇𝑢 while it does not diffuse in the direction
of ∇𝑢. This allows for smoothing 𝑢 outside of an edge with almost no smoothing on the edge. However, the
differential operator in the right-hand side of (6) is, in general, singular and elliptic degenerate at all points
where |∇𝑢| = 0. Although the viscosity theory may be used by analogy with [15–17] for establishing existence
of the weak solutions to (6) subject to (4) and (5), it cannot be used in computations due to the absence of
uniqueness and stability.

Based on a geometric equation, we propose an approximate weighted mean curvature flow model for image
denoising and debblurring. Specifically, the term |∇𝑢| is regularized in the sense of Evans-Spruck [16], e.i., it is
replaced to

√︀
𝜀2 + |∇𝑢|2, and a viscosity term 𝜎∆𝑢, 𝜎 = const > 0 [18] is added to the right-hand side of (6).

To provide the adaptive diffusivity, we also introduce a weighted mean curvature 𝐻𝛼 = ∇ · (𝛼(𝑥)∇𝑢/|∇𝑢|), in
which a weight function 𝛼 can be viewed as a variable regularization parameter. From a computational point of
view, the novelty of the proposed approach lies primarily in the fact that the originally singular and parabolic
degenerate geometric equation is approximated by a family of the parametric regular problems that have the
classical solutions. In this regard, the central question is: Does a sequence of the parametric solutions converge
to the ground truth image as 𝑡 → ∞ and 𝜀, 𝜎 → 0? However, due to the complexity and tedium of analysis of
the convergence of approximate solutions, in this paper we aim to studying their numerical convergence. The
latter is understood in the sense that if the grid becomes finer and finer then the numerical solution is closer and
closer to a certain grid function that is in proximity of the ground truth image. So, in this paper the numerical
study is carried out as a useful indication of what one should focus on to prove.

The paper is organized as follows. In the section 2 we formulate the approximate weighted mean curvature
flow model for image denoising and deblurring. Its discrete analogue is described in the section 3. Some results
of the numerical experiments are presented in the section 4, and the investigation is concluded in the section 5.

2. An approximate weighted mean curvature flow model. Let Ω ⊂ R2 be a bounded connected
domain with the Lipschitz boundary 𝜕Ω, 𝑣 ∈ 𝐿1(Ω), and 𝛼 ∈ 𝐶1(Ω), 𝛼 > 0. By analogy with [10] we define the
weighted total variation of 𝑣 as

𝑇𝑉𝛼(𝑣) =

∫︁
Ω

𝛼|𝐷𝑣| = sup

⎧⎨⎩
∫︁
Ω

𝑣∇ · (𝛼𝜙)𝑑𝑥 : 𝜙 ∈ 𝐶1
𝑐 (Ω;R2), ‖|𝜙|𝑙2‖𝐿∞ ⩽ 1

⎫⎬⎭ ,

where 𝜙 = (𝜙1, 𝜙2) is a vector-valued function, and 𝐷𝑣 is the distributional derivative. To ensure that 𝑇𝑉𝛼(𝑣) <

∞, assume that |𝐷𝑣| is a finite Radon measure in Ω. The set 𝐵𝑉𝛼(Ω) = {𝑣 ∈ 𝐿1(Ω) : 𝑇𝑉𝛼(𝑣) < ∞} endowed
with the norm

‖𝑣‖𝐵𝑉𝛼(Ω) = ‖𝑣‖𝐿1(Ω) + 𝑇𝑉𝛼(𝑣),
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is said to be the 𝛼-BV space of functions. Clearly, 𝐵𝑉𝛼(Ω) is a Banach space, and the following embedding
takes place in two dimensions

𝑊 1,1(Ω) ⊂ 𝐵𝑉𝛼(Ω) ⊂ 𝐿2(Ω).

Recall that if 𝑣 ∈ 𝐶1(Ω) (or 𝑣 ∈ 𝑊 1,1(Ω)), then the definition of 𝑇𝑉𝛼 can be simplified to

𝑇𝑉𝛼(𝑣) =

∫︁
Ω

𝛼(𝑥)|∇𝑣|𝑑𝑥,

and the weight function 𝛼 can be viewed as the variable regularization parameter. Following the arguments
from [10], one may establish that the functional 𝑇𝑉𝛼 is lower semi-continuous in Ω.

By analogy with [19], we represent the Tikhonov functional in the form

𝑇𝛼𝛽(𝑣) = ‖𝐴𝑣 − 𝑣‖2𝐿2(Ω) + 𝛽‖𝑣‖2𝐿2(Ω) + 𝑇𝑉𝛼(𝑣), 𝛽 = const ⩾ 0. (7)

Recall that the second term in 𝑇𝛼𝛽 is introduced to ensure its coercivity for 𝛽 > 0. Taking into account this
property and using the standard technique from the theory of linear ill-posed problems (see, e.g., [9]), by analogy
with [19] one may establish the existence of a unique solution to the variational problem

arg inf
{︀
𝑇𝛼𝛽(𝑣) : 𝑣 ∈ ℳ ⊂ 𝐵𝑉𝛼(Ω) ∩ 𝐿2(Ω), 𝛽 > 0

}︀
, (8)

where ℳ is a bounded, closed and convex set in 𝐿2(Ω). Denote its solution as 𝑣𝛼𝛽 . It is well known that if
𝛽 = 𝛼 = 𝛾 = const > 0 and 𝛾 = 𝛾(𝛿) : 𝛾(𝛿) → 0 and 𝛿2/𝛾(𝛿) → 0 as 𝛿 → 0, then according to [9] 𝑣𝛾(𝛿) → 𝑣

as 𝛿 → 0 in 𝐿2(Ω). Obviously, any function 𝛾(𝛿) = 𝐶𝛿𝑞, 1 < 𝑞 < 2, where 𝐶 > 0 is a real number, satisfies
these asymptotic conditions. However, in practice the noise level 𝛿 is always fixed, so that 𝛾 is fixed as well.
Under this condition, one can only hope that some approximations 𝑣𝛾 would be close enough to the ground
truth image 𝑣. In image processing the parameters 𝐶 and 𝑞 are often selected by trials. This technique may
be successful, especially for structurally simple images. If an image contains a variety of edges, i.e., curves on
which the intensity has removable discontinuities, then introducing a weight function 𝛼 becomes necessary in
order to provide the restoration of the high resolution images. However, the problem of constructing an effective
weight function remains open.

Now, we assume that the weight function 𝛼 is positive, sufficiently smooth (e.g., 𝛼 ∈ 𝐶1,1(Ω) (see [20] for
detail)) and bounded away from zero and infinity and introduce the differential operator

𝐻𝛼(∇𝑢) = ∇ ·
(︂
𝛼

∇𝑢

|∇𝑢|

)︂
(9)

at points in Ω where |∇𝑢| > 0. Also, we assume that it is positive on 𝜕Ω. By analogy with [17] we introduce
a nonlinear initial boundary value problem for a geometric equation, which is associated with the variational
problem (8)

𝑢𝑡 = |∇𝑢|
[︂
∇ ·

(︂
𝛼(𝑥)

∇𝑢

|∇𝑢|

)︂
−𝐴*(𝐴𝑢− 𝑣)

]︂
in Ω× (0,∞), (10)

∇𝑢 · 𝜈 = 0 on 𝜕Ω× (0,∞), (11)

𝑢(·, 0) = 𝑣 in Ω× {0}. (12)

Clearly, the operator (9) represents the weighted mean curvature defined at every point of the level surface of
𝑢 where |∇𝑢| > 0. It should be mentioned that the parameter 𝛽 is set to zero in the Euler–Lagrange equation
for (7) since there is no longer a need to minimize the latter. The homogeneous Neumann boundary condition is
imposed to prevent the flow flux across 𝜕Ω, which is usually done in image processing. Thus, the equation (10)
is as a geometric equation which governs moving the level surface of 𝑢 with the normal speed 𝑢𝑡/|∇𝑢| by its
weighted mean curvature.

In general, the nonlinear operator (9) is singular and elliptic degenerate. This circumstance significantly
complicates the analysis of the conditions for the unique solvability of (10)–(12) and its stability. Although exis-
tence of a weak viscosity solution to (10)–(12) may be established by analogy with [17], it was shown there that
even for 𝛼 = 1 and the Dirichlet boundary condition there exists a collection of equilibria for the flow (10)–(12).
Moreover, to the best of the author’s knowledge, there are no results published in the mathematics literature
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on the stability of this or similar problems. Thus, there is no reason to believe that (10)–(12) is well-posed in
the sense of Hadamard. This means that such a problem cannot be used, at least directly, as a computational
model. To make (10)–(12) suitable for the computational implementation, we make approximations following
Evans-Spruck [16] and Temam-Lichnewsky [18]. Specifically, the term |∇𝑢| is approximated by the 𝜀-parametric
functions 𝑔𝜀(𝑝) = (𝜀2 + 𝑝2)1/2, 𝜀 > 0, 𝑝 = |∇𝑢|, and the elliptic degeneracy of 𝐻𝑤(∇𝑢) is treated by adding the
viscosity term 𝜎∆𝑢, 0 < 𝜎 < 1. As a result, we obtain the approximate weighted mean curvature flow model

𝑢
(𝜎𝜀)
𝑡 = 𝑔𝜀(|∇𝑢(𝜎𝜀)|)∇ ·

[︁
𝑎(𝑥, |∇𝑢(𝜎𝜀)|)∇𝑢(𝜎𝜀) −𝐴*(𝐴𝑢− 𝑣𝑚)

]︁
in 𝑄𝑇 , (13)

∇𝑢(𝜎𝜀) · 𝜈 = 0 on 𝜕Ω× (0, 𝑇 ], (14)

𝑢(𝜎𝜀)(𝑥, 0) = 𝑣𝑚(𝑥) in Ω× {0}, (15)

where

𝑎(𝑥, 𝑝) =
𝛼(𝑥)

𝑔𝜀(𝑝)
+ 𝜎, 𝑝 = |∇𝑢(𝜎𝜀)|.

Here, 𝑄𝑇 = Ω× (0, 𝑇 ), 𝑇 > 0, and 𝑣𝑚 is a mollification of 𝑣, i.e., 𝑣𝑚 = 𝑚 * 𝑢̃, 𝑚 is a mollifier. It is well known
(see, e.g., [21]) that for sufficiently smooth Ω and 𝛼 one may ensure existence of a unique classical solution
𝑢(𝜎𝜀) ∈ 𝐶2+𝜈,1+𝜈/2(𝑄𝑇 ). Moreover, ‖𝑢‖𝐶2+𝜈,1+𝜈/2(𝑄𝑇 ) ⩽ 𝐶‖𝑢̃‖𝐶2,𝜈(Ω), where 𝐶 = const > 0 that does not
depend on 𝑡. Under these conditions, the approximate problem (13)–(15) is well-posed. This opens the door for
applying the efficient finite-difference methods to the numerical solution of (13)–(15). The central question is
about the proximity of approximations 𝑢(𝜎𝜀) to the ground truth image 𝑣 at sufficiently large 𝑇 and sufficiently
small 𝜎, 𝜀.

3. Discretization. We first apply the Rothe method [22] to (13)–(15). This choice is motivated by the
fact of using this method by Ladyzhenskaya [23] and Ventzel [24] for establishing the existence and uniqueness
results for quasi-linear parabolic equations. According to the Rothe’s method, we intersect the cylinder 𝑄𝑇 by
hyperplanes 𝑡𝑘 = 𝑘𝜏, 𝜏 = 𝑇/𝐾, (𝑘 = 0, 1, . . . ,𝐾), and let Ω𝑘 be its 𝑘th cross section. For each 𝑡 = 𝑡𝑘 we
approximate the temporal derivative 𝑢𝑡 by the backward difference formula

𝑢
(𝜎𝜀)
𝑡 (𝑥, 𝑡𝑘) ≈

𝑤(𝑘)(𝑥)− 𝑤(𝑘−1)(𝑥)

𝜏
,

where 𝑤(𝑘)(𝑥) = 𝑤(𝑥, 𝑡𝑘) satisfies the linear elliptic boundary value problem

𝑤(𝑘)(𝑥)− 𝑤(𝑘−1)(𝑥)

𝜏
= 𝑔𝜀

(︀
|∇𝑤(𝑘−1)|

)︀ [︁
∇ ·

(︁
𝑎(𝑥, |∇𝑤(𝑘−1)|)∇𝑤(𝑘)

)︁
−𝐴* (︀𝐴𝑤𝑘−1 − 𝑣𝑚

)︀]︁
in Ω𝑘, (16)

∇𝑤(𝑘) · 𝜈 = 0 on 𝜕Ω𝑘, (17)

where 𝑤0 = 𝑣𝑚 in Ω0. Solving this problem for any fixed integer 𝐾 > 1, we obtain the finite sequence
{︀
𝑤(𝑘)

}︀𝐾

𝑘=1
of solutions to (16)–(17). Then the Rothe’s function 𝑤𝜏 (𝑥, 𝑡) is given as the linear interpolant in 𝑡

𝑤𝜏 (𝑥, 𝑡) = 𝑤(𝑘−1)(𝑥) +
𝑡− 𝑡𝑘−1

𝜏

(︁
𝑤(𝑘)(𝑥)− 𝑤(𝑘−1)(𝑥)

)︁
for 𝑡𝑘−1 ⩽ 𝑡 ⩽ 𝑡𝑘. (18)

If Ω is a bounded domain with the 𝐶2,𝜉-boundary, and 𝑤 ∈ 𝐶4,𝜉(Ω), 0 < 𝜉 < 1, then for an arbitrary 𝑇 > 0

and fixed parameters 0 < 𝜀 < 1, 0 < 𝜎 < 1 the sequence of Rothe’s functions {𝑤𝜏 (𝑥, 𝑡)} converges uniformly in
the 𝑡-variable to the unique classical solution to (13)–(15) as 𝜏 → 0. The proof is similar to that given in [23]
and [24] with the very minor changes.

We note that along with the Rothe method, some implicit difference schemes may also be used. However,
as observed in numerical experiments, being significantly more complicated to implement, they do not lead to
better approximations compared to those obtained by the Rothe method.

Next, we rewrite (16)–17 as

−
𝑛∑︁

𝑖=1

𝜕

𝜕𝑥𝑖

(︂
𝑎(𝑘−1) 𝜕𝑤

(𝑘)

𝜕𝑥𝑖

)︂
+ 𝑞(𝑘−1)(𝑥)𝑤(𝑘) = 𝐹 (𝑘−1)(𝑥) in Ω𝑘, (19)
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∇𝑤(𝑘) · 𝜈 = 0 on 𝜕Ω𝑘, (20)

where
𝑞(𝑘) =

1

𝜏𝑔
(𝑘)
𝜀

, 𝐹 (𝑘) = 𝑞(𝑘)
[︁
𝑤(𝑘) −𝐴*

(︁
𝐴𝑤(𝑘) − 𝑣𝑚

)︁]︁
.

Under the conditions indicated above, a priori estimate |𝑤𝜏 (𝑥, 𝑡𝑘)| ⩽ 𝐶1, |𝜕𝑥𝑖
𝑤𝜏 (𝑥, 𝑡𝑘)| ⩽ 𝐶2, where 𝐶1, 𝐶2 > 0,

takes place for all 𝑡𝑘 ⩽ 𝑇 . According to the Schauder’s theory [25, 26], it ensures the unique solvability of the
problem (19)–(20).

In the mathematics literature there are available several efficient finite-difference schemes (see, e.g., [27–
30]). Without loss of generality, we consider the second order approximation of (19)–(20) in two dimensions.
Let Ω𝑘 be a unit square

Ω𝑘 =
{︀
(𝑥1, 𝑥2) : 0 ⩽ 𝑥𝑖 ⩽ 1, (𝑖 = 1, 2)

}︀
on which we define the uniform grids

𝑔 =
{︀
(𝑥1, 𝑥2) : 𝑥1𝑙 = 𝑙ℎ, 𝑥2𝑚 = 𝑚ℎ, ℎ𝑁 = 1, (𝑙,𝑚 = 0, 1, . . . , 𝑁)

}︀
,

𝑔 =
{︀
(𝑥1, 𝑥2) : 𝑥1𝑙 = 𝑙ℎ, 𝑥2𝑚 = 𝑚ℎ, ℎ𝑁 = 1, (𝑙,𝑚 = 1, 2, . . . , 𝑁 − 1)

}︀
,

so that Γ = 𝑔∖𝑔 is the discrete boundary. On 𝑔 we introduce the grid function 𝑦 = 𝑦𝑙𝑚 and on 𝑔 we approximate
the differential operator in the left-hand side of the equation (19) as follows

𝐿̂𝑦 = (𝑠1𝑦𝑥̄1
)𝑥1

+ (𝑠2𝑦𝑥̄2
)𝑥2

, (21)

where

(𝑠1𝑦𝑥̄1
)𝑥1

=
1

ℎ2

[︀
(𝑠1)𝑙+1𝑚(𝑦𝑙+1𝑚 − 𝑦𝑙𝑚)− (𝑠1)𝑙𝑚(𝑦𝑙𝑚 − 𝑦𝑙−1𝑚)

]︀
,

(𝑠2𝑦𝑥̄2
)𝑥2

=
1

ℎ2

[︀
(𝑠2)𝑙𝑚+1(𝑦𝑙𝑚+1 − 𝑦𝑙𝑚)− (𝑠2)𝑙𝑚(𝑦𝑙𝑚 − 𝑦𝑙𝑚−1)

]︀
,

(𝑠1)𝑙𝑚 =
1

2

[︀
𝑎(𝑥1𝑙−1, 𝑥2𝑚) + 𝑎(𝑥1𝑙, 𝑥2𝑚)

]︀
,

(𝑠2)𝑙𝑚 =
1

2

[︀
𝑎(𝑥1𝑙, 𝑥2𝑚−1) + 𝑎(𝑥1𝑙, 𝑥2𝑚)

]︀
.

Denoting 𝑞̂ = 𝑞(𝑥1𝑙, 𝑥2𝑚), 𝐹̂ = 𝐹 (𝑥1𝑙, 𝑥2𝑚), we arrive to the following difference equation

−𝐿̂𝑦 + 𝑞̂𝑦 = 𝐹̂ , 𝑥 ∈ 𝑔, (22)

subject to the boundary conditions

−3𝑦1𝑚 + 4𝑦2𝑚 − 𝑦3𝑚 = 0, for 𝑥1 = 0, (𝑚 = 1, 2, . . . , 𝑁 − 1),

𝑦(𝑁−2)𝑚 − 4𝑦(𝑁−1)𝑚 + 3𝑦𝑁𝑚 = 0, for 𝑥1 = 1, (𝑚 = 1, 2, . . . , 𝑁 − 1),

−3𝑦𝑙1 + 4𝑦𝑙2 − 𝑦𝑙3 = 0, for 𝑥2 = 0, (𝑙 = 1, 2, . . . , 𝑁 − 1),

𝑦𝑙(𝑁−2) − 4𝑦𝑙(𝑁−1) + 3𝑦𝑙𝑁 = 0, for 𝑥2 = 1, (𝑙 = 1, 2, . . . , 𝑁 − 1), (23)
−3(𝑦10 − 𝑦01) + 4(𝑦20 + 𝑦02)− (𝑦30 − 𝑦03) = 0, 𝑙 = 0, 𝑚 = 0,

3(𝑦0𝑁 + 𝑦1𝑁 )− 4(𝑦2𝑁 + 𝑦0(𝑁−1)) + (𝑦3𝑁 + 𝑦0𝑁 ) = 0, 𝑙 = 0, 𝑚 = 𝑁,

6𝑦𝑁𝑁 − 4(𝑦(𝑁−1)𝑁 + 𝑦𝑁(𝑁−1)) + (𝑦(𝑁−2)𝑁 + 𝑦𝑁(𝑁−2)) = 0, 𝑙 = 𝑁, 𝑚 = 𝑁,

3(𝑦01 + 𝑦𝑁0)− 4(𝑦02 + 𝑦(𝑁−1)0) + (𝑦(𝑁−2)0 − 𝑦03) = 0, 𝑙 = 𝑁, 𝑚 = 0.

Note that components of the gradient in (20) are approximated by finite differences with 𝑂(ℎ2) including the
end points. Also, in computations it is convenient to transform (22)–(23) to the Dirichlet difference problem
with the homogeneous boundary conditions on an extended grid

𝑔𝑒𝑥 =
{︀
(𝑥1, 𝑥2) : 𝑥1𝑙 = 𝑙ℎ, 𝑥2𝑚 = 𝑚ℎ, ℎ𝑁 = 1, (𝑙,𝑚 = −1, 0, 1, . . . , 𝑁,𝑁 + 1)

}︀
(see, e.g., [31], Chapter 10, item 10.2.4, pp. 252–254). The solution of the difference problem (22)–(23) converges
to the classical solution to (19)–(20) in the discrete 𝐿2 and 𝑊 1

2 norms. However, it was observed in the numerical
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experiments that for the sufficiently small parameters 𝜎, 𝜀 and step size ℎ and for the sufficiently large local
variation of 𝑎(𝑘) (a high contrast) a small change in entries of a matrix, which corresponds to (22)–(23), and
also in the right-hand side 𝐹̂ may cause a significant change in the numerical solution. In other words, a
resulting system of linear algebraic equations is ill-conditioned. Because of this, a Krylov subspace methods,
such as Conjugate Gradient (CG) or the alternate-triangular, either do not ensure the convergence or possess
extremely low rates of convergence. To overcome these difficulties, some preconditioners were used when solving
a corresponding system of linear algebraic equations. There is available in the mathematics literature a variety of
preconditioning techniques (see, e.g., surveys in [32, 33]) which ensure the efficient computations at a reasonable
cost. In our numerical experiments we have used an implicit version of the Preconditioned Conjugate Gradient
(PCG) method (see, e.g., [30]), in which the error of each iteration is minimized in the energy norm, and the
correction vector from the Krylov subspace is determined.

4. Numerical experiments. In computer simulations a planar domain Ω = (0, 1)× (0, 1) is considered,
and a uniform grid is introduced on Ω. To simulate the distorted images for the numerical experiments, we
exploit a real high resolution abdominal CT-scan of a human, the actual Hounsfield units are rescaled to the
density units in the realistic range and then normalized with respect to the maximum value. The resulting image
is embedded into the grid and used further as a ground truth image. To simulate the noisy images, we use the
simple stochastic model of the additive normally distributed noise with the prescribed level of the relative error
ranging from 0.001 to 0.15. The blur is simulated by convolving a Gaussian filter with the ground truth image,
so that the filter represents a point-spread function. Since the blur and noise are combined in simulations, the
Peak Signal-to-Noise Ratio (PSNR) is exploited as a quality metric for the simulated images

PSNR = 20 log10

(︂
𝑁

‖𝑣 − 𝑣‖2

)︂
,

where 𝑁 = 256 in the numerical experiments. Note that the PSNR is smaller for the noisy/blurred images
and it is larger for the restored images. The ground truth and the sequence of the simulated noisy and blurred
images are shown in Figure 1.

It has been observed in the process of numerical experiments that the choice of the weighting function has
a significant impact on the reconstruction of high-resolution images. In particular, if 𝛼 = const > 0, then the
use of the so-called a priori selection, that is 𝛼 = 𝐶𝛿𝑞, 0 < 𝑞 < 2, 1 < 𝐶 < 2, provides edge preserving, though
it does not eliminate the staircase effect well and does not compensate for the loss of contrast. Unfortunately,
there are still no rigorous criteria for choosing a weighting function 𝛼 = 𝛼(𝑥). It is only known that these
functions should be large away from edges while they should be small near them. A family of such functions
can be constructed by the following heuristic formula

𝛼(𝑥) =
1

1 + 𝐶|𝑣𝑚|2
, 𝐶 = const > 0.

In the numerical experiments, a popular in image processing mollifier 𝑣𝑚 = 𝐶|∇Φ * 𝑣|2 is used along with
some other delta-like mollifiers (see, e.g., [34]). Here, Φ is the fundamental solution to the two dimension heat
equation with the unit thermal diffusivity, in which the scaling parameter 𝜆 =

√
2𝑡 is introduced, so that its

square can be interpreted as a variance in the Gaussian kernel. We have observed that all such mollifiers provide
edge preserving while significantly suppress the staircase effect and loss of contrast.

In the numerical experiments we also observe that the time dependence of the energy functional∫︁
Ω

𝛼(𝑥)|∇𝑢𝜎𝜀(𝑥, 𝑡)|𝑑𝑥

is very similar to one obtained for conductivity imaging [35, see Figure 5.3]. This property allows us to select the
effective values of 𝑇 ⩾ 10. In the presence of only roundoff errors and beginning with 𝑇 = 50, we also observe
that the relative error of 𝑢𝜎𝜀 does not exceed 1.15 · 10−4 for 𝜎, 𝜀 ∈ (10−6, 10−4). Based on this observation, the
parameters 𝜎 and 𝜀 have been set up to 10−5 in all the numerical experiments.

The computational effectiveness of image denoising and deblurring based on the Approximate Weighted
Mean Curvature Flow model (AWMCF) is demonstrated in comparison with the other techniques, such as the
VH-Regularization (VHR) [6] and Weighted Total Variation Flow model (WTVF) [36]. Using different defini-
tions of the total variation, these techniques are not equivalent, so that they provide different approximations
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Figure 1. The simulated distorted images. From left to right: in the upper row — the ground truth image and the
simulated “good” (PSNR=40) image; in the lower row — the simulated “acceptable” (PSNR=25)

and “poor” (PSNR=18) images.

Figure 2. The images restored by the VHR. From left to right: in the upper row — the ground truth image and the
images denoised/deblurred from the “good” one; in the lower row — the images denoised/deblurred from the

“acceptable” and “poor” ones.
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Figure 3. The images restored by the WTVF. From left to right: in the upper row — the ground truth image and the
images denoised/deblurred from the “good” one; in the lower row — the images denoised/deblurred from the

“acceptable” and “poor” ones.

Figure 4. The images restored by the AWMCF. From left to right: in the upper row — the ground truth image and the
images denoised/deblurred from the “good” one; in the lower row — the images denoised/deblurred from the

“acceptable” and “poor” ones.
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of the ground truth solution. Recall that the VHR exploits the Tikhonov regularization with the total VH
(Vitalli-Hardy) variation on the class of functions of two variables as a stabilizer, whereas the WTVF model
looks similar to (10)–(12) but without the term |∇𝑢| in the right-hand side of (10).

To perform the VHR, in [6] the Conjugate Gradient (CG) method was used together with the homogeneous
Dirichlet boundary conditions, and the constant regularization parameter 𝛼 was selected by the generalized
residual method. To preserve authenticity, we preserve these features for comparison with the WTVF [36]
and AWMCF models. The images restored by VHR are shown in Figure 2. We emphasize, however, that if
one uses some preconditioners in the CG method and the homogeneous Neumann boundary condition, then
the reconstructed images will be comparable in quality to ones reconstructed by WTVF. Unlike the AWMCF
model, establishing existence and uniqueness results for the WTVF model does not require the viscosity theory.
Also, in contrast to the AWMCF, in the WTVF a semi-implicit difference scheme was used in computations.
The images restored by the WTVF are shown in Figure 3. Finally, the images reconstructed by the AWMCF
are shown in Figure 4. Along with a visual comparison of denoised/deblurred images, a comparison of the
corresponding PSNRs is presented in Table 1.

Table 1. Comparison of the image PSNRs

Images Good, 𝛿 = 0.01 Acceptable, 𝛿 = 0.05 Poor, 𝛿 = 0.10

Noisy-Blurred 40 25 18

Restored by VHR 45.17 26.39 21.95

Restored by WTVF 47.41 37.52 27.42

Restored by AWMCF 51.49 45.77 31.49

5. Conclusions. A new technique has been proposed and numerically implemented for image denoising
and deblurring. It is based on the approximate weighted mean curvature flow model that describes motion of
the level surface of a flow by the weighted mean curvature. Compared to the known total variation flow models,
the proposed one provides better spatial adaptivity, as well as it suppresses the staircase effect and prevents
loss of contrast. The numerical studies have been performed with a real CT scan of a human body. The results
of image denoising and deblurring obtained by the proposed technique are comparable to the results obtained
by the other methods.
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