
352 ВЫЧИСЛИТЕЛЬНЫЕ МЕТОДЫ И ПРОГРАММИРОВАНИЕ / NUMERICAL METHODS AND PROGRAMMING
2023, 24 (4), 352–367. doi 10.26089/NumMet.v24r425

doi 10.26089/NumMet.v24r425

Rational Function Simplification for Integration-by-Parts
Reduction and Beyond

Kirill S. Mokrov
Lomonosov Moscow State University, Faculty of Computational Mathematics and Cybernetics, Moscow,

Russia
ORCID: 0009-0001-5036-8503, e-mail: kmokrov@mail.ru

Alexander V. Smirnov
Lomonosov Moscow State University, Research Computing Center, Moscow, Russia

ORCID: 0000-0002-7779-6735, e-mail: asmirnov80@gmail.com

Mao Zeng
Higgs Centre for Theoretical Physics, Edinburgh, United Kingdom

ORCID: 0000-0002-4741-4038, e-mail: mao.zeng@ed.ac.uk

Abstract: We present FUEL (Fractional Universal Evaluation Library), a C++ library for perform-
ing rational function arithmetic with a flexible choice of third-party computer algebra systems as
simplifiers. FUEL is an outgrowth of a C++ interface to Fermat which was originally part of the
FIRE code for integration-by-parts (IBP) reduction for Feynman integrals, now promoted to be a
standalone library with access to simplifiers other than Fermat. We compare the performance of
various simplifiers for standalone benchmark problems as well as IBP reduction runs with FIRE. A
speedup of more than 10 times is achieved for an example IBP problem related to calculation of the
off-shell three-particle form factors in 𝒩 = 4 supersymmetric Yang-Mills theory.
Keywords: Feynman integrals, integration by parts, computer algebra.
Acknowledgements: We thank the authors of FLINT, Nemo and FORM for help with our questions
about the software in mailing lists and/or private communications. We especially thank the author of
Symbolica, Ben Ruijl, for tirelessly answering our questions and customizing the software to integrate
with our library. The work of Alexander Smirnov was supported by the Russian Science Foundation
under the agreement No. 21-71-30003. M.Z.’s work is supported in part by the U.K. Royal Society
through Grant URF\R1\20109.
For citation: K. S. Mokrov, A. V. Smirnov and Mao Zeng, “Rational Function Simplification for
Integration-by-Parts Reduction and Beyond,” Numerical Methods and Programming. 24 (4), 352–
367 (2023). doi 10.26089/NumMet.v24r425.

© Kirill S. Mokrov, Alexander V. Smirnov, Mao Zeng

https://road.issn.org/
https://orcid.org/0009-0001-5036-8503
mailto:kmokrov@mail.ru
https://orcid.org/0000-0002-7779-6735
mailto:asmirnov80@gmail.com
https://orcid.org/0000-0002-4741-4038
mailto:mao.zeng@ed.ac.uk
https://creativecommons.org/licenses/by/4.0/legalcode


ВЫЧИСЛИТЕЛЬНЫЕ МЕТОДЫ И ПРОГРАММИРОВАНИЕ / NUMERICAL METHODS AND PROGRAMMING
2023, 24 (4), 352–367. doi 10.26089/NumMet.v24r425

353

Упрощение рациональных функций для редукции
с использованием соотношений интегрирования

по частям и не только

К. С. Мокров
Московский государственный университет имени М. В. Ломоносова,

факультет вычислительной математики и кибернетики, Москва, Российская Федерация
ORCID: 0009-0001-5036-8503, e-mail: kmokrov@mail.ru

А. В. Смирнов
Московский государственный университет имени М. В. Ломоносова,

Научно-исследовательский вычислительный центр, Москва, Российская Федерация
ORCID: 0000-0002-7779-6735, e-mail: asmirnov80@gmail.com

Мао Цзэн
Центр теоретической физики Хиггса,

университет Эдинбурга, Эдинбург, Великобритания
ORCID: 0000-0002-4741-4038, e-mail: mao.zeng@ed.ac.uk

Аннотация: Мы представляем C++ библиотеку FUEL (Fractional Universal Evaluation Library),
предназначенную для выполнения арифметики рациональных функций с гибким выбором сто-
ронних систем компьютерной алгебры в качестве упростителей. FUEL является развитием ин-
терфейса C++ для Fermat, который изначально был частью кода FIRE для редукции соотношений
интегрирования по частям (IBP) для интегралов Фейнмана, а теперь стал отдельной библиотекой
с доступом к упростителям, отличным от Fermat. Мы сравниваем производительность различ-
ных упростителей для отдельных задач тестирования, а также для редукции IBP с помощью
FIRE. Достигнуто ускорение более чем в 10 раз для примера редукции, связанной с вычисле-
нием трехпетлевых формфакторов вне оболочки светового конуса в 𝒩 = 4 суперсимметричной
теории Янга-Миллса.
Ключевые слова: Интегралы Фейнмана, интегрирование по частям, компьютерная алгебра.
Благодарности: Мы благодарим авторов FLINT, Nemo и FORM за помощь в ответах на наши
вопросы о программном обеспечении в списках рассылки и/или личных сообщениях. Мы особен-
но благодарим автора Symbolica Бена Руйла за неустанные ответы на наши вопросы и настройку
программного обеспечения для интеграции с нашей библиотекой. Работа А. В. Смирнова под-
держана Российским научным фондом по договору № 21–71–30003. Работа Мао Дзена частично
поддерживается Королевским обществом Великобритании в виде гранта URF\R1\20109.
Для цитирования: Мокров К.С., Смирнов А.В., Цзэн М., Упрощение рациональных функций
для редукции с использованием соотношений интегрирования по частям и не только // Вычис-
лительные методы и программирование. 2023. 24, № 4. 352–367. doi 10.26089/NumMet.v24r425.

1. Introduction. Many problems of high energy physics and quantum field theory are difficult to solve
without using a computer. An example of such a problem is the calculation of Feynman integrals in complicated
scattering amplitudes and correlation functions. For cutting-edge problems involving a huge number of Feynman
integrals, the standard calculation workflow consists of two stages: integration-by-parts (IBP) reduction [1, 2]
to so-called master integrals and finding the values of these master integrals. The problem of IBP reduction
with the Laporta algorithm [2] can be viewed as a problem of solving a huge system of sparse linear equations
with polynomial coefficients. The coefficients generally become rational functions, i.e. fractions of polynomials,
when solving the linear system via (variants of) Gaussian elimination.

https://road.issn.org/
https://orcid.org/0009-0001-5036-8503
mailto:kmokrov@mail.ru
https://orcid.org/0000-0002-7779-6735
mailto:asmirnov80@gmail.com
https://orcid.org/0000-0002-4741-4038
mailto:mao.zeng@ed.ac.uk


354 ВЫЧИСЛИТЕЛЬНЫЕ МЕТОДЫ И ПРОГРАММИРОВАНИЕ / NUMERICAL METHODS AND PROGRAMMING
2023, 24 (4), 352–367. doi 10.26089/NumMet.v24r425

Because of the complex nature of the coefficients, they need to be stored in a special form, and most
importantly, the coefficients need to be periodically simplified when solving the linear system. The simplifi-
cations include e.g. collecting similar terms in polynomials, writing sums of fractions as a single fraction with
a common denominator, and simplifying the numerator and denominator by computing polynomial greatest
common denominator (GCD). Without the simplifications, arithmetic operations on the coefficients will take
more and more time, and their storage will require more and more memory, eventually making performance
unacceptable.

In this paper we consider programs (either standalone programs or libraries), called simplifiers, which
are used to perform all necessary simplifying transformations of rational function coefficients. The list of
simplifiers considered in this paper is: CoCoA [3, 4], Fermat [5], FORM [6], GiNaC [7], Macaulay2 [8], Maple
[9], Maxima [10], Nemo [11], PARI/GP [12], Symbolica [13], and Wolfram Mathematica [14]. These programs
are compared for three different sets of input data: a large set of rational functions in one variable, a large set
of rational functions in three variables, and a set of a few dozen huge rational functions whose lengths range
from tens of thousands to several hundred thousand characters when printed. The main performance indicators
for comparison are the time spent on simplification and the amount of memory needed.

At the end of the 20th century, the task of IBP reduction was done manually. Later, computer programs
appeared that automated and speeded up this process. Some of the publicly available general-purpose programs
are: FIRE [15–17], AIR [18], Reduze [19], LiteRed [20], and Kira [21–23]. The public version of FIRE was first
published in 2014 and has been used by the scientific community to perform cutting-edge calculations, e.g. in
Refs. [24–26]. Initially, Fermat was the only simplifier used by the C++ version of FIRE with the use of the
gateToFermat library by M. Tentukov. In this work, several more simplifiers are connected to FIRE for the first
time, through the standalone C++ library FUEL which provides access to the simplifiers.

FIRE can run both on desktop computers and on specialized nodes with 32 or more computing cores and
more than 1.5 TB of RAM, on 64-bit versions of the Linux operating system. Program running time and the
required amount of RAM depend on the complexity of the task, and the running time can be up to several
months for real-world tasks, of which up to 95% can be spent exclusively on the simplification of rational
function coefficients when solving linear systems. In this regard, it is important to find the best programs for
simplifying the coefficients, which would allow us to optimize this part of FIRE’s performance.

There are many other performance considerations relevant for IBP reduction computations with the La-
porta algorithm while keeping analytic dependence on kinematic and spacetime dimension variables. Such
considerations include e.g. the ordering of integrals and ordering of equations [21, 27], selection of IBP identi-
ties and Lorentz-invariance identities [15, 28], the use of reduction rules with abstract propagator powers (see
e.g. [20, 29]), the choice of master integral bases that avoid spurious singularities [30, 31], block triangular form
[32, 33], syzygy equations [27, 34–37] and the related numerical unitarity method [38–40]. In this work, however,
we focus exclusively on the simplification of rational functions in the process of solving linear systems.

The FUEL library from this work is available from the following git repository: https://bitbucket.or
g/feynmanIntegrals/fuel/src/main/.

2. Problem statement. The purpose of this work is to select and test existing third-party programs for
simplifying rational functions, and develop a C++ library FUEL for accessing the simplification functionality. The
third-party programs under consideration should be able to simplify complicated expressions and be compatible
with the Linux operating system. The programs must be tested for the correctness of simplification.

In order to achieve the goal, it is necessary to solve the following tasks:
• Find programs, or simplifiers, that meet the requirements, and write the FUEL library for accessing the

simplifiers from C++.
• Test and compare the simplifiers in terms of rational function simplification performance, and select the

best ones.
• Connect FIRE with these simplifiers via FUEL to perform IBP reduction computations, and check if they

work correctly.
Caveat: our results should not be interpreted as a performance comparison between computer algebra

systems for polynomial-oriented tasks. Rather, we test the computer algebra systems for the overall performance
for tasks similar to IBP reduction when interfacing with FIRE. In particular, efficient bi-directional transfer,
i.e. parsing, printing, and transferring of expressions in a text format is often an important performance
bottleneck, and certain programs can be uncompetitive even with their inherent excellent simplification speed.

https://road.issn.org/
https://bitbucket.org/feynmanIntegrals/fuel/src/main/
https://bitbucket.org/feynmanIntegrals/fuel/src/main/


ВЫЧИСЛИТЕЛЬНЫЕ МЕТОДЫ И ПРОГРАММИРОВАНИЕ / NUMERICAL METHODS AND PROGRAMMING
2023, 24 (4), 352–367. doi 10.26089/NumMet.v24r425

355

3. Simplifiers, input data, and connecting to FIRE.

3.1. Overview. In general, when solving a linear system with polynomial coefficients, e.g. by Gaussian
elimination, an intermediate coefficient to be simplified is a sum of fractions, whose numerator and denominator
can also contain fractions which, in turn, contain polynomials in their numerators and denominators, as written
schematically in Eq. (1):

∑︁
𝑘

Poly𝑘,1

Poly𝑘,2

·
Poly𝑘,3

Poly𝑘,4

Poly𝑘,5

Poly𝑘,6

, Poly𝑘,𝑗 =
∑︁
𝑖

𝑞𝑖 · 𝑥𝑛𝑖1
1 · 𝑥𝑛𝑖2

2 · . . . · 𝑥𝑛𝑖𝑚
𝑚 , 𝑞𝑖 ∈ Q, 𝑥ℎ ∈ 𝑋, 𝑛𝑖ℎ ∈ Z+

0 . (1)

A simplification is considered successful if the result is a polynomial or a fraction where the numerator and
denominator are polynomials without a nontrivial GCD. The polynomials have to be either in the expanded
form or in some nested form such as the Horner form. Throughout the most of this study, we did not consider
other forms such as the factorized or partial-fractioned ones for polynomials and rational functions1. There are
three additional characteristics of the problem arising from IBP reduction by FIRE. First, rational numbers
can be as large as desired, that is, the simplifier must support arbitrary-precision integer and rational number
arithmetic. Second, the set of possible variables is known in advance (which are kinematic variables and the
spacetime dimension variable). Third, the maximum level of nested fractions does not exceed three. The second
and third points are important for simplifiers that require these parameters to be passed in advance before
actual calculations.

3.2. Connecting with the simplifier.
§ 3.2.1. Method 1: pipe communications. In order to connect the simplifier, the fork-exec technique,

popular on Unix systems, is used by FUEL to first create a copy of the current process, then run a new
executable file in the context of the newly created process. If the simplifier is an executable file or comes with
source code from which an executable file can be built, there is no need to do anything apart from downloading
or compiling the simplifier before calling exec. If the simplifier is a library, we write wrapper code to use this
library and then compile the code into an executable. This technique is as universal as possible, that is, it is
applicable to almost any program written in any programming language.

Communication with the spawned process is done through two specially created pipes, the first of which
is used by the parent program (e.g. FIRE) to write messages to the simplifier, and the second of which is used
to send messages in the opposite direction, both in the text format. These techniques make it possible to create
a single universal interface for the simplifiers and separate their code from the main program which creates
the rational function coefficients (e.g. from creating linear systems of IBP equations). The final procedure for
connecting the new simplifier consists of the following steps:

1. Determine which command-line arguments should be passed when exec is called.
2. Communicate the rational function to be simplified to the simplifier in an appropriate syntax understood

by the simplifier. This triggers the simplifier to parse the expression into an internal representation,
simplify the expression, and prints out the result which is then sent back as the response.

3. Write the code for parsing the simplifier response.
4. Determine which commands to pass to the simplifier process in order for it to terminate correctly.

The second and third items are the most time-consuming to implement, because they are unique to each of
the pluggable simplifiers, and it was necessary for us to study their documentation, examples, and sometimes
advice on the Internet.

§ 3.2.2. Method 2: library interface. Some of the simplifiers are alternatively exposed as C++ libraries to
be used directly by FUEL without pipe communications with a separate executable. In this mode of operation,
every input expression is supplied as a string to the relevant library function, and a simplified expression
represented as a string is returned. Parallel evaluation is possible when the relevant library is thread-safe.
Apart from these changes, most of the considerations of Section 3.2.1 still apply. As will be shown later in this
paper, a noticeable performance gains are observed by avoiding pipe communications2.

1An exception is Wolfram Mathematica, whose Together command may choose to keep part of the expression in factorized form.
2One could also consider exchanging expressions as C++ objects of opaque types defined by the library, to further avoid the

https://road.issn.org/


356 ВЫЧИСЛИТЕЛЬНЫЕ МЕТОДЫ И ПРОГРАММИРОВАНИЕ / NUMERICAL METHODS AND PROGRAMMING
2023, 24 (4), 352–367. doi 10.26089/NumMet.v24r425

3.3. Connected simplifiers. This is the complete list of simplifiers (and the languages they are written
in) which can be accessed by the current version of FUEL: CoCoA (C++), Fermat (C), FORM (C), GiNaC (C++),
Macaulay2 (C/C++, Macaulay2), Maple (C, Java, Maple), Maxima (Common Lisp), Nemo (C, Julia), PARI (C),
Wolfram Mathematica (C/C++, Java, Wolfram Language). This list contains both open-source and proprietary
software solutions. The issue of software licensing is an important concern, because it may affect, for example,
the license under which a derived program can be distributed, the right to modify the code, and the right to
distribute the code to third parties. Though we initially searched exclusively among open-source programs and
libraries, we could not omit widely used proprietary computer algebra systems such as Maple and Wolfram
Mathematica.

All simplifiers can be accessed by pipe communications, in which case parallel evaluation is always possible
by running multiple processes. Meanwhile, CoCoA and GiNaC, and Symbolica can be accessed as C++ libraries.
Among the three, only Symbolica’s library is thread-safe and supports parallel evaluation.

A brief introduction to each simplifier is given in Appendix 1.

4. Benchmark tests with small to moderately large expressions.

4.1. Testing method. The simplifiers under consideration are used as sequential programs when accessed
via pipe communications, i.e. the simplifier process does not treat more than one rational function expressions
simultaneously. If parallel evaluation is desired, the user should spawn the required number of simplifier processes
and organize parallel sending and receiving of rational function expressions3. For simplifiers accessed as C++
libraries, parallel evaluation is possible only when the library is thread-safe (which is the case for Symbolica,
but not CoCoA or GiNaC).

In order to test how fast the simplifiers work, a special benchmark program was written. It reads rational
function expressions from a data file into memory, then, with the help of a pre-selected simplifier, processes
them individually: sending each expression to the simplifier, waiting for a response, receiving and parsing the
response, and finally printing out the total time taken to simplify all expressions from the file.

The initialization of the simplifier (creating a process, loading its context and, for some simplifiers, passing
some configuration parameters) is done once at the very beginning and takes at most several seconds. Then
the process can in principle run for many hours, so the initialization cost of the simplifier is not included in the
benchmark results.

Information about memory usage by the simplifier process was collected by the utility program in Ref. [41],
which monitors the memory usage every half a second.

The main machine used for testing has the AMD Ryzen 7 3750H CPU with base frequency 2.3 GHz, boost
frequency 4.0 GHz, and 24 GB of RAM.

4.2. Description of test data. Testing was performed on three sets of input data. The rational function
expressions from the first set have one variable, and the rational function expressions from the second set have
three variables. The number of variables is important because it can significantly affect the running time of
some simplifiers. While the first two sets consist of small expressions, the third one is made up of moderately
large expressions; the expression size is also an important parameter that directly affects running time. The
Table 1 shows the main quantitative characteristics of the utilized sets: the minimum, maximum, and average
length of expressions, and the number of expressions in the file.

An even larger expression will be considered eventually, but in a very different setting in Section 5.

Table 1. Parameters of sets with rational function expressions, on which testing was conducted.

No. No. of variables Min. expr. length Max. expr. length Avg. expr. length Number of coefs.
1 1 1 5341 ∼ 29 692584
2 3 1 2133 ∼ 33 971330
3 2 232971 465943 ∼ 310628 12

overhead of conversion from/to strings. However, this would not be compatible with the current version of FIRE which relies on
database storage that accepts strings as data.

3For example, FIRE has one main execution thread and several additional threads (named FLAME) that communicate with
simplifiers.

https://road.issn.org/


ВЫЧИСЛИТЕЛЬНЫЕ МЕТОДЫ И ПРОГРАММИРОВАНИЕ / NUMERICAL METHODS AND PROGRAMMING
2023, 24 (4), 352–367. doi 10.26089/NumMet.v24r425

357

4.3. Results for running time. The results obtained for the running times of the simplifiers, as accessed
from FUEL, on different test sets on the two machines are presented in Table 2. All values are specified in
seconds and are rounded to one decimal place. We stress again that the running time includes not only the
simplification itself, but also parsing, printing, and possibly pipe communications, so the results should not
be considered as indicators of the inherent quality of the tested simplifiers, especially when they are used in
workflows different from ours.

Table 2. Simplifier running times (in seconds) for each of the machines for three sets of input data. A simplifer is
accessed via pipe communications unless the library mode is used as indicated by “(lib)”.

Simplifier
Set. No.

1 2 3

CoCoA 70.6 127.5 84.5
CoCoA (lib) 56.2 100.3 83.3

Fermat 13.9 15.6 1.8
FORM 62.0 107.2 1967.8
GiNaC 21.7 43.3 4.6

GiNaC (lib) 11.9 27.2 4.5
Macaulay2 81.9 244.7 -

Maple 192.1 276.0 85.4
Maxima 106.6 182.8 10.9
Nemo 19.6 35.5 3.4

PARI/GP 10.3 18.3 736.2
Symbolica 10.3 16.5 1.8

Symbolica (lib) 1.9 4.2 1.8
Wolfram

Mathematica
349.4 882.0 44.2

We have checked that on different machines, though the absolute running times are different, the relative
performance of different simplifiers remains largely unchanged.

Within each set of expressions, the simplifiers are divided into three groups, from the ones with the best
performance to the ones with the worst performance: the first group includes those whose running times differ
from the minimum on a given set by no more than five times, the second group includes those whose times
differ by no more than 10 times, and the third group includes the rest. For clarity, the cells of the Table 2 are
colored according to this division: the first group in green, the second in yellow, and the third in red.

Let us now consider each of the test sets in more detail:
1. The first set is characterized by the fact that there is not more than one variable in each of the expressions.

Based on performance in simplifying expressions from this test set, the first group includes Fermat, GiNaC,
Nemo, PARI/GP, and Symbolica, the second group involves CoCoA and FORM, and the third one includes
all others: Macaulay2, Maple, Maxima, and Wolfram Mathematica. Notice that for CoCoA, GiNaC, the
library modes run faster but fall into the same groups as their pipe versions.

2. The second set differs from the previous one in that the expressions can now contain up to three variables.
As can be seen from the results, the distribution by groups has not changed compared to the distribution
for the first set.

3. The third set of expressions is very different from the previous two sets, in that the average expression
length has increased by a factor of about 10000, although there is a smaller total number of expressions
to keep the total running time manageable. We comment on the performance of a few simplifiers: CoCoA
has moved from the second group to the third, showing a slight deterioration. FORM and PARI/GP have
the poorest performance (as usual, with the caveat that only in the workflow considered here). While
in the previous sets FORM was about 20 to 30 times worse than the best simplifier, and PARI/GP was
about 5 times worse than the best one, now FORM is worse than the best-performing simplifier by about

https://road.issn.org/


358 ВЫЧИСЛИТЕЛЬНЫЕ МЕТОДЫ И ПРОГРАММИРОВАНИЕ / NUMERICAL METHODS AND PROGRAMMING
2023, 24 (4), 352–367. doi 10.26089/NumMet.v24r425

1100 times, and PARI / GP by about 410 times. It turns out that for these simplifiers, the expression
length is a defining characteristic and with its growth their speed rapidly degrades. We have not been
able to test Macaulay2 on this set due to technical problems with pipe communications. For the third set,
the division into groups is as follows: the first includes Fermat, GiNaC, Nemo, and Symbolica, the second
includes Maxima, and the third includes CoCoA, FORM, Macaulay2, Maple, PARI/GP, and Wolfram
Mathematica.
To draw a conclusion based on these time measurements for simplifying small to moderately large expres-

sions, we apply the following heuristic: if a simplifier is in the first group (i.e. the fastest group) for all three test
sets, then we will call it “best”. If it is in the third group, that is, in the group with the slowest performance,
then we will call it “bad”. If neither is the case, we call it “good”. It is important to stipulate that these labels
should be understood only in conjunction with the phrase “for this class of tasks”. According to the results of
testing, the best simplifiers are Fermat, GiNaC, Nemo, and Symbolica, the group of good ones is empty, and
the bad ones are CoCoA, FORM, Macaulay2, Maple, Maxima, PARI/GP, and Wolfram Mathematica. When
choosing a program or library for simplifying polynomial expressions, e.g. for IBP reduction computations with
FIRE, you should first choose from the “best” programs; if for some reason none of them is suitable, only then
one should consider others. Furthermore, as was mentioned previously, while the library mode (when available)
of a simplifier always runs faster than its pipe mode in our single-threaded benchmark, only Symbolica supports
parallel evaluation when used in the library mode.

It is also noted that two proprietary programs, Maple and Wolfram Mathematica, are grouped with the
slowest simplifiers for all the three test sets. This suggests that they are unlikely to be good candidates for use as
simplifiers in FIRE runs. However, it would be misleading to conclude that these two programs are inherently
poor in simplifying rational functions in general, as they perform well in a different benchmark problem in
Section 5 which mainly measures inherent simplification time with less overhead in other tasks like parsing text.

Note that for challenging IBP problems, significantly larger expressions can be encountered. Therefore, in
the next section, we will supplement the picture we have by additional tests involving a huge expression, while
setting the tests in a different manner to shed light on computational overhead unrelated to the simplification
itself.

5. Additional tests with huge expression with low parsing overhead. The CPU time consumed
by a simplifier process consists of three parts:

1. Parsing the mathematical expression in a text format passed from an external program such as FIRE.
2. Simplifying the expression.
3. Printing out the expression.

The “inherent performance” of the simplifier is measured by the time spend on part (2) above, but depend-
ing on usage pattern, this may not be the performance bottleneck. For example, part (1), the parsing process,
can often be a bottleneck, considering that when performing IBP reduction with FIRE, hundreds of thousands
of expressions may be sent to the simplifier, some of which could be rather small and not inherently difficult to
simplify. We will not carry out a full investigation of this issue. However, to shed light on the impact of parsing
performance, we present results from another set of test data, where the task is to simplify a single expression
in 6 variables:

(𝑎+ 𝑏+ 𝑐+ 𝑑+ 𝑓 + 𝑔)14 + 3

(2𝑎+ 𝑏+ 𝑐+ 𝑑+ 𝑓 + 𝑔)14 + 4
− (3𝑎+ 𝑏+ 𝑐+ 𝑑+ 𝑓 + 𝑔)14 + 5

(4𝑎+ 𝑏+ 𝑐+ 𝑑+ 𝑓 + 𝑔)14 + 6
. (2)

The expression is given in the test data file as the following line:

((a+b+c+d+f+g)^14+3)/((2*a+b+c+d+f+g)^14+4)-((3*a+b+c+d+f+g)^14+5)/((4*a+b+c+d+f+g)^14+6).

The time taken to parse this short expression is negligible, but simplification of this expression, involving
e.g. expanding polynomials and finding polynomial GCDs, is computationally demanding due to high powers
of sub-expressions4. Not all simplifiers finish the test in reasonable time; for those that do finish, the running
times are summarized in Table 3 below.

This test is drastically different from the tests in Section 4 since it artificially involves negligible parsing
overhead, while the simplification itself is very demanding. The test still includes the time taken for the

4Note that such expressions do not arise from FIRE: even though high-degree expressions can be generated when solving IBP
linear systems, the intermediate expressions are always simplified so that polynomials are in an expanded form or a nested form,
and therefore there will be no explicit appearances of a single expression raised to a high power.

https://road.issn.org/


ВЫЧИСЛИТЕЛЬНЫЕ МЕТОДЫ И ПРОГРАММИРОВАНИЕ / NUMERICAL METHODS AND PROGRAMMING
2023, 24 (4), 352–367. doi 10.26089/NumMet.v24r425

359

Table 3. Time taken, in seconds, by various simplifier to run the test of this section. The numbers are rounded to the
nearest integer, or one decimal place if it is less than 10. Only 6 simplifiers are shown in the table. The remaining ones,
when accessed from FUEL, are not able to finish the test within 1200 seconds. *For Symbolica and CoCoA, the pipe

mode has a similar performance as the library mode for this test since the parsing overhead is low.

Simplifier Time (seconds)
Symbolica* (lib) 5.2

Nemo 6.9
Maple 7.9
Fermat 98.3
Maxima 112.8
Wolfram

Mathematica
168.8

CoCoA* (lib) 365

simplifiers to print out the results to be read by the simplifier, but printing usually has a smaller CPU footprint
than parsing when large expressions are involved5. The results are also very different from those discussed in
Section 4. For example, Maple is now among the most performant programs in this test, either because it
suffered from significant parsing overhead in previous tests or because Maple may have a relative advantage in
simplifying very large rational expressions.

6. Memory usage. An important statistic is the maximum memory usage, which determines whether or
not the out-of-memory killer of the operating system will terminate the simplifier. This is especially a concern
in the process of simplifying complicated expressions. We compare the maximum memory usage for the simplest
test set 1 in Section 4 and the most complicated expression in Section 5. The results are given in Table 4, only
for simplifers that can finish the latter test in reasonable time6. All values are rounded to integers.

Table 4. The maximum amount of used RAM by simplifiers when accessed via FUEL, in megabytes, for three sets of
input expressions. The “small” test set refers to set 1 in Section 4, and the “huge” test set refers to the expression in

Section 5.

Stat. Max

Simplifier
Set

Small Huge

CoCoA 3 242
Fermat 21 22
Maple 20 34

Maxima 931 953
Nemo 409 410

Symbolica 2 20
Wolfram

Mathematica
121 225

Except for CoCoA and Wolfram Mathematica, the simplifiers in the table exhibit memory usage that
depends rather mildly on the complexity of the expressions. One should keep in mind that even standard
laptops now have at least 8GB of RAM and server systems can have several hundred GB of memory. For IBP
reduction with FIRE, the memory consumption from storing a large number of reduction rules (in which the
rational functions are already simplified) can be a much more serious concern.

5For Nemo, we found that the running time is reduced by only about 15% when the printing of the result is turned off. For
Mathematica and Maple, we found that the time used in printing is completely overwhelmed by the rest of the running time.

6For the convenience of measurement, we have also restricted our attention to simplifers that can run as separate processes
accessed via pipes.

https://road.issn.org/


360 ВЫЧИСЛИТЕЛЬНЫЕ МЕТОДЫ И ПРОГРАММИРОВАНИЕ / NUMERICAL METHODS AND PROGRAMMING
2023, 24 (4), 352–367. doi 10.26089/NumMet.v24r425

Figure 1. The double box diagram to be tested for IBP reduction in FIRE6 calling various different simplifiers.

7. Tests with FIRE.

7.1. A simple example. We run the double box IBP reduction example in FIRE6. This IBP problem is
very simple by current standards and should be considered as a preliminary test, as the main focus of this work
is presenting FUEL and standalone benchmark tests. The double box diagram is shown in Fig. 1. We reduce a
rank-2 tensor integral with numerator

(𝑘2 + 𝑝1)
2(𝑘1 − 𝑝3)

2

using only one worker thread. The statistics printed out at the end of FIRE runs are presented in Table 5. FIRE
runs involve two stages, forward elimination and backward substitution. While back substitution consumes a
small percentage of the total running time in this simple problem, it can become the dominant part in more
complicated IBP problems. Therefore we have shown the “substitution time” as a separate column in Table
5. In this test, the performance of the simplifiers relative to each other is very similar to the situation in test

Table 5. Performance of various simplifier when used by FIRE to reduce a rank-2 tensor integral for the massless
two-loop double box. The running times are in seconds, while the memory usage is in units of MB.

Simplifier Total Time Substitution time Memory usage (FIRE + simplifier)
Symbolica (lib) 14.6 1.1 15.6

Fermat 19.8 1.8 23.0
Pari/GP 21.6 2.3 14.1
Nemo 32.8 2.4 431.7

GiNaC (lib) 27.6 6.0 14.6
CoCoA (lib) 73.2 4.7 16.0

FORM 78.5 5.8 14.4
Maxima 131.2 6.7 955.8
Macaulay 152.5 12.1 350.9

Maple 177.6 6.5 105.1
Wolfram

Mathematica
581.0 22.2 146.1

sets 1 and 2 in Section 4. Based on the data for test 3 in Section 4, it is likely that the situation can change
dramatically for highly demanding IBP reduction problems.

7.2. A complicated example. Let us turn now to consideration of a demanding IBP problem for non-
planar double box integrals with massless internal lines and off-shell external lines. Three of the four external
lines have the same virtuality. This problem of computing off-shell three-particle form factors arises in 𝒩 = 4

super-Yang-Mills theory as a natural extension of the similar problem of calculating two-particle form factors,
which was studied previously in [42, 43]. The corresponding diagram is shown in Fig. [2].

https://road.issn.org/


ВЫЧИСЛИТЕЛЬНЫЕ МЕТОДЫ И ПРОГРАММИРОВАНИЕ / NUMERICAL METHODS AND PROGRAMMING
2023, 24 (4), 352–367. doi 10.26089/NumMet.v24r425

361

Figure 2. A nonplanar double box diagram topology with massless internal lines and off-shell external lines.

The kinematics is

𝑝21 = 𝑝22 = 𝑝23 = −𝑚2,

(𝑝1 + 𝑝2)
2 = −𝑢,

(𝑝2 + 𝑝3)
2 = −𝑣,

(𝑝1 + 𝑝3)
2 = −𝑤 .

We perform the IBP reduction of top-level integrals with the following three different numerators:
1. the unit numerator 1;
2. (𝑘1 + 𝑝1)

2;
3. (𝑘2 − 𝑝4)

2;
4. (𝑘1 + 𝑝1)

2(𝑘2 − 𝑝4)
2.

There are 97 master integrals after IBP reduction. As a form of parallelization, FIRE allows the user to set
all master integrals excepting one equal to zero and compute the coefficient of the one chosen master integral.
For the purpose of benchmarking, we only calculate the coefficient of the bottom-level “sunrise” master integral
which contains the propagators (𝑘1 − 𝑝4)

2, (𝑘1 − 𝑘2)
2 and (𝑘2 + 𝑝1)

2. Five variables are involved in the IBP
reduction, including the spacetime dimension 𝑑 and the kinematic variables 𝑚, 𝑢, 𝑣, 𝑤. The large number of
variables makes the simplification of rational functions computationally demanding during the IBP reduction.
The time needed to complete the task for Fermat, Nemo, and Symbolica are shown in Table 67.

Table 6. Performance of various simplifier when used by FIRE to reduce sample integrals for the nonplanar double box
with massless internal lines and off-shell external lines, involving four kinematic variables and the spacetime variable in

rational function simplification.

Simplifier Total Time (× 1000 seconds)
Symbolica (lib) 8.9

Nemo 11.9
Fermat 109.7

We can see that Symbolica and Nemo offers significant speedups compared to Fermat, as in the case of
the artificial benchmark in Section 5 outside of FIRE.

8. Conclusions. In light of ongoing efforts to improve the performance of integration-by-parts reduction
for complicated Feynman integral calculations, we have presented a new C++ library FUEL for simplifying
rational function expressions. As a standalone library, FUEL can also potentially find applications in other
areas. Under a universal interface, FUEL allows a flexible choice of simplifiers, i.e. existing computer algebra
programs or libraries, as the underlying computation engine. FUEL grew out of FIRE’s original interface to
Fermat, the latter being a computer algebra system written by Robert Lewis. FUEL has two modes of operation.

7A different computer is used for this benchmark since the previous tests were carried out at an earlier time. The CPU used
here is the Intel Xeon Gold 6240 Processor (24.75M Cache, 2.60 GHz). We allowed up to 16 simplifier processes to run in parallel,
but due to limitations of parallelization capabilities when only a single master integral is targeted, only a single thread is active for
almost the entire duration of the run, regardless of the utilized simplifier.

https://road.issn.org/


362 ВЫЧИСЛИТЕЛЬНЫЕ МЕТОДЫ И ПРОГРАММИРОВАНИЕ / NUMERICAL METHODS AND PROGRAMMING
2023, 24 (4), 352–367. doi 10.26089/NumMet.v24r425

The first of them is the pipe mode, originally used in FIRE, based on inter-process communication over unix
pipes, sending and receiving text expressions to a third-party simplifier program in a text format. The other
mode is the library mode, i.e. directly linking with third-party libraries without spawning child processes. With
both mode available, the setup allows for maximum flexibility in connecting with any simplifier written in any
programming language. In the pipe mode, parallel computation is achieved by running multiple processes of the
same simplifier (or even different simplifiers catering to different types of expressions, experimentally supported
by FUEL). In the library mode, parallel computation is possible when the third-party library is thread-safe
(which is the case only for Symbolica so far). Good performance under the pipe mode requires the simplifier to
be fast both in the key task of simplifying mathematical expressions and in overhead tasks such as parsing text
inputs, which makes certain simplifiers (such as recent versions of Maple) uncompetitive for our purpose even
when they have a reputation for being fast manipulations of polynomials and rational functions.

In the current version of FUEL, we have implemented connections with 11 different simplifiers, including
CoCoA (pipe or library mode), Fermat, FORM, GiNaC (pipe or library mode), Macaulay2, Maple, Maxima,
Nemo, PARI/GP, Symbolica (pipe or library mode), and Wolfram Mathematica. Nemo has been augmented by
a dedicated Julia package we wrote (distributed with FUEL) to enable fast parsing of mathematical expressions.
Artificial benchmark tests with small to moderately large expressions are presented in Section 4. Symbolica
is the fastest simplifier (or in a tie with the fastest simplifiers) for all the test sets, while Fermat, Nemo and
GiNaC are also consistently among the fastest simplifiers. Pari/GP is very fast for the first two sets of test data
involving shorter expressions (which likely mimic less demanding FIRE runs), but performs very poorly in the
third data set involving moderately large expressions.

An additional special-purpose test is presented in Section 5. Compared with the main tests discussed above,
this test minimizes the overhead of text parsing but is extremely computationally intensive in the simplification
itself. Here Fermat has dropped to the third place in the ranking of the fast programs, led by Symbolica, Nemo,
and Maple. Both Pari/GP and GiNaC (among others) have failed to complete the test before the 20-minute
timeout. We plan to explore using more than one simplifier in a single C++ program, e.g. FIRE, given their
different performance characteristics for different problems.

A private experimental version of FIRE has been linked with FUEL to perform IBP reduction of Feynman
integrals. We have first demonstrated a very simple IBP reduction example for the two-loop double box, which
can be completed by FIRE with any of the 10 connected simplifiers. The time required by the run for each
simplifier has been tabulated, and the results are broadly consistent with those from the simpler test sets in
the artificial benchmarks of Section 4. Next, we have tested the IBP reduction performance for a non-planar
double box family of integrals which involve four kinematic variables besides the spacetime variable. In this
case, Symbolica and Nemo significantly outperform Fermat, while GiNaC and Pari/GP cannot finish the test in
reasonable time, mirroring the demanding standalone benchmark of Section 5. We leave further improvements
to further work, and a first application to a concrete physics problem using our software will soon be carried
out by other authors.

License statement: for the purpose of open access, the authors have applied a Creative Commons
Attribution (CC BY) license to any Author Accepted Manuscript version arising from this submission.

https://road.issn.org/


ВЫЧИСЛИТЕЛЬНЫЕ МЕТОДЫ И ПРОГРАММИРОВАНИЕ / NUMERICAL METHODS AND PROGRAMMING
2023, 24 (4), 352–367. doi 10.26089/NumMet.v24r425

363

Appendix 1
Overviews of connected simplifiers

8.1. CoCoA. CoCoA [3] is a computer algebra system for computing in polynomial rings. The develop-
ment of the system began in 1987 in Pascal, hence its Pascal-like syntax, and it was later rewritten in C, and yet
a little later a C++ library, CoCoALib [4], appeared, and the latter library was used in our work. CoCoA allows
to perform calculations in rings of polynomials of many variables with rational or integer coefficients, as well as
over ideals of these rings. The user can redefine the polynomial ring used as well as various homomorphisms
for converting elements from one ring to another. According to CoCoA’s authors, the Gröbner basis is used as
the key mechanism for efficient computations in commutative algebra.

In order for CoCoA to handle a factor of the form Eq. (1) passed to it, we need to specify in the C++
constructor a field that it belongs to. To do this, we set the appropriate ring of integers, ring of fractions and
ring of polynomials, combining and substituting one into the other to get the desired field. Then it is possible
to supply a string representation of the rational function and get a simplified representation from it.

The fully expanded form is utilized for polynomial representations in our usage of CoCoA. In this paper,
we use the version CoCoA 0.99715.

8.2. Fermat. Fermat [5] is a computer algebra system, developed by Robert Lewis, aiming to be fast
and memory efficient, covering “arithmetic of arbitrarily long integers and fractions, multivariate polynomials,
symbolic calculations, matrices over polynomial rings, graphics, and other numerical calculations”. Fermat has
influenced research in fast rational function arithmetic in computer algebra [44]. Until recently, Fermat was the
only simplifier used by the C++ version of FIRE. Fermat is also the main simplifier in two other IBP reduction
programs, Kira and Reduze.

The output of Fermat expresses polynomials in the Horner form. In this paper, we use the version Fermat
5.17.

8.3. Form. FORM [6] is a computer algebra system, which is sometimes called a system for formula
conversions. It has been in development since 1984, and its original goal was to simplify calculations in quantum
field theory. FORM is written in C and accepts input in a special programming language, which is then
interpreted and executed. In other words, FORM is not interactive but operates as a batch-processing program.
FORM’s language has many features: it has an advanced preprocessor with more than sixty commands, several
types of variables: symbols, vectors, indices, functions, sets, more than a hundred commands controlling the
execution, output and properties of variables, and more than eighty functions. Besides the regular version of
the program, there are also two parallelized versions: ParFORM, which runs on a system with independent
nodes, each using its own processor, memory and disk, and TFORM, which uses POSIX threads to better
expose multiprocessor capabilities on shared-memory machines. FORM is distributed under the GNU GPL
license.

For some special cases it may be necessary to override the standard settings that control how FORM
works, such as the maximum size of the substitution tree, the maximum size of a term that does not require
additional allocations, the size of the I/O buffers, and other settings. In order to simplify a large expression,
we need to redefine several settings, otherwise the program would stop due to insufficient memory.

The fully expanded form is utilized for polynomial representations in our usage of FORM. In this paper,
we use the version FORM 4.2.1.

8.4. GiNaC. GiNaC [7] is a C++ library for computer algebra, initially designed for Feynman diagram
calculations. On the contrary, to many other computer algebra systems which come with their own proprietary
interactive languages, GiNaC emphasizes programmatic use, extensibility and interoperability with other pro-
grams within a statically-typed compiled language (C++). Besides features commonly found in most systems,
such as big integers and polynomial simplification, GiNaC offers functionalities useful for Feynman diagram
calculations, such as handling of expressions involving Lorentz, Dirac, and color indices. In high energy physics
research, GiNaC is perhaps most well known for its support for numerical evaluations of special functions known
as multiple polylogarithms. A fork of GiNaC, PyNaC [45], was used as a core component of SageMath [46], a
flagship open-source computer algebra system.

The fully expanded form is utilized for polynomial representations in our usage of GiNaC. In this paper,
we use the version GiNaC 1.8.2.

8.5. Macaulay2. Macaulay2 [8] is system for computation in algebraic geometry and commutative al-
gebra, covering functionalities such as Groebner bases, free resolutions of modules, Betti numbers, primary

https://road.issn.org/


364 ВЫЧИСЛИТЕЛЬНЫЕ МЕТОДЫ И ПРОГРАММИРОВАНИЕ / NUMERICAL METHODS AND PROGRAMMING
2023, 24 (4), 352–367. doi 10.26089/NumMet.v24r425

decomposition of ideals, etc. Macaulay2 has been used in research in applying computational algebraic geome-
try to IBP reduction [47].

The fully expanded form is utilized for polynomial representation in our usage of Macaulay2. In this
paper, we use the Macaulay2 version 1.19.1+ds-6.

8.6. Maple. Maple is a general-purpose computer algebra system. It is widely used in high energy physics.
For example, the IBP reduction program AIR [18] is written in Maple. In comparison with its competitor Wol-
fram Mathematica, Maple offers a more conventional ALGOL/C-like programming language. High-performance
algorithms relevant for polynomials and rational functions are continually and actively developed in Maple (see
e.g. [44, 48, 49]). To simplify rational functions, Maple utilizes the normal function with the option expanded
to prevent storing polynomials in factorized form. Therefore the fully expanded form is used for polynomial
representation in our usage of Maple.

In this paper, we apply the version Maple 2022.
8.7. Maxima. Maxima [10] is a computer algebra system, a descendant of Macsyma, which allows many

different operations on symbolic and numeric expressions. Maxima is self-described as a “fairly complete com-
puter algebra system” and can be used to e.g. differentiate, integrate, solve Laplace transforms, and construct
graphs. Maxima, like its ancestor, is written in Lisp. It is distributed under the GNU GPL license. SageMath
[46] uses Maxima internally for certain nontrivial computations such as symbolic integration and taking limits.

Maxima has rich functionality for simplifications; it offers several functions for user to choose from: rat,
ratsimp, fullratsimp, radscan and many flags that affect how the functions work. Some functions are mainly
intended to simplify rational expressions, while others can simplify expressions containing logarithmic, expo-
nential and power functions. Some perform simplification once over the expression, while others do it until the
resulting expression stops to change.

In addition, several flags have been included to make it easier to parse the rational functions simplified
by Maxima: display2d:false disables 2D output, stardisp:true removes unnecessary multiplication signs, and
nolabels:true allows to remove unnecessary I/O labels for entered and resulting expressions.

A partial expanded form is utilized for polynomial representation in our use of Maxima. In this paper, we
apply the version Maxima 5.45.1.

8.8. Nemo (with a custom parser and printer). Nemo [11] is a computer algebra system for the
Julia programming language [50], and it aims to “provide highly performant commutative algebra, number
theory, group theory and discrete geometry routines.” It provides a fast Julia interface to C/C++ libraries such
as FLINT [51]. FLINT provides efficient operations for polynomials over a variety of number fields such as
rational numbers and prime fields. Benefiting from the EU-funded OpenDreamKit project for open-source
computer algebra, FLINT gained fast code for multivariate polynomials. Meanwhile, the Julia code in Nemo
provides, among other functionalities, operations for rational functions that build upon polynomial operations of
FLINT. In the current version of FUEL, we always use Nemo’s sparse multivariate polynomials and associated
rational functions. In the univariate case, specialized routines from Nemo and FLINT can be faster but have
not been used in our work due to a lack of implementation effort on our side.

A previous internal version of FUEL calls Nemo from a Julia REPL session (i.e. an interactive user session),
and the performance was poor due to the overhead of parsing. The parser of the Julia REPL is designed to
process arbitrary syntax in the Julia language and is relatively slow for our special purpose of parsing rational
function expressions. Fortunately, taking advantage of Julia’s JIT compilation, we are able to write a fast parser
for mathematical expressions based on a variation of the well-known shunting-yard algorithm. The parser is
included in a Julia package, RationalCalculator, bundled with FUEL. Additionally, the aforementioned package
supports printing out calculation results in a format that is not human-readable but instead optimized for
transfer of expressions between the simplifier and FUEL. Human readable output can be re-enabled by calling
a routine in FUEL, e.g. when FIRE writes out IBP reduction tables, so that the final IBP reduction table from
the FIRE run is unaffected.

The fully expanded form is utilized for polynomial representation in our usage of Nemo. In this paper, we
apply the versions Nemo 0.33.1 and Julia 1.8.5.

8.9. PARI/GP. PARI/GP is a computer algebra system focused on number theory, developed at the
University of Bordeaux. It can compute “factorizations, algebraic number theory, elliptic curves, modular forms,
L functions”, etc. [12]. PARI is a C library, while GP is the front-end that allows interactive use. We utilize GP
as the expression simplifier.

https://road.issn.org/


ВЫЧИСЛИТЕЛЬНЫЕ МЕТОДЫ И ПРОГРАММИРОВАНИЕ / NUMERICAL METHODS AND PROGRAMMING
2023, 24 (4), 352–367. doi 10.26089/NumMet.v24r425

365

A Horner-like form is used for polynomial representation by PARI/GP. In this paper, we apply the version
GP 2.13.3.

8.10. Symbolica. Symbolica is a new computer algebra system being developed by Ben Ruijl [13], which
aims to be a modernized incarnation of FORM [6], e.g. by using iterators in modern programming languages
to express the stream processing of large expressions that cannot be packed into RAM. Symbolica is written
in Rust, with interfaces for C/C++ and Python. Although Symbolica is at the early stage of development, it
already contains highly optimized code for polynomial GCD and rational function arithmetic.

The fully expanded form is utilized for polynomial representation in our use of Symbolica. In this paper,
we apply the version a8f72f (the commit hash) from the GitHub repository https://github.com/benruijl/
symbolica.git.

8.11. Wolfram Mathematica. Wolfram Mathematica is the most widely used general-purpose computer
algebra system as of today, at least in theoretical high energy physics research. It was initially developed by
Stephen Wolfram, with influences from Maxima and Wolfram’s earlier system, SMP. Mathematica offers a high-
level language emphasizing functional programming and term rewriting (called Replacement in Mathematica).
As of today, Mathematica encompasses a huge range of functionalities in symbolic and numerical computing.
Many software packages and research data in high energy physics are published in Mathematica’s formats.
FIRE, even when utilized in the C++ mode for the main computation, uses Mathematica for pre-processing
user-supplied integral family information and various post-processing tasks such as loading reduction tables and
finding symmetry rules relating master integrals. We apply the Together function in Mathematica to simplify
rational functions, and the output may consider either factorized or expanded polynomials.

In this paper, we use the version Mathematica 13.0.

References

1. K. G. Chetyrkin and F. V. Tkachov, “Integration by Parts: The Algorithm to Calculate 𝛽-Functions in 4 Loops,”
Nucl. Phys. B 192 (1), 159–204 (1981). doi 10.1016/0550-3213(81)90199-1.

2. S. Laporta, “High-Precision Calculation of Multiloop Feynman Integrals by Difference Equations,” Int. J. Mod.
Phys. A 15 (32), 5087–5159 (2000). doi 10.1142/S0217751X00002159.

3. J. Abbott, A. M. Bigatti, and L. Robbiano, CoCoA System: Computations in Commutative Algebra. http:
//cocoa.dima.unige.it. Cited October 4, 2023.

4. J. Abbott and A. M. Bigatti, CoCoALib: A C++ Library for Doing Computations in Commutative Algebra.
https://cocoa.dima.unige.it/cocoa/cocoalib/. Cited October 4, 2023.

5. R. H. Lewis, Fermat: A Computer Algebra System for Polynomial and Matrix Computation. http://home.bway.
net/lewis/. Cited September 30, 2023.

6. J. A. M. Vermaseren, The Main Directory for FORM. https://www.nikhef.nl/~form/maindir/maindir.html.
Cited September 30, 2023.

7. GiNaC is Not a CAS. https://ginac.de/. Cited September 30, 2023.
8. D. R. Grayson and M. E. Stillman. Macaulay2Doc: Macaulay2 Documentation. https://macaulay2.com/doc/Ma
caulay2/share/doc/Macaulay2/Macaulay2Doc/html/. Cited October 4, 2023.

9. Maplesoft: The Essential Tool for Mathematics. https://www.maplesoft.com/products/Maple/. Cited October 4,
2023.

10. Maxima: A Computer Algebra System. Version 5.43.2. https://maxima.sourceforge.io/. Cited September 30,
2023.

11. C. Fieker, W. Hart, T. Hofmann, and F. Johansson, “Nemo/Hecke: Computer Algebra and Number Theory Packages
for the Julia Programming Language,” in Proc. 2017 ACM Int. Symposium on Symbolic and Algebraic Computation,
Kaiserslautern, Germany, July 23–28, 2017 (ACM Press, New York, 2017), pp. 157–164. doi 10.1145/3087604.
3087611.

12. PARI/GP Version 2.11.2, Univ. Bordeaux, 2022. http://pari.math.u-bordeaux.fr/. Cited October 1, 2023.
13. Symbolica. https://symbolica.io/. Cited October 1, 2023.
14. Wolfram Mathematica, Version 13.1. https://www.wolfram.com/mathematica. Cited October 1, 2023.
15. A. V. Smirnov and V. A. Smirnov, “FIRE4, LiteRed and Accompanying Tools to Solve Integration by Parts Rela-

tions,” Comput. Phys. Commun. 184 (12), 2820–2827 (2013). doi 10.1016/j.cpc.2013.06.016.
16. A. V. Smirnov, “FIRE5: A C++ Implementation of Feynman Integral REduction,” Comput. Phys. Commun. 189,

182–191 (2015). doi 10.1016/j.cpc.2014.11.024.

https://road.issn.org/
https://github.com/benruijl/symbolica.git
https://github.com/benruijl/symbolica.git
https://dx.doi.org/10.1016/0550-3213(81)90199-1
https://dx.doi.org/10.1142/S0217751X00002159
http://cocoa.dima.unige.it
http://cocoa.dima.unige.it
https://cocoa.dima.unige.it/cocoa/cocoalib/
http://home.bway.net/lewis/
http://home.bway.net/lewis/
https://www.nikhef.nl/~form/maindir/maindir.html
https://ginac.de/
https://macaulay2.com/doc/Macaulay2/share/doc/Macaulay2/Macaulay2Doc/html/
https://macaulay2.com/doc/Macaulay2/share/doc/Macaulay2/Macaulay2Doc/html/
https://www.maplesoft.com/products/Maple/
https://maxima.sourceforge.io/
https://dx.doi.org/10.1145/3087604.3087611
https://dx.doi.org/10.1145/3087604.3087611
http://pari.math.u-bordeaux.fr/
https://symbolica.io/
https://www.wolfram.com/mathematica
https://dx.doi.org/10.1016/j.cpc.2013.06.016
https://dx.doi.org/10.1016/j.cpc.2014.11.024


366 ВЫЧИСЛИТЕЛЬНЫЕ МЕТОДЫ И ПРОГРАММИРОВАНИЕ / NUMERICAL METHODS AND PROGRAMMING
2023, 24 (4), 352–367. doi 10.26089/NumMet.v24r425

17. A. V. Smirnov and F. S. Chukharev, “FIRE6: Feynman Integral REduction with Modular Arithmetic,” Comput.
Phys. Commun. 247, Article Number 106877 (2020). doi 10.1016/j.cpc.2019.106877.

18. C. Anastasiou and A. Lazopoulos, “Automatic Integral Reduction for Higher Order Perturbative Calculations,” J.
High Energy Phys. No. 7, Article Identifier 046 (2004). doi 10.1088/1126-6708/2004/07/046.

19. A. von Manteuffel and C. Studerus, “Reduze 2 — Distributed Feynman Integral Reduction,” https://arxiv.org/
abs/1201.4330. Cited October 1, 2023.

20. R. N. Lee, “LiteRed 1.4: A Powerful Tool for Reduction of Multiloop Integrals,” J. Phys. Conf. Ser. 523 (1), Article
Identifier 012059 (2014). doi 10.1088/1742-6596/523/1/012059.

21. P. Maierhöfer, J. Usovitsch, and P. Uwer, “Kira — A Feynman Integral Reduction Program,” Comput. Phys.
Commun. 230, 99–112 (2018). doi 10.1016/j.cpc.2018.04.012.

22. P. Maierhöfer and J. Usovitsch, “Kira 1.2 Release Notes,” https://arxiv.org/abs/1812.01491. Cited October 1,
2023.

23. J. Klappert, F. Lange, P. Maierhöfer, and J. Usovitsch, “Integral Reduction with Kira 2.0 and Finite Field Methods,”
Comput. Phys. Commun. 266, Article Number 108024 (2021). doi 10.1016/j.cpc.2021.108024.

24. J. M. Henn, A. V. Smirnov, V. A. Smirnov, and M. Steinhauser, “A Planar Four-Loop Form Factor and Cusp
Anomalous Dimension in QCD,” J. High Energy Phys. No. 5, Article Identifier 066 (2016). doi 10.1007/JHEP
05(2016)066.

25. J. Henn, R. N. Lee, A. V. Smirnov, et al., “Four-Loop Photon Quark Form Factor and Cusp Anomalous Dimension
in the Large-𝑁𝑐 Limit of QCD,” J. High Energy Phys. No. 3, Article Identifier 139 (2017). doi 10.1007/JHEP
03(2017)139.

26. R. N. Lee, A. V. Smirnov, V. A. Smirnov, and M. Steinhauser, “𝑛2
𝑓 Contributions to Fermionic Four-Loop Form

Factors,” Phys. Rev. D 96 (1), Article Identifier 014008 (2017). doi 10.1103/PhysRevD.96.014008.
27. D. Bendle, J. Böhm, W. Decker, et al., “Integration-by-Parts Reductions of Feynman Integrals Using Singular and

GPI-Space,” J. High Energy Phys. No. 2, Article Identifier 079 (2020). doi 10.1007/JHEP02(2020)079.
28. R. N. Lee, “Group Structure of the Integration-by-Part Identities and Its Application to the Reduction of Multiloop

Integrals,” J. High Energy Phys. No. 7, Article Identifier 031 (2008). doi 10.1088/1126-6708/2008/07/031.
29. B. Ruijl, T. Ueda, and J. A. M. Vermaseren, “Forcer, a FORM Program for the Parametric Reduction of Four-Loop

Massless Propagator Diagrams,” Comput. Phys. Commun. 253, Article Number 107198 (2020). doi 10.1016/j.
cpc.2020.107198.

30. A. V. Smirnov and V. A. Smirnov, “How to Choose Master Integrals,” Nucl. Phys. B 960, Article Number 115213
(2020). doi 10.1016/j.nuclphysb.2020.115213.

31. J. Usovitsch, “Factorization of Denominators in Integration-by-Parts Reductions,” http://arxiv.org/abs/2002.
08173. Cited October 1, 2023.

32. X. Liu and Y.-Q. Ma, “Determining Arbitrary Feynman Integrals by Vacuum Integrals,” Phys. Rev. D 99 (7),
Article Identifier 071501 (2019). doi 10.1103/PhysRevD.99.071501.

33. X. Guan, X. Liu, and Y.-Q. Ma, “Complete Reduction of Integrals in Two-Loop Five-Light-Parton Scattering
Amplitudes,” Chinese Phys. C 44 (9), Article Identifier 093106 (2020). doi 10.1088/1674-1137/44/9/093106.

34. J. Gluza, K. Kajda, and D. A. Kosower, “Towards a Basis for Planar Two-Loop Integrals,” Phys. Rev. D 83 (4),
Article Identifier 045012 (2011). doi 10.1103/PhysRevD.83.045012.

35. R. M. Schabinger, “A New Algorithm for the Generation of Unitarity-Compatible Integration by Parts Relations,”
J. High Energy Phys. No. 1, Article Identifier 077 (2012). doi 10.1007/JHEP01(2012)077.

36. K. J. Larsen and Y. Zhang, “Integration-by-Parts Reductions from Unitarity Cuts and Algebraic Geometry,” Phys.
Rev. D 93 (4), Article Identifier 041701 (2016). doi 10.1103/PhysRevD.93.041701.

37. J. Böhm, A. Georgoudis, K. J. Larsen, et al., “Complete Integration-by-Parts Reductions of the Non-Planar Hexagon-
Box via Module Intersections,” J. High Energy Phys. No. 9, Article Identifier 024 (2018). doi 10.1007/JHEP09(2018)
024.

38. H. Ita, “Two-Loop Integrand Decomposition into Master Integrals and Surface Terms,” Phys. Rev. D 94 (11),
Article Identifier 116015 (2016). doi 10.1103/PhysRevD.94.116015.

39. S. Abreu, F. Febres Cordero, H. Ita, et al., “Two-Loop Four-Gluon Amplitudes from Numerical Unitarity,” Phys.
Rev. Lett. 119 (14), Article Identifier 142001 (2017). doi 10.1103/PhysRevLett.119.142001.

40. S. Abreu, F. Febres Cordero, H. Ita, et al., “Planar Two-Loop Five-Gluon Amplitudes from Numerical Unitarity,”
Phys. Rev. D 97 (11), Article Identifier 116014 (2018). doi 10.1103/PhysRevD.97.116014.

41. A utility to accurately report the core memory usage for a program. https://raw.githubusercontent.com/pixe
lb/ps_mem/master/ps_mem.py. Cited October 1, 2023.

https://road.issn.org/
https://dx.doi.org/10.1016/j.cpc.2019.106877
https://dx.doi.org/10.1088/1126-6708/2004/07/046
https://arxiv.org/abs/1201.4330
https://arxiv.org/abs/1201.4330
https://dx.doi.org/10.1088/1742-6596/523/1/012059
https://dx.doi.org/10.1016/j.cpc.2018.04.012
https://arxiv.org/abs/1812.01491
https://dx.doi.org/10.1016/j.cpc.2021.108024
https://dx.doi.org/10.1007/JHEP05(2016)066
https://dx.doi.org/10.1007/JHEP05(2016)066
https://dx.doi.org/10.1007/JHEP03(2017)139
https://dx.doi.org/10.1007/JHEP03(2017)139
https://dx.doi.org/10.1103/PhysRevD.96.014008
https://dx.doi.org/10.1007/JHEP02(2020)079
https://dx.doi.org/10.1088/1126-6708/2008/07/031
https://dx.doi.org/10.1016/j.cpc.2020.107198
https://dx.doi.org/10.1016/j.cpc.2020.107198
https://dx.doi.org/10.1016/j.nuclphysb.2020.115213
http://arxiv.org/abs/2002.08173
http://arxiv.org/abs/2002.08173
https://dx.doi.org/10.1103/PhysRevD.99.071501
https://dx.doi.org/10.1088/1674-1137/44/9/093106
https://dx.doi.org/10.1103/PhysRevD.83.045012
https://dx.doi.org/10.1007/JHEP01(2012)077
https://dx.doi.org/10.1103/PhysRevD.93.041701
https://dx.doi.org/10.1007/JHEP09(2018)024
https://dx.doi.org/10.1007/JHEP09(2018)024
https://dx.doi.org/10.1103/PhysRevD.94.116015
https://dx.doi.org/10.1103/PhysRevLett.119.142001
https://dx.doi.org/10.1103/PhysRevD.97.116014
https://raw.githubusercontent.com/pixelb/ps_mem/master/ps_mem.py
https://raw.githubusercontent.com/pixelb/ps_mem/master/ps_mem.py


ВЫЧИСЛИТЕЛЬНЫЕ МЕТОДЫ И ПРОГРАММИРОВАНИЕ / NUMERICAL METHODS AND PROGRAMMING
2023, 24 (4), 352–367. doi 10.26089/NumMet.v24r425

367

42. A. V. Belitsky, L. V. Bork, A. F. Pikelner, and V. A. Smirnov, “Exact Off Shell Sudakov Form Factor in 𝒩 = 4

Supersymmetric Yang–Mills Theory,” Phys. Rev. Lett. 130 (9), Article Identifier 091605 (2023). doi 10.1103/Ph
ysRevLett.130.091605.

43. A. V. Belitsky, L. V. Bork, and V. A. Smirnov, “Off-Shell Form Factor in 𝒩 = 4 sYM at Three Loops,” https:
//arxiv.org/abs/2306.16859. Cited October 1, 2023.

44. M. Monagan and R. Pearce, “Fermat Benchmarks for Rational Expressionals in Maple,” ACM Commun. Comput.
Algebra 50 (4), 188–190 (2016). doi 10.1145/3055282.3055299.

45. Pynac — symbolic computation with Python objects, Sage Math support library. https://github.com/pynac/pyn
ac. Cited October 1, 2023.

46. P. Zimmermann, A. Casamayou, N. Cohen, et al., Computational Mathematics with SageMath (SIAM Press,
Philadelphia, 2018).

47. Y. Zhang, Lecture Notes on Multi-Loop Integral Reduction and Applied Algebraic Geometry. https://arxiv.org/
abs/1612.02249. Cited October 1, 2023.

48. M. Monagan and R. Pearce, “Poly: A New Polynomial Data Structure for Maple 17,” ACM Commun. Comput.
Algebra 46 (3/4), 164–167 (2013). doi 10.1145/2429135.2429173.

49. M. Monagan, “Speeding up Polynomial GCD, a Crucial Operation in Maple,” Maple Trans. 2 (1), Article Num-
ber 14457 (2022). doi 10.5206/mt.v2i1.14452.

50. J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, “Julia: A Fresh Approach to Numerical Computing,” SIAM
Rev. 59 (1), 65–98 (2017). doi 10.1137/141000671.

51. W. B. Hart, “Flint Fast Library for Number Theory,” Computeralgebra-Rundbrief, No. 49, 15–17 (2011). https:
//fachgruppe-computeralgebra.de/data/CA-Rundbrief/car49.pdf. Cited October 3, 2023.

Received
September 22, 2023

Accepted for publication
September 25, 2023

Information about the authors

Kirill S. Mokrov — Student, Lomonosov Moscow State University, Faculty of Computational Mathematics and
Cybernetics, Leninskie Gory, 1, building 52, 119991, Moscow, Russia.

Alexander V. Smirnov — Dr. Sci., Laboratory head; Lomonosov Moscow State University, Research Computing
Center, Leninskie Gory, 1, building 4, 119234, Moscow, Russia.

Mao Zeng — Ph.D., Royal Society University Research Fellow; Higgs Centre for Theoretical Physics, University
of Edinburgh, James Clark Maxwell Building, Peter Guthrie Tait Road, EH9 3FD, Edinburgh, United
Kingdom.

https://road.issn.org/
https://dx.doi.org/10.1103/PhysRevLett.130.091605
https://dx.doi.org/10.1103/PhysRevLett.130.091605
https://arxiv.org/abs/2306.16859
https://arxiv.org/abs/2306.16859
https://dx.doi.org/10.1145/3055282.3055299
https://github.com/pynac/pynac
https://github.com/pynac/pynac
https://arxiv.org/abs/1612.02249
https://arxiv.org/abs/1612.02249
https://dx.doi.org/10.1145/2429135.2429173
https://dx.doi.org/10.5206/mt.v2i1.14452
https://dx.doi.org/10.1137/141000671
https://fachgruppe-computeralgebra.de/data/CA-Rundbrief/car49.pdf
https://fachgruppe-computeralgebra.de/data/CA-Rundbrief/car49.pdf

	1. Introduction
	2. Problem statement
	3. Simplifiers, input data, and connecting to FIRE
	3.1. Overview
	3.2. Connecting with the simplifier
	3.3. Connected simplifiers

	4. Benchmark tests with small to moderately large expressions
	4.1. Testing method
	4.2. Description of test data
	4.3. Results for running time

	5. Additional tests with huge expression with low parsing overhead
	6. Memory usage
	7. Tests with FIRE
	7.1. A simple example
	7.2. A complicated example

	8. Conclusions
	Appendix 1. Overviews of connected simplifiers
	8.1. CoCoA
	8.2. Fermat
	8.3. Form
	8.4. GiNaC
	8.5. Macaulay2
	8.6. Maple
	8.7. Maxima
	8.8. Nemo (with a custom parser and printer)
	8.9. PARI/GP
	8.10. Symbolica
	8.11. Wolfram Mathematica

	9. References

