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Аннотация: Уравнение конвекции–диффузии с преобладающей конвекцией рассматривается
на равномерной сетке центрально-разностной схемы. Многосеточный метод используется для
решения сильно несимметричных систем линейных алгебраических уравнений с положительно
определенными матрицами коэффициентов. Двухшаговые косоэрмитовы итерационные методы
впервые используются в качестве сглаживающей процедуры. Демонстрируется, что надлежа-
щий выбор сглаживателей позволяет улучшить сходимость многосеточного метода. Локальный
фурье-анализ и численные эксперименты приводят к выводу об устойчивости сглаживателей
по отношению к изменению числа Пекле.
Ключевые слова: уравнение конвекции–диффузии, многосеточные методы, сглаживающая
процедура, модифицированное эрмитово и косоэрмитово расщепление матрицы, локальный
фурье-анализ, сходимость
Для цитирования: Мартынова Т.С., Муратова Г.В., Шабас И.Н., Бавин В.В., “Многосеточ-
ные методы с косо-эрмитовыми сглаживателями для задач конвекции–диффузии с преоблада-
ющей конвекцией” // Вычислительные методы и программирование. 2022. 23, № 1. 46–59. doi
10.26089/NumMet.v23r104.

1. Introduction. The need to solve the convection–diffusion equation arises in the mathematical modeling
of a great number of real processes. Especially many problems appear when the highest derivative has a small
parameter. Various approaches for solving this problem are proposed. They are related to both different
approximation methods of convective terms, which significantly affect the properties of the resulting non-
symmetric matrix, and the construction of special grids [1–4]. Moreover, this class of problems is a test one
when studying the convergence of iteration methods for solving non-self-adjoint systems of linear equations.
Applying upwind differences for approximation of the first order derivatives, we can obtain a 𝑀 -matrix [5],
whereas using of the central differences allows to get a positive definite matrix [6].

We have used central difference approximation of convective terms. In this case, the resulting system of lin-
ear algebraic equations (SLAE) is a strongly non-symmetric one [7]. A new class of product-type skew-Hermitian
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triangular splitting iteration methods (PSTS) has been created to solve this type of linear systems [8, 9]. In
addition, it was shown that these methods are effective as preconditioners for Krylov subspace methods. Any
method in this class has the same behavior as the Gauss-Seidel iteration, i.e. it quickly reduces the high-
frequency components of error frequencies but not the low-frequency ones [10]. This is the necessary property
of the smoother of a multigrid method (MGM) [11–14], which is a successful tool for the solution of the SLAEs
associated with discretization of boundary-value problems.

One of the universal methods for solving difference equations is the Fedorenko geometric multigrid method
(GMG) [11] based on the use of a sequence of nested grids and transition operators from one grid to another. In
this method, the solution process starts with the coarsest mesh. The resulting solution is interpolated to a fine
mesh and used as an initial approximation in some iterative process, which requires a relatively small number
of iterations to achieve a given accuracy.

The GMG for the elliptic problems with anisotropic discontinuous coefficients has been investigated in [15].
The authors of this paper have considered a 3-D diffusion problem with general boundary conditions and studied
two iterative smoothers: the Chebyshev operator polynomial and a rational function. A geometric multigrid
solver for the compact discontinuous Galerkin method was considered in [16] by constructing a hierarchy of
coarser meshes using an agglomeration method that handles arbitrary element shapes and sizes. This method
extends to other discontinuous Galerkin discretizations. In [17] authors compare the performance of seven
different element agglomeration algorithms on unstructured triangular/tetrahedral meshes used as part of a
geometric multigrid.

Nevertheless, there are classes of problems for which geometric techniques are too difficult to apply or
cannot be used at all. They can be solved by the algebraic multigrid methods (AMG), introduced in [18–
20]. In AMG the construction of auxiliary SLAE is carried out from the original SLAE by algebraic methods,
i.e. without using information about the computational grid. This is especially actual when solving complex
problems on unstructured grids. A comparative analysis of the classical algebraic and geometric approaches in
the MGM was performed in [21]. The author of this work presented universal multigrid technology (UMT), which
is a kind of geometric multigrid methods, developed for the numerical solution of boundary value problems. The
UMT is a computing technology for use in software products arranged according to the “black box” principle.

We have used the AMG with the PMIS coarsening algorithm [22–23] for solving the incompressible un-
steady Navier-Stokes equations, where the Hermitian/skew-Hermitian splitting (HSS) and the skew-Hermitian
triangular splitting (STS) methods have been used as smoothers [24]. Convergence analysis of the MGM with
the HSS based smoothers for the second-order non-self-adjoint elliptic problems has been done in [25]. In [26]
authors have investigated the performance of smoothers relying on the HSS and of the augmented Lagrangian
splittings applied to MAC (Marker-and-Cell) discretization of the Oseen problem. Local Fourier analysis (LFA)
has been implemented in [12, 14] for 2-D lid-driven cavity problem and both steady and unsteady flows have
been considered there. The LFA of the block-structured multigrid relaxation schemes for the staggered finite-
difference discretization (MAC scheme) of the Stokes equations has been performed in [27]. A parallel imple-
mentation of the AMG for solving a system of linear equations generated by a finite-volume discretization of
the Navier-Stokes equations on unstructured grids has been considered in [28].

The multigrid efficiency depends on the adjustment of its components to the problem being solved. We
improve the convergence of the MGM by choosing special smoothers. Multigrid convergence with the PSTS
smoothers is proved. A smoothing method may be called robust if it works for all small values of the Peclet
number Pe for the convection–diffusion problems. Local Fourier analysis and numerical experiments indicate
that the PSTS-multigrid method (multigrid method with the PSTS based smoothers) is quite efficient. In this
regard, the use of the multigrid method with the proposed skew-Hermitian based smoothers will be advantageous
in solving SLAEs with a strongly nonsymmetric matrix of coefficients, which arise in the process of studying
problems of hydrodynamics in particular.

2. Convection–diffusion problem. Let us consider the steady convection–diffusion problem with the
Dirichlet boundary condition⎧⎪⎨⎪⎩

− 1

Pe
△ 𝑢+

1

2

[︂
𝑣1
𝜕𝑢

𝜕𝑥
+ 𝑣2

𝜕𝑢

𝜕𝑦
+
𝜕(𝑣1𝑢)

𝜕𝑥
+
𝜕(𝑣2𝑢)

𝜕𝑦

]︂
= 𝐹, in Ω,

𝑢 = 0, on 𝜕Ω,

(1)

where Pe is the Peclet number, Ω = (0, 1)× (0, 1), 𝜕Ω is the boundary of the domain Ω, 𝑣𝑖 = 𝑣𝑖(𝑥, 𝑦)(𝑖 = 1, 2)
and 𝐹 = 𝐹 (𝑥, 𝑦) are such continuous functions that the exact solution of the problem (1) has the following form

𝑢(𝑥, 𝑦) = exp(𝑥𝑦) sin(𝜋𝑥) sin(𝜋𝑦).
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Moreover,

div 𝑣 =
𝜕𝑣1
𝜕𝑥

+
𝜕𝑣2
𝜕𝑦

= 0, (2)

that follows from the medium incompressibility condition of the convection–diffusion equation (1).
When the central difference scheme on a uniform grid

Ωℎ = {(𝑥, 𝑦) ∈ Ω | 𝑥 = 𝑖ℎ, 𝑦 = 𝑗ℎ, 𝑖, 𝑗 = 1, 2, . . . , 𝑁} ,

with 𝑁 ×𝑁 interior nodes is applied to the discretization of the convection–diffusion equation (1), we obtain a
system of linear algebraic equations with the linear operator 𝐴ℎ: 𝐸(Ωℎ) → 𝐸(Ωℎ), where 𝐸(Ωℎ) is the linear
space of grid functions defined on Ωℎ.

The matrix 𝐴, corresponding to the operator 𝐴ℎ, is a sparse strongly non-symmetric and positive definite
one. As a consequence, we arrive to the following SLAE

𝐴𝑢 = 𝑏, 𝑢, 𝑏 ∈ R𝑛, (3)

where 𝐴 ∈ R𝑛×𝑛, 𝑛 = 𝑁2 and the coefficient matrix 𝐴 is [9, 29]

𝐴 = 𝐼 ⊗ 𝑃 +𝑄⊗ 𝐼 +𝑅,

where symbol ⊗ stands for the Kronecker product;

𝑃 = tridiag(−1, 4,−1) ∈ R𝑁×𝑁 and 𝑄 = tridiag(−1, 0,−1) ∈ R𝑁×𝑁

are 𝑁 -by-𝑁 tridiagonal matrices;

𝑅 = tridiag(−𝑃𝑗 , 𝐵𝑗 , 𝑃𝑗) ∈ R𝑛×𝑛

is an 𝑛-by-𝑛 block tridiagonal matrix;

𝑃𝑗 = diag([𝑃 ]𝑗,𝑘) ∈ R𝑁×𝑁 , 𝑗, 𝑘 = 1, 2, . . . , 𝑁 − 1

are 𝑁 -by-𝑁 diagonal matrices;

𝐵𝑗 = tridiag(−[𝐵]𝑗,𝑘, 0, [𝐵]𝑗,𝑘) ∈ R𝑁×𝑁 , 𝑗, 𝑘 = 1, 2, . . . , 𝑁

are 𝑁 -by-𝑁 tridiagonal matrices; in its turn, the elements [𝑃 ]𝑗,𝑘 and [𝐵]𝑗,𝑘 read:⎧⎪⎪⎨⎪⎪⎩
[𝑃 ]𝑗,𝑘 =

Pe ·ℎ
4

(𝑣2(𝑘,𝑗) + 𝑣2(𝑘,𝑗+1)), 𝑘 = 1, 2, . . . , 𝑁, 𝑗 = 1, 2, . . . , 𝑁 − 1,

[𝐵]𝑗,𝑘 =
Pe ·ℎ
4

(𝑣1(𝑘,𝑗) + 𝑣1(𝑘+1,𝑗)), 𝑘 = 1, 2, . . . , 𝑁 − 1, 𝑗 = 1, 2, . . . , 𝑁,

with

𝑣𝑖(𝑘,𝑗) = 𝑣𝑖(𝑥𝑘, 𝑦𝑗), 𝑖 = 1, 2; 𝑘, 𝑗 = 1, 2, . . . , 𝑁.

Naturally, the matrix 𝐴 can be split into its symmetric and skew-symmetric parts [5, 30] as

𝐴 = 𝐴0 +𝐴1, (4)

where
𝐴0 =

1

2

(︀
𝐴+𝐴𝑇

)︀
, 𝐴1 =

1

2

(︀
𝐴−𝐴𝑇

)︀
, (5)

and 𝐴𝑇 is the transposed matrix of 𝐴. Positive definiteness of the matrix 𝐴 means that for all 𝑥 ∈ R𝑛 ∖ {0},
𝑥𝑇𝐴𝑥 > 0. This fact leads to the conclusion that the symmetric matrix 𝐴0 is also positive definite, and
diag(𝐴1) = 0. Let in some matrix norm ||| · ||| the inequality |||𝐴0||| ≪ |||𝐴1||| holds. Then the matrix 𝐴 is
called strongly non-symmetric one.

In this case, following the work [7], we split the skew-symmetric matrix 𝐴1 into two parts

𝐴1 = 𝐾𝐿 +𝐾𝑈 , (6)
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where 𝐾𝐿 and 𝐾𝑈 are the strictly lower and the strictly upper triangular matrices respectively. Obviously that
𝐾𝐿 = −𝐾𝑇

𝑈 .
Based on the relations (4)–(6) the authors of [8, 9] have presented the product-type skew-Hermitian

triangular splitting (PSTS) iteration methods for solving (3). Their main point is as follows:
The PSTS iteration methods [8, 9]: An initial value 𝑢(0) and two positive acceleration 𝜔 and 𝜏 are

given. Let 𝑢(𝑘) is a sequence of iterative approximations. Then for 𝑘 = 0, 1, 2, . . . until 𝑢(𝑘) will converge, we
compute

𝑢(𝑘+1) = 𝐺(𝜔, 𝜏)𝑢(𝑘) + 𝜏𝐵(𝜔)−1𝑏, (7)

where
𝐺(𝜔, 𝜏) = 𝐵(𝜔)−1 (𝐵(𝜔)− 𝜏𝐴)

with matrix 𝐵(𝜔), which is equal to

𝐵(𝜔) =
(︁
𝐵𝑐 +

𝜔

2
̂︀𝐾𝐿

)︁
𝐵−1
𝑐

(︁
𝐵𝑐 +

𝜔

2
̂︀𝐾𝑈

)︁
. (8)

Here ̂︀𝐾𝐿 = 𝐾𝐿 + 𝐹0, ̂︀𝐾𝑈 = 𝐾𝑈 − 𝐹0, 𝐹0 ∈ R𝑛×𝑛 is a symmetric matrix, 𝐵𝑐 ∈ R𝑛×𝑛 is a prescribed symmetric
positive definite matrix. Obviously, that ̂︀𝐾𝐿 = − ̂︀𝐾𝑇

𝑈 , 𝐴1 = (𝐾𝐿 + 𝐹0) + (𝐾𝑈 − 𝐹0) = ̂︀𝐾𝐿 + ̂︀𝐾𝑈 .
Let 𝐵0(𝜔) and 𝐵1(𝜔) be the symmetric and the skew-symmetric parts of the matrix 𝐵(𝜔) respectively:

𝐵(𝜔) = 𝐵0(𝜔) +𝐵1(𝜔), (9)

where ⎧⎪⎪⎨⎪⎪⎩
𝐵0(𝜔) =

1

2

(︀
𝐵(𝜔) +𝐵(𝜔)𝑇

)︀
= 𝐵𝑐 +

(︁𝜔
2

)︁2 ̂︀𝐾𝐿𝐵
−1
𝑐

̂︀𝐾𝑈 ,

𝐵1(𝜔) =
1

2

(︀
𝐵(𝜔)−𝐵(𝜔)𝑇

)︀
=
𝜔

2

(︁ ̂︀𝐾𝐿 + ̂︀𝐾𝑈

)︁
=
𝜔

2
𝐴1.

Suppose that
0 < 𝛼ℎ𝐼 ⩽ 𝐴0 ⩽ 𝛽ℎ𝐼, 0 < 𝛼𝑐𝐼 ⩽ 𝐵𝑐 ⩽ 𝛽𝑐𝐼, (10)

𝛼𝑙𝐼 ⩽ ̂︀𝐾𝐿𝐵
−1
𝑐

̂︀𝐾𝑈 ⩽ 𝛽𝑙𝐼, 𝛼𝑠𝐼 ⩽ 𝐵0(𝜔) ⩽ 𝛽𝑠𝐼, (11)

where 𝐼 is an identity matrix. Since 𝐴0 and 𝐵𝑐 are symmetric positive definite matrices, 𝐵0(𝜔) and ̂︀𝐾𝐿𝐵
−1
𝑐

̂︀𝐾𝑈

are symmetric matrices, and 𝐴1 is a skew-symmetric matrix, the bounds 𝛼𝜓 and 𝛽𝜓, 𝜓 = ℎ, 𝑐, 𝑙, 𝑠 can be easily
expressed through the smallest and the largest eigenvalues or singular values of the corresponding matrix [8, 9].

We require positive definiteness of the matrix 𝐵(𝜔) from (9). Since the matrix ̂︀𝐾𝐿𝐵
−1
𝑐

̂︀𝐾𝑈 is negative

definite, then 𝐵0(𝜔) > 0, if the parameter 𝜔 ∈ (0, 𝜔max), where 𝜔max = 2

√︃(︂
−𝛼𝑐
𝛼𝑙

)︂
.

Notice, that 𝛼𝑙 and 𝛽𝑙 satisfy the following inequalities [9]:

𝛼𝑠 ⩾ 𝛼𝑐 +
(︁𝜔
2

)︁2

𝛼𝑙, 𝛽𝑠 ⩽ 𝛽𝑐 +
(︁𝜔
2

)︁2

𝛽𝑙. (12)

Theorem 1 [9]. Let the matrices 𝐴 and 𝐵(𝜔) be positive definite. If parameters 𝜔 and 𝜏 satisfy the
inequalities

0 < 𝜏 < 𝜔, 0 < 𝜔 < 𝜔max,

and
0 < 𝜏 <

2

Θ
, Θ =

𝛽ℎ

𝛼𝑐 +
(︁𝜔
2

)︁2

𝛼𝑙

, (13)

then the PSTS iteration method will be convergent, i.e. the spectral radius 𝜌(𝐺(𝜔, 𝜏)) of its iteration matrix
𝐺(𝜔, 𝜏) is less than 1.

When 𝐹0 = 0, the PSTS method reduces to the skew-symmetric product triangular splitting (SPTS)
iteration method studied in [31]. It is a generalization of the modified skew-Hermitian triangular splitting
(MSTS) iteration method established in [29].
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Here we need two special versions of the SPTS iteration method (SPTS(1) and SPTS(2), see [31, 32]). We
set 𝐵𝑐 = 𝐼, 𝐹0 = 0, 𝜔 = 2𝜏 for the SPTS(1) and 𝐹0 = 0, 𝜔 = 2 and the same 𝐵𝑐 as that adopted in [32] for the
SPTS(2), namely

𝐵𝑐 = diag (𝑑1, 𝑑2, . . . , 𝑑𝑛),

with

𝑑𝑖 =
1

2

𝑛∑︁
𝑗=1

⃒⃒
[𝐴0 +𝐾𝑈 −𝐾𝐿]𝑖𝑗

⃒⃒
being the 𝑖-th row-sum of the matrix (𝐴0 +𝐾𝑈 −𝐾𝐿).

We consider the PSTS method when 𝐵𝑐 = 𝐼, 𝜔 = 2𝜏 and (𝐹0 + 𝐾𝐿) is an unitary matrix [8, 9] and
investigate the MGM with three skew-symmetric smoothers for solving non-symmetric system of linear equations
(3). The application of the multigrid method, which is robust for the test problem (1), to the governing equations
of computational fluid dynamics can enable to solve them effectively [14].

3. Convergence of the PSTS-multigrid method. There are several different ways to prove the conver-
gence of the MGM, depending on the assumptions we are making. Usually, the smoothing and approximating
properties are used to prove the convergence [13, 33]. Based on them, we are establishing convergence of the
PSTS-multigrid method.

For this aim, we use some notations and theoretical results from [34, 35].
Let 𝐻1 ⊂ 𝐻2 ⊂ . . . be a family of nested finite-dimensional linear spaces. The dimension of 𝐻𝑚 is 𝑛𝑚 and

the inner product is denoted by (.,.)𝑚 with ‖.‖𝑚 being the corresponding norm in 𝐻𝑚, 𝑚 = 1, 2, . . . .
We are interested in solving problem (3) in 𝐻𝑚. Let

𝐴𝑚 = ̃︀𝐴𝑚 + ̂︀𝐴𝑚,
where ̃︀𝐴𝑚 is a symmetric positive definite operator in 𝐻𝑚. Let 𝑄𝑚 is the other symmetric positive definite
operator in 𝐻𝑚 and let the following condition for the spectral radius of the operator 𝐺𝑚 = 𝑄−1

𝑚
̃︀𝐴𝑚 is satisfied:

𝜌 (𝐺𝑚) = 1.

Using the operators ̃︀𝐴𝑚 and 𝑄𝑚 we determine the energy norm

‖𝑢‖ ̃︀𝐴𝑚
= ( ̃︀𝐴𝑚𝑢, 𝑢)1/2, ∀𝑢 ∈ 𝐻𝑚,

and the inner of the elements from space 𝐻𝑚

(𝑢, 𝑣)𝑄𝑚 = (𝑄𝑚𝑢, 𝑣), ∀𝑢, 𝑣 ∈ 𝐻𝑚.

Then we may define the following norms on 𝐻𝑚:

‖𝑢‖𝑠,𝑚 = (𝐺𝑠𝑚𝑢, 𝑢)
1/2, 𝑠 — real

‖𝑢‖1,𝑚 = ( ̃︀𝐴𝑚𝑢, 𝑢)1/2 = ‖𝑢‖𝑚,
‖𝑢‖0,𝑚 = (𝑄𝑚𝑢, 𝑢)

1/2.

Let us define the subspace 𝐹𝑚 ⊂ 𝐻𝑚, 𝐹𝑚 = {𝑢 ∈ 𝐻𝑚: (𝐴𝑚𝑢, 𝑣) = 0, ∀𝑣 ∈ 𝐻𝑚−1}.
Now we make three basic assumptions [34, 35]:
Assumption 1. There exists 𝑣 ∈ 𝐻𝑚−1, 𝛾, 0 < 𝛾 ⩽ 1 and 𝛿 <∞ such that for ∀ 𝑢 ∈ 𝐻𝑚

‖𝑢− 𝑣‖2𝑠,𝑚 ⩽ 𝛿𝛾‖𝑢‖21+𝛾,𝑚
Assumption 2. There exists 𝜂𝑚, 𝜂𝑚 → 0 (𝑚→ ∞) such that⃒⃒⃒(︀ ̂︀𝐴𝑚𝑢, 𝑣)︀𝑚 ⃒⃒⃒

< 𝜂𝑚 ‖𝑢‖1,𝑚 ‖𝑣‖1,𝑚

for ∀ 𝑢 ∈ 𝐹𝑚, ∀𝑣 ∈ 𝐻𝑚, 𝑚 is a positive integer.
Assumption 3. There exists 𝜇𝑚, 𝜇𝑚 → 0 (𝑚→ ∞) such that⃒⃒⃒(︀ ̂︀𝐴𝑚𝑢, 𝑣)︀𝑚 ⃒⃒⃒

⩽ 𝜇𝑚 ‖𝑢‖1,𝑚 ‖𝑣‖0,𝑚

for ∀𝑢, 𝑣 ∈ 𝐻𝑚, 𝑚 is a positive integer.
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It is supposed that 𝜂𝑚, 𝜇𝑚 are small enough.
In [35] it was shown that Assumptions 1–3 were satisfied for sufficiently wide class of elliptic boundary

problems in two dimensional bounded domains with different boundary conditions.
Let us consider two-grid algorithm. Denote the exact solution of the problem (3) by 𝑢*. Let 𝑢0 is an

initial guess, 𝑢1 is a problem solution after smoothing and 𝑢2 is a problem solution after MGM-iteration. The
aim is to estimate the energy-norm of the contraction number:

𝜎 = sup
‖𝑢2 − 𝑢*‖1
‖𝑢0 − 𝑢*‖1

, 𝑢0 ̸= 𝑢*.

Denote the error by 𝑒𝑖 = 𝑢𝑖 − 𝑢*, 𝑖 = 0, 1, 2.
Theorem 2 [35]. Let the three basic assumptions for the two-grid method be satisfied. Furthermore, let

the following smoothing assumption also be valid: there exist ∆ (0 < ∆ <∞) and 𝜗 > 0 such that⃦⃦
𝑒1
⃦⃦2
1
+ 𝜗

⃦⃦
𝑒1
⃦⃦2
2
⩽ (1 + 𝜇∆)

⃦⃦
𝑒0
⃦⃦2
1

(14)

with 𝜇=𝜇𝑘 from Assumption 3. Then 𝜎 ⩽ ̃︀𝜎 for the two-grid contraction number, where

̃︀𝜎 ≡ ̃︀𝜎 (𝜖) ≡ sup

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎣ 𝜉2 + 𝜖2𝜍2 + 2𝜖𝜂𝜉𝜍

1 + 𝛿−1𝜗

(︂
1− 𝜂

1 + 𝜂

)︂2/𝛾

𝜉2/𝛾

(︀
1 + 𝜇∆

)︀
⎤⎥⎥⎥⎦
1/2

: 𝜉2 + 𝜁2 − 2𝜂𝜉𝜁 ⩽ 1, 𝜁, 𝜉 ⩾ 0

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ ,

𝜉 =
‖𝑒1 + 𝑢*‖1

‖𝑒1‖1
, 𝜍 =

‖𝑢*‖1
‖𝑒1‖1

,

where constants 𝜗 and ∆ depend on properties of smoothing system and constants 𝛾, 𝛿, 𝜂, 𝜇 taken from assump-
tions 1, 2, 3 respectively, while 𝜖 is calculation accuracy.

In [35] the proof of the same theorem for the MGM is given. For further considerations we need one more
theorem from [34].

Theorem 3 [34]. Let the problem (3) be solved by iterative method (7)–(8) written in the form of

𝑢(𝑛+1) = 𝑢(𝑛) − ̃︀𝐵−1
(︁
𝐴𝑢(𝑛) − 𝑏

)︁
, ̃︀𝐴 = 𝐴0,

and let the three basic assumptions be satisfied. If there exists the constant 𝜗 > 0 so that the following inequality

̃︀𝐵 + ̃︀𝐵* − ̃︀𝐴 ⩾ 𝜗
(︁ ̃︀𝐴− ̃︀𝐵)︁*

𝑄−1
(︁ ̃︀𝐴− ̃︀𝐵)︁

, (15)

is performed, then the smoothing assumption (14) will be satisfied with

∆ = (1 + 𝜗)𝛽 (𝜇𝛽 + 2) , (16)

where

𝛽 =
[︁
𝜌
[︁ ̃︀𝐵−1 ̃︀𝐴(︁ ̃︀𝐵−1

)︁* ̃︀𝐴]︁]︁1/2 .
Now we can prove the convergence of the method.
Theorem 4. For the method (7), (8) there exists the constant 𝜗 > 0 such that inequality (15) holds.
Proof. In the case of employing method (7), (8) ̃︀𝐵 = 1/𝜏𝐵, 𝑄 = 𝐴0. Consider inequality (15) and

transform its left and right parts. Using (9) we obtain

̃︀𝐵 + ̃︀𝐵* − ̃︀𝐴 = 2/𝜏𝐵0 −𝐴0, (17)

(︁ ̃︀𝐴− ̃︀𝐵)︁* ̃︀𝐴−1
(︁ ̃︀𝐴− ̃︀𝐵)︁

=

(︂
𝐴0 −

1

𝜏
𝐵*

)︂
𝐴−1

0

(︂
𝐴0 −

1

𝜏
𝐵

)︂
=

= 𝐴0 −
1

𝜏
𝐵* − 1

𝜏
𝐵 +

1

𝜏2
𝐵*𝐴−1

0 𝐵 = 𝐴0 −
2

𝜏
𝐵0 +

1

𝜏2
𝐵*𝐴−1

0 𝐵. (18)
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Introduce a new matrix S in accordance with the definition given below:

𝑆 =
2

𝜏
𝐵0 −𝐴0. (19)

Then from (13) we obtain

𝛽ℎ

𝛼𝑐 +
(︁𝜔
2

)︁2

𝛼𝑙

<
2

𝜏
.

It follows from (10)–(13) that the value 𝛽ℎ is the upper bound of the self-adjoint positive definite matrix 𝐴0.
On the other hand, the value in the denominator of the last fraction is positive (this results from the requirement
that the operator 𝐵0 is positive definite or from the requirement that the operator 𝐵 is dissipative (which is
equivalent)) and does not exceed the lower estimate of the 𝐵0(𝜔) bound (equal to 𝛼𝑠). Therefore, for any value
of the parameter 0 < 𝜔 < 𝜔max, for two self-adjoint positive-definite operators, the inequality 𝐵0 > 𝜏/2𝐴0 > 0
will be satisfied.

Note that the last criterion is a sufficient condition for the convergence of the family of iterative meth-
ods based on the symmetric/skew-symmetric (Hermitian/skew-Hermitian) splitting of the coefficient matrix
considered previously in [6, 7, 31, 32].

Thus, for acceleration parameters 𝜔, 𝜏 satisfying the conditions of the Theorem 1, it is valid

𝑆 = 𝑆* > 0.

Utilizing the relations (17)–(19) we obtain that the inequality (15) is rewritten in the following form:

𝑆 ⩾ 𝜗

(︂
−𝑆 +

1

𝜏2
𝐵*𝐴−1

0 𝐵

)︂
.

For any Hermitian positively (non-negatively) definite matrix 𝑆 there exists a unique Hermitian positively
(non-negatively) definite matrix 𝑄 such that 𝑄2 = 𝑆. The matrix 𝑄 is called the (arithmetic) square root of
the matrix 𝑆 and is denoted 𝑆1/2 [5].

Multiplying the left and right parts of this inequality on 𝑆−1/2, we find straightforwardly that

𝐼 ⩾ 𝜗

(︂
−𝐼 + 1

𝜏2
𝑆−1/2𝐵*𝐴−1

0 𝐵𝑆−1/2

)︂
. (20)

Denote 𝐿 =
1

𝜏
𝐴

−1/2
0 𝐵𝑆−1/2. Then (20) is transformed to

𝐼 ⩾ 𝜗 (𝐿*𝐿− 𝐼) .

If we set
𝜗 =

1

‖𝐿*𝐿− 𝐼‖
, (21)

then inequality (15) will be valid. The theorem is proved.
Thus, if the conditions of the Theorem 4 are fulfilled, then the two-grid method will converge for the PSTS

smoother from (8), the parameter 𝜗 from (21) and ∆ taken from (16).
Since the SPTS iteration methods are the special case of the PSTS ones, the convergence results of the

PSTS-multigrid are applicable to them as well. Notice, that analogous results can be obtained for the MSTS-
multigrid.

4. Local Fourier analysis of the PSTS-multigrid method. The one-grid local Fourier analysis (LFA)
(or the smoothing analysis) and the two-grid LFA are the main tools for quantitative estimates of the MGM
convergence [12–14]. Within LFA the basic discrete operators are considered to be formally extended to infinite
grid and boundary conditions are not taken into account. A direct application of the LFA is not possible while
dealing with operator 𝐴ℎ that is characterized by variable coefficients. Instead, the analysis is applied to the
locally frozen operator at a fixed grid point [12].

Let us consider regular infinite fine grid 𝐺ℎ

𝐺ℎ = {𝑥 = (𝑥, 𝑦), 𝑥 = 𝑖ℎ, 𝑦 = 𝑗ℎ, 𝑖, 𝑗 ∈ Z}
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and coarse grid 𝐺2ℎ, which is obtained from 𝐺ℎ by the standard coarsening (i.e. by doubling the mesh size in
both 𝑥 and 𝑦 directions)

𝐺2ℎ = {𝑥 = (𝑥, 𝑦), 𝑥 = 2𝑖ℎ, 𝑦 = 2𝑗ℎ, 𝑖, 𝑗 ∈ Z}.
We perform LFA of the PSTS-, SPTS(1)- and SPTS(2)-multigrid methods and numerically obtain the

smoothing factors and the two-grid convergence factors [13]. Denote these factors as

𝜇loc(𝑆ℎ), 𝜌loc(𝑀
2ℎ
ℎ ),

where

𝑀2ℎ
ℎ = 𝑆𝜈2ℎ 𝐾

2ℎ
ℎ 𝑆𝜈1ℎ

is the transition operator of the two-grid method, 𝜈1 and 𝜈2 are the numbers of pre- and post-smoothing steps,

𝐾2ℎ
ℎ = 𝐼ℎ − 𝑃ℎ2ℎ𝐴

−1
2ℎ𝑅

2ℎ
ℎ 𝐴ℎ

is the coarse-grid correction operator, 𝑆ℎ is the smoothing operator, 𝑃ℎ2ℎ is the prolongation operator and 𝑅2ℎ
ℎ

is the restriction operator.

Table 1. Smoothing factors 𝜇loc

Pe SPTS(1) SPTS(2) PSTS
103 0.7459 0.6881 0.2961
104 0.8583 0.8150 0.3776
105 0.9399 0.8961 0.6989
106 0.9998 0.9912 0.8961
107 1.0065 1.0011 0.9903

We use LFA as a general tool for realistic estimation of the
smoothing properties of the relaxation methods and the conver-
gence properties of two-grid methods. We assume that the oper-
ators 𝐴ℎ, 𝐴2ℎ, 𝑅2ℎ

ℎ and 𝑃ℎ2ℎ are represented by patterns for 𝐺ℎ
and 𝐺2ℎ [13].

In order to measure the smoothing properties of pat-
tern relaxation methods, the real coarse-grid correction is re-
placed by an ideal coarse-grid correction operator, which anni-
hilates the low-frequency error components and leaves the high-
frequency components unchanged. The results of the Fourier

Table 2. Asymptotic convergence factors 𝜌loc

at 𝑚 smoothing iterations

Pe 𝑚 SPTS(1) SPTS(2) PSTS
1 > 1 > 1 0.5949

103 3 0.8895 0.7231 0.3866
5 0.8514 0.6815 0.3191
1 > 1 > 1 0.7254

104 3 0.9898 0.9531 0.5433
5 0.9718 0.9462 0.5319
1 > 1 > 1 0.8582

105 3 0.9989 0.9934 0.6769
5 0.9951 0.9823 0.6741
1 > 1 > 1 0.9932

106 3 > 1 0.9991 0.8985
5 0.9967 0.9932 0.8935
1 > 1 > 1 > 1

107 3 > 1 0.9999 0.9129
5 0.9993 0.9968 0.9081

smoothing analysis for the MGM with the skew-symmetric
smoothers and the large Peclet numbers are listed in Table 1.
We take the coefficients of the convective terms as 𝑣1 = 1, 𝑣2 =
1 and consider the SPTS(𝑘) (𝑘 = 1, 2) and the PSTS it-
eration methods as the smoothers. From Table 1 we see
that for all the skew-symmetric methods, the coefficient fac-
tor 𝜇loc is less than unity (except for SPTS(1) and SPTS(2),
when Pe = 107). Therefore the SPTS(𝑘) (𝑘 = 1, 2) and
the PSTS are effective as the smoothers for the MGM when
solving the problem (1). Moreover, the last method has the
best smoothing properties. However, the smoothing proper-
ties of all tested methods deteriorate with increasing of the
Peclet number.

The rate of asymptotic convergence of the two-grid method
𝜌loc for various number 𝑚 of smoothing iterations (𝑚 = 1, 3, 5)
and at the same velocity values is shown in Table 2. The
two-grid Fourier analysis allows to define the optimal number
of smoothing iterations for the large Peclet numbers. Our in-
vestigations demonstrate that further increasing the number of
smoothing iterations (𝑚 > 5) does not lead to a significant
decrease in the value of 𝜌𝑙𝑜𝑐. For the SPTS(𝑘) (𝑘 = 1, 2)
𝜌loc > 1 when the one smoothing iteration is used only.

Table 3. The test problems

Problem 𝑣1(𝑥, 𝑦) 𝑣2(𝑥, 𝑦)

1 1 −1

2 1− 2𝑥 2𝑦 − 1

3 𝑥+ 𝑦 𝑥− 𝑦

4 sin(2𝜋𝑥) −2𝜋𝑦 · cos(2𝜋𝑥)

Accordingly to the results of Table 2, we conclude that the PSTS-
multigrid methods are robust for solving the convection–diffusion
problem (1) with dominant convection.

5. Numerical results. Numerical experiments were car-
ried out using the MGM with the SPTS(1)-, SPTS(2)-, PSTS-
and Gauss-Seidel (GS)- based smoothers for solving convection–
diffusion problem (1). The four velocity coefficients 𝑣 = (𝑣1, 𝑣2)

𝑇 ,
given in Table 3, automatically satisfy the constraint (2) of the
medium incompressibility.
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Let us briefly describe the organization of calculations using the MGM [12–13]. For this goal we consider
a system of grid equations:

𝐴ℎ𝑢
ℎ = 𝑏ℎ.

The interpolation operator 𝑃 from a coarse grid 𝐻 to a fine grid ℎ allows the operator 𝐴𝐻 to be represented
on a coarse grid in the form

𝐴𝐻 = 𝑅𝐴ℎ𝑃,

where 𝑅 = 𝑃𝑇 . Then solution correction step reads

𝑢ℎnew = 𝑢ℎold + 𝑃 · 𝑒𝐻 .

The correction 𝑒𝐻 is the exact solution of the equation

𝐴𝐻𝑒
𝐻 = 𝑟𝐻 ,

where 𝑟𝐻 = 𝑅𝑟ℎ and 𝑟ℎ = 𝑏ℎ−𝐴ℎ𝑢ℎold. In this case, before and after correction of the solution, 𝜇1 pre-smoothing
and 𝜇2 post-smoothing steps are made utilizing some iteration methods.

Thus, the MGM using the solution correction scheme is the following sequence of steps:
1. We make 𝜇1 approximations of the solution on the grid ℎ using the iterative method PSTS (GS, SPTS(1)

or SPTS(2))(pre-smoothing).
2. The residual 𝑟ℎ = 𝑏ℎ −𝐴ℎ𝑢

ℎ
old ∈ 𝑉ℎ is projected into space 𝑉𝐻 , i.e., 𝑟𝐻 = 𝑅𝑟ℎ.

Table 4. Iteration count and CPU time (in seconds) for the MGM
with different smoothers, ℎ = 1/512, 𝐻 = 1/4

Smoother GS SPTS(1) SPTS(2) PSTS

𝑃𝑒 IT (CPU) IT (CPU) IT (CPU) IT (CPU)

Problem 1

103 58 (5.84) 13 (0.36) 9 (0.21) 4 (0.34)

104 – 18 (1.45) 15 (1.36) 5 (1.43)

105 – – 26 (6.91) 5 (6.67)

106 – – 31 (11.75) 7 (10.64)

107 – – – 10 (15.02)

Problem 2

103 66 (6.53) 13 (0.37) 10 (0.22) 5 (0.36)

104 – 22 (1.78) 14 (1.34) 6 (1.57)

105 – – – 7 (7.25)

106 – – – 9 (9.39)

107 – – – 14 (19.77)

Problem 3

103 71 (7.57) 15 (0.39) 10 (0.23) 4 (0.34)

104 – 24 (1.92) 16 (1.37) 6 (1.58)

105 – – 28 (7.04) 6 (6.99)

106 – – 39 (13.17) 9 (10.06)

107 – – – 12 (17.56)

Problem 4

103 – 22 (0.54) 15 (0.34) 6 (0.47)

104 – – 21 (2.42) 7 (2.64)

105 – – – 7 (17.58)

106 – – – 15 (23.16)

107 – – – 19 (35.82)
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Table 5. Iteration count and CPU time (in seconds) for the MGM
with different smoothers, ℎ = 1/512, 𝐻 = 1/32

Smoother GS SPTS(1) SPTS(2) PSTS

𝑃𝑒 IT (CPU) IT (CPU) IT (CPU) IT (CPU)

Problem 1

103 56 (5.78) 12 (0.34) 8 (0.19) 4 (0.31)

104 – 17 (1.41) 14 (1.31) 4 (1.38)

105 – 33 (8.81) 24 (6.88) 4 (6.57)

106 – – 27 (9.12) 6 (8.96)

107 – – 33 (14.77) 7 (10.54)

Problem 2

103 64 (6.39) 12 (0.34) 9 (0.20) 4 (0.32)

104 – 21 (1.68) 12 (1.30) 5 (1.44)

105 – 39 (9.18) 28 (7.19) 6 (6.84)

106 – – 39 (10.56) 7 (9.13)

107 – – 41 (15.98) 9 (12.77)

Problem 3

103 70 (7.49) 14 (0.36) 9 (0.21) 4 (0.32)

104 – 23 (1.88) 14 (1.32) 5 (1.48)

105 – 38 (8.29) 27 (6.99) 5 (6.75)

106 – – 36 (10.02) 7 (9.12)

107 – – 40 (16.66) 10 (14.11)

Problem 4

103 91 (10.57) 21 (0.52) 13 (0.29) 5 (0.44)

104 – 28 (4.12) 20 (2.39) 6 (2.55)

105 – – – 6 (16.49)

106 – – – 11 (15.65)

107 – – – 16 (26.78)

3. An approximate solution 𝐴𝐻𝑒𝐻 = 𝑟𝐻 is found on a coarse grid. For this aim, a 𝛾 of cycles of the multigrid
method is realized recursively.

4. The correction 𝑒𝐻 is interpolated to the fine grid and the solution is refined: 𝑢ℎnew = 𝑢ℎold + 𝑃 · 𝑒𝐻 .
5. 𝜇2 approximations of the solution are made on a fine mesh to suppress the interpolation error (post-

smoothing).
Depending on the number 𝛾 of recursive calls, different types of cycles are distinguished. When 𝛾 = 1, the

V-cycle takes place, and when 𝛾 = 2, the W-cycle occurs [13].
Our calculations are carried out using a V-cycle with 5 pre-smoothing and zero post-smoothing steps. All

components of the MGM, apart from the smoothers, are standard ones. The prolongation operator is bilinear
interpolation and the restriction operator is the full weighting operator [13]. For the PSTS a smoothing step is
one full PSTS iteration. It should be noted that for the PSTS smoothing we have to solve a linear system with
the coefficient matrix 𝐵(𝜔) defined in (8). This SLAE is solved inexactly by the inner GMRES(10)[30] with the
tolerance 10−6. No preconditioner is used for the inner iterations. Since 𝐵(𝜔) is a product of two triangular
matrices in SPTS(1) and SPTS(2), this system of linear equations can be solved easily. For all tested methods
we take the parameter 𝜏 to be the experimentally optimal one.

It is known that for non-self-adjoint problems the mesh size of the coarsest grid have to be sufficiently
small [33] to ensure the multigrid convergence. To compare dependence of the MGM convergence with the

considered smoothers on the coarsest grid, we choose the finest grid mesh size as ℎ = 1/512

(︂
ℎ =

1

𝑁 + 1

)︂
and

the coarsest grid mesh size as 𝐻 = 1/4 or 1/32 respectively.
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Numerical experiments are performed for Pe = 103 ÷ 107 and the corresponding results are listed in
Tables 4, 5. All iterations are started from zero vector and terminated when

‖𝑟(𝑝)‖2
‖𝑟(0)‖2

⩽ 10−6.

Here 𝑟(𝑝) = 𝑏 − 𝐴𝑢(𝑝) is the residual vector of the SLAE (3) at the current iterate 𝑢(𝑝) and 𝑟(0) is the initial
residual. Our comparisons are done for the number of iteration steps (denoted by “IT”) and the elapsed CPU
time denoted by “CPU”. We show total time for solving the SLAE. The symbol (“–”) indicates that method
failed to converge.

All experiments are performed in MATLAB (version R2018b) with a machine precision 10−16 on a personal
computer with 3.60 GHz central processing unit (Intel(R) Core(TM) i7-7700), 16.00 GB memory, and Windows
10 operating system. From the numerical experiments, we can see that the PSTS-multigrid method is required
far less iteration steps than GS, SPTS(1)- and SPTS(2)-multigrid methods for all test problems. The skew-
symmetry coefficient Peℎ = Pe ·ℎ/2 has the great influence on the behaviour of the MGM with the SPTS(1)
and SPTS(2) smoothers. As this coefficient increases, the convergence rate of the multigrid method decreases.
But the PSTS-multigrid does not have such a strong dependence on the skew-symmetry coefficient, which is a
positive quality of the method.

The SPTS(2)-multigrid outperforms the PSTS-multigrid in computational time due to the presence inner
iterations in the last method, but for Pe = 105 ÷ 107, CPU time becomes less for the PSTS-MGM. Moreover,
the SPTS(2)-multigrid is ahead of the SPTS(1)- and GS-multigrid methods with respect to both number of
iteration steps and CPU time for all tested problems.

Among the considered smoothers, only PSTS-multigrid successfully solves four problems for all Peclet
number values and 𝐻 = 1/4, 1/32. The GS-multigrid doesn’t converge at Pe more than 104 for all the tested
problems and for Pe = 103, when 𝐻 = 1/4 for the problem 4. In contrast, at Pe = 104÷107, the PSTS-multigrid
method shows fast convergence speed, and the number of its iteration steps do not change significantly when
Pe becomes large.

It follows from numerical results that PSTS-multigrid has smaller dependence on the mesh size of the
coarsest grid than GS-, SPTS(1)- and SPTS(2)-multigrid. When 𝐻 = 1/4, SPTS(1)-multigrid is not convergent
at Pe more than 105 for all test problems and for Pe more than 104 for the Problem 4 with a highly variable
velocity field. SPTS(2)-multigrid doesn’t converge for some problems when Pe more than 105, whereas PSTS-
multigrid is always convergent. All considered methods tend to decrease the number of iterations and CPU
time as the coarse grid mesh size decreases.

6. Conclusions. Numerical experiments carried out for the model steady-state convection–diffusion prob-
lem with dominant convection have shown efficiency of the PSTS-multigrid and its advantage over the GS and
SPTS(𝑘)(𝑘 = 1, 2) based smoothers. The application of the PSTS smoothers for the MGM allows solving this
problem for small values of Pe. This modification of the smoother enables to use multigrid method without
restriction on the coefficients of equation and mesh size of the coarsest grid for the solution of arising SLAE. It
doesn’t require the diagonal dominance of corresponding matrix. Numerical experiments show that it is possible
to use efficient point relaxation methods in connection with standard coarsening for the convection–diffusion
problem with dominant convection.
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