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Abstract: The objective of this paper is to construct a generalized quadratic spectrum approxima-
tion based on the Kantorovich projection method which allows us to deal with the spectral pollution
problem. For this purpose, we prove that the property U (see Eq. 3) holds under weaker conditions
than the norm and the collectively compact convergence. Numerical results illustrate the effectiveness
and the convergence of our method.
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Amnnoranus: Ienbo gannoil paboThI SIBJIAETCS MOCTPOEHUE 0OOOINEHHON KBaJIPATHIHON alllIPOKCH-
MAaIlMU CIIEKTPa HA OCHOBE IPOEKIIMOHHOTO MeTofa KaHTopoBHMYa, KOTOpas HO3BOJISET CIPABUTHCH
¢ 1pobJIeMOit CIIEKTPAJIBHOrO 3arpgasnenus. st 9Toro Mbl gokasbiBaeM, uro csoiicto U (eMm. (3))
BBITNIOJTHAETCS TIPU OoJIee CIabbIX YCIOBUSAX, I€M HOPMa M KOJUIEKTUBHO KOMIAKTHAS CXOJUMOCTD.
YucsieHHbIE PE3YJIBTATH UILTIOCTPUPYIOT 3P HEKTUBHOCTD U CXOIUMOCTH HAIIET0 METOIA.

KuroueBble ciioBa: crieKTpaJibHOE 3arpsi3HeHne, AlllTPOKCUMAIIHS CIIEKTPAa, Tpoekins Kantoposuya,
CODCTBEHHOE 3HAYEHUE
Hnsa murupoBauusi: Kamym C., ['u66u X., ['ustr M., Kypymnait M. Merox npoeknuu Kanroposuua

B IpubJIzKeHnH 0600IIEHHOrO KBaAPATUIHOrO ClIeKTpa // BoluncimresbHbIe METOBI M IPOIPAMME-

posanue. 2022. 23, Ne 3. 240-247. doi 10.26089/NumMet.v23r315.

1. Introduction. The eigenvalue problem is one of the key issues in the modern investigations. For
instance, the solution of this problem constitutes the basis of chemist’s and physicist’s studies on finding a
stable electron orbits in atoms and molecules. The stable states of electrons are described by eigenvectors
whose eigenvalues correspond to energy states. This kind of studies allows to simulate 3D molecules shape and
to determine the possible reactions between two molecules using the density functional theory “DFT” [1-3].

In our work we are interested in the generalized quadratic eigenvalue problem associated to three bounded
linear operators (A, B, I + D) from a Banach space B into itself (see also [4]), where T is the identity operator
of B. It is formulated by the following way: it is necessary to find the couple (A, z) € C x B\ {0} such that

N Az + \Bz + (I + D)z =0, (1)

where \ is a generalized quadratic eigenvalue of operators (A4, B, I + D) and z is the corresponding eigenvector.

This problem appears in the mathematical modeling of real engineering tasks such as the vibration analysis
of structural systems, vibro-acoustics and the study of the linear stability of flows in fluid mechanics [5]. In
addition, it arises in the spectral approximation of quadratic pencil of the Sturm-Liouville and Schrédinger
operators [6, 7].

In order to build an accurate method and to avoid the spectral pollution [8-11], we construct an approxi-
mation of the operators A, B, and D using the Kantorovich projection method [12-14] which allows us to satisfy
the property U under weaker conditions than those used in [15-17]. The authors in [4] proved that property U
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holds for the quadratic spectral problem of three bounded operators A, B and C, which may be written in the
following form

Find (\,2) € C x B\ {0}: MAx+ ABz+ Cz =0, (2)
under the norm convergence and the collectively compact convergence of the sequences of bounded linear
operators {An}, cn > {Bn}pen and {Cn}, oy, which means that

If N, € sp(A,, B,,C,) and A, — A, then A € sp(4, B,C). (3)

2. The Kantorovich projection in the generalized quadratic spectrum approximation. Let A, B
and D be three bounded linear operators defined on a Banach space (B, ] - ||) into itself. We determine the
generalized quadratic resolvent set denoted by re(A, B, I+ D) as a set of the complex numbers \ such that A\2A+
AB+ (I+D) is bijective one from B into BB and its inverse expression is bounded, i.e. [A\2A + AB + (I + D)] e
BL(B), where BL(B) is the Banach space of all linear bounded operators defined on B into itself, equipped with
the following norm

VK € BL(B) : [[[K[][ = sup [Kz]|. (4)

lzl=1
The complementary of re(A, B,I + D) in C is the generalized quadratic spectrum sp(A, B, I + D), i.e.
sp(A, B, I + D) = C\ 1e(4, B, + D). (5)

Let {Af}neN , {Brlf}neN and {D,If}neN be sequences in BL(B), where AX BX DX are the approximate oper-
ators by the Kantorovich projection method given by equalities

AX =7, A, B¥ =r,B, D¥=r,D, (6)

where 7, € BL(B) is a bounded projection such as 72 = 7, [12],[14]. In this paper, we do not require that A, B
and D to be compact operators.
Let G and H € BL(B). We suppose that

(S1) m,x converges to x for all x € B.
(S2) GH is a compact operator, where G, H € {A, B, D}.

The assumption (S2) is important in our study because it improves the previous results [16], where the compact-
ness of the operators (A4, B, D) was required to get the spectrum convergence. In order to show the significance
of (S2), we consider the Cauchy integral operator H, defined as

1 s—e 1
t t t
H%(s):]{x()dt:nm /ﬂdw/ * gyl 0<s<t. (7)
t—s e—0 t—s t—s
0 0 s+e

We know that H is a bounded no compact operator in L?(0,1) (see [18]), but H? is compact. In fact,
1
Ha(t) = ]{ R(t,0)2(0)d0, 0<t<1, (8)
0
where R(t,0) is a continuous function defined on ]0, 1[? by

1
ds Injt|]—=In|f] In|l—0]—In|l—t¢
P = 1 .
R(t,0) 7{(84)(9_3) P — L 0<{LO} <1, t+£6 )
0

The authors in [14] showed that the Kantorovich projection method converges in the norm sense, i.e. if
T € BL(B) is a compact, then TX = T i.e. ||T¥ — T||| — 0. They also mentioned that the norm convergence
implies the v-convergence, which is denoted as TX 5T, e,

TN is bounded, |||(T5¢ = T)T[| =0 and [[[(T;* = T)T (]| = 0. (10)

The assumptions (S1) and (S2) proved that the sequences { A} o {BX} . and {Di} - converge in the
v-convergence sense.
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Theorem 1 If the hypotheses (S1) and (S2) are satisfied, then for all A € C  \2AX + \BK 4+ DX converges
in v-convergence sense to \2A + AB + D.

Proof TFirstly, we prove that ||[[\2AK + ABX + DK||| is bounded. Since A, B, D € BL(13), we have
IIAZAT +ABE + D[] < [N A+ AB + DI|| - [[|m -

Using now the Uniform Boundedness Principle (see [19]), we find that |||7,]||| is bounded, which allows us to
obtain the result.

Secondly, we show that ||| [(\2AX + ABEK + DK) — (\24+ AB + D)] (A A+ AB+ D) ||| — 0.

For this aim, we write down the following inequality:

| [(\AK + ABK + DE) — (N?A+AB+D)] (A2 A+ AB+D) |||
<IIA* (A — A) Al|| + I3 (BE — B) Alll + [||2* (DX — D) Al
+ [\ (AX = A) B||| + |[I1A* (B — B) Bl|| +|||x (DX — D) B]|

+ [\ (A% — A) D[+ |[|A (B = B) DI|| + [[| (D5 — D) DI|l. (11)
For all n € N, we have
I (AK = A) Al = Il (mn A — A) All] = ||| (mn — 1) A%||| = Slellgll (mn — I) A%2|
< sup | (m — 1) A%2|| < sup || (7, — I) A%z|| — 0.
z€A2(w(0,1)) z€w(0,1)

Proceeding in a similar way with other parts of inequality (11), we arrive to the analogous results, namely
(] (AnK — A) Li|| = 0, ||| (Bff — B) L||| — 0 and ||| (D,If — D) L||| — 0, where L € {4, B, D}.

Finally, we demonstrate that ||| [(A2AK + ABX + DK) — (A2A+ AB + D)| (\2AX + ABX + DK) ||| — 0.
Indeed,

| [(\AK + ABEK + DE) — (NA+AB + D)] (\*AK + ABK + D) |||
< [|IA* (AKX = A) AX[|| + |[13° (BX = B) AX|l| + 1||2* (DX — D) AX]]
+[|IA® (A} — A) BE|I| + |IIA* (BE — B) BiX||| + |I|A (DX — D) BX|||

+ 1A% (45 = A) D[l + A (B = B) DIl + 11 (D5 = D) DifIIL. - (12)
For all n € N, we have
1 (A% = A) A = 1]l (mn A = A) m Al = [[] (10 — 1) Ama Alll- (13)

Since the projection 7, is a finite rank approximation, then rank(Am,A) is a finite one as well. This fact leads to
|| (s, — I) A, Al|| = 0. For the rest terms in (12) we get the following similar outcomes: ||| (AX — A) LE||| — 0,
11 (By = B) L[] = 0, [[| (D = D) Li¥||] = 0, where L;¥ € {AF, B, Dyt }.

Theorem 2 If the assumptions (S1) and (S2) are valid, \,, € sp(AX, B I+ DX) and \,, — X for alln € N,
then X € sp(A,B,I + D).

Proof Let us define

TE = N AX + ABF + DY foralln € N and T = A+ AB+D.

We suppose that A € re(A, B, D + 1), i.e. that (A2 A+ B+ D +1)"! = (T +1)~! is bounded. It implies that
A = —1 is a resolvent value of T. On the other hand, \, € sp(AK, BE T + DK) then \, = —1 € sp(TX).
The first theorem proves that TX 2 T and )\, — —1, since the property U associated to the standard spectral
problem, implies that A, — A. Indeed, if A\, € sp(TX) and A, — A, then A\ € sp(T) (see [6]). As a result,
we obtain that A\ = —1 € sp(T'), which contradicts our assumption at the beginning of the proof. Therefore, A
must be in sp(A, B, D + I).
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3. The Kantorovich projection application. In this section, we provide an example demonstrating
the efficiency of the Kantorovich projection method in the generalized quadratic spectrum approximation. Let
us apply our method to compute the generalized quadratic spectrum of the quadratic pencil of Schrédinger’s
operator, generated in L?([0, +oo[) by

—a" + 2+ 2\ — N2z =0, te€]0,+o0],
(P)
z(0) = 0.

The spectrum of this operator contains only the eigenvalues that are given by {1 +2vVk, keN *} . Using

the same technique as in [4], we transform the problem (P) to the quadratic spectral problem, which is formulated
in the following way: for all x € L?(0,a) it is necessary to find such values A € C that A\2Ax(t) + ABx(t) + (I +
D)xz(t) = 0, where A, B, C are integral operators given by

A(t) = / ka(t s)z(s)ds,  Ba(t) = / ks(ts)z(s)ds,  Da(t) = / ko (£, 5)2(s)ds.
0 0

Here I is the identity operator of L?(0,a) and the kernels k, ks, k3 read:

t(s—a)/a, if 0<t<s<a,
kl(t7s) -
s(t—a)/a, if 0<s<t<a,
bo(ts) — 2t(a —s)/a, if 0<t<s<a,
2s(a—t)/a, if 0<s<t<a,
s*t(a—s)/a, if 0<t<s<a,
ka(ts) = § STV
s*(a—t)/a, f 0<s<t<a
We define a uniform discretization of [0, a] by
zn{n>2, hy = “1, t;=( —1)hn, 1<j<n}. (14)
n—

Firstly, we apply the Kantorovich projection on the operators A, B, D to define the approximate operators
AE,BE,DE:

3
3

Aalt) = 3 Aat)es(0) = Y | [ty )a(s)ds| ) = D ajes o),
0 Jj=1

BXa(t) = " Balty)es () = 3 / alty, s)o(s)ds | e;(6) = S Bies ),
0 7=l

DXx(t) =Y Da(t;)e;(t) = //f:s(tj,S)ff(S)dS ej(t) = e (t),
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and {e; };';1 are the hat functions, defined in the following form for all 2 < j < n — 1:

t—1ti_
— =t <t <y,

_ tiv1 —t .
ej(t) - L7 if tj <t<t]’+1,

0, otherwise,

to — 1
L it <t <ty
el(t) = h
0, otherwise,
t_tn—l .
Sl b <t <
en(t) _ A I'lpn-1xt1x1ln

0, otherwise.

Taking into account the aforesaid, the quadratic spectral problem may be rewritten in the form of the following

finite dimension quadratic eigenvalue problem:

N> e (t) + A Biei(t) + D ysei(t) +x(t) = 0.
j=1 j=1 j=1

(15)

Secondly, multiplying (15) by ki1 (¢;, ), k2(t;, s) and ks(¢;, s) respectively and integrating then it over [0,a], we

arrive to the system:

NN TP Gy + A Y P, 3)B + Y Pa(i, ) +aq =0,

j=1 j=1 j=1

NN Poling)ey + A Palinj)Bi + Y Paliy i)y + Bi =0,
Jj=1 j=1 j=1

NN Py(ing)oy + XY Pslin )8+ Y Ps(iy i)y + 7 =0,
Jj=1 j=1 j=1

where new functions, included in this system, are defined for all 1 < {i,j} < n by the following way:

P, j) = /kzl(ti,s)ej(s)ds,
0

PQ(Z7]) = /kg(ti78)€j(5)d5,
0

P3(i,j) == /kg(ti, s)ej(s)ds.

0

Thirdly, we rewrite the previous system in a block matrix form:

P 0O « 0 P O « I, O P « 0
Al P, 00 B1+X| 0 P O g |+ 0 I, P B1=10
P; 0 0 ¥ 0 P O y 0 0 P+1, Y 0

(16)

Finally, we compute the quadratic eigenvalues \,,. To show that the problem of the spectral pollution is solved,

we will need the following definition:

An is called e-acceptable eigenvalue if dist(\,,sp(A, B,I + D)) < e.

(17)

Firstly, to calculate Py, P>, and P3 we set a = 1. Then, we use the function polyeig in Matlab to compute
the quadratic eigenvalues of the quadratic pencil presented in (16). In addition, fixing ¢ = 1072, we find the
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number of acceptable eigenvalues denoted as VP, and satisfied by (17). The corresponding numerical results
are shown in Table 1, where VP,,, represents the number of the eigenvalues obtained by our method, and P%
is the ratio between VP,c. and VPgupp.

Comments. We notice that if the value of n is increased,

the number of acceptable eigenvalues also grows. This means Table 1. Numerical results

that these value.s C(?nverge to the ex.act elgenvah.les. In this " VPasy VPt P%

regard, the application of the generalized quadratic spectrum

approximation method allows for avoiding the problem of 100 196 166 8.69%

spectral pollution. 200 396 366 92.42%
4. Conclusion. The theoretical study of the generalized 300 596 568 95.30%

quadratic spectrum approximation, based on the Kantorovich 400 796 764 95.98%

projection method, is carried out under weak hypotheses com- 500 996 968 97.19%

pared to those used in previous researches. We have built the

new

approximation method of the generalized quadratic spec-

trum which allows us to avoid spectral pollution. This method enables to transform the spectral problem defined
in infinite dimension into a finite dimensional matrix problem. Numerical tests show the effectiveness of the
studied approach for computing of the generalized quadratic eigenvalues.
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