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Abstract: The paper covers an intelligent support system that allows to describe and to construct
solutions of various scientific problems. In this study, in particular, we consider geophysical problems.
This system is being developed at the Institute of Computational Mathematics and Mathematical
Geophysics of the Russian Academy of Sciences (ICMMG SB RAS) and the Institute of Informatics
System of the Russian Academy of Sciences (IIS SB RAS). The system contains a knowledge base,
the core of which is a set of several interconnected ontologies such as the ontology of supercomputer
architectures, the ontology of algorithms and methods. Ontology can be viewed as a set of concepts
and how these concepts are linked. As the result, the authors present an ontological description of
two geophysical problems using the intelligent support system: 1) the seismic wavefield simulation
and 2) the reconstruction of a seismic image through pre-stack time or depth migration. For a better
visual understanding of the described system and the obtained results, the paper also contains several
schematic diagrams and images.
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1. Introduction. Every specialist in any branch of knowledge that implies the work with massive data
and is linked to the use of supercomputers faces the issues: 1) what technique (a set of techniques) is appropriate
to use for solving the problem? 2) which supercomputing systems are required, best suited or available? 3) what
the most effective way to utilize supercomputing technologies for numerical tests is? It is necessary to derive
the maximal benefit from the hardware means available for solving the concrete tasks by optimizing the process
of finding the solution. There are several components to solving the problem effectively. Components that are
not related to each other but should be considered together at the same time. This means that a specialist
should be well oriented in fairly different areas, for instance, both in methods and algorithms used in solving
the problems and in the supercomputing systems and thechnologies, in their effective joint utilization.

That is where the ontological approach comes in. Ontology can be viewed as a set of concepts and how
these concepts are linked. For example, in geophysics by ontology we understand a systemized knowledge base
that allows researching a medium structure: methods, algorithms, hardware, software and how they can be used
together. This approach will be covered in paragraph 4, for two specific geophysical problems.

The presentation of information utilizing the ontological methodology has grown in its popularity over
recent years |1, 2]. The necessity to create such systems of intelligent support was advanced in various scientific
fields such as physics [3], astrophysics [4-6], biology [7], botany [8]. In regards to geoscience, the use of ontologies
was discussed in [9-14]. These papers are mostly focused on geology, data processing, and geographic mapping.
In this paper, we focus on the ontological representation for geophysical tasks solution, what components
contribute to it and how these components are connected.

Therefore, we have a set of algorithms, methods, program codes that can be used for a task in question, and
we have also a set of developed supercomputing hardware and software. Their combination enables specialists
to create effective program components for solving and studying the original problem. And such combination is
a seriuos problem. Nowadays, the ontological representation is attracting the attention of a growing number of
scientists. However, navigating through ontologies usually requires certain level of expertise in several subject
areas. Therefore, it is highly desirable to create a user-friendly interface and intuitive navigation system.

The authors think that creating a wide knowledge database on various specific subject areas is an urgent
problem. If this database will be properly organized as a system of intelligent support, then it could be a
powerful support for researchers. So, the main work of authors is developing, updating and improving such
a system. It is considered a constantly evolving and growing object and one can always add new elements
and links to it. For example, the user can choose a scientific field and find his task described in the system.
The user can see what mathematical and numerical methods there are, what supercomputer architectures and
parallel software can be used and which are best suited for different numerical methods. If there are program
components that can be used, or someone has already got the experience in solving the problem — the user
will also know this, since there will be corresponding links to pieces of code and literature.

This investigation’s novelty consists in developing a free-access resource that provides the relationship
between two different areas: geophysics and supercomputers. It also has intuitive navigation system and user-
friendly interface.

As an example, this paper also describes how the system can be applied to the two different geophysical
problems: 1) the seismic wavefield simulation and 2) the reconstruction of a seismic image through pre-stack
time or depth migration.

2. Bases of intelligent support system. The published work [15] touches on the means of the ontology
concept in any general subject area. The proposed concept of the general intelligent support system (ISS) is
covered in detail in [16]. Fig. 1 represents the upper level of the system objects and interconnections between
them.

The core of the system is a knowledge base module. It contains ontologies of computational methods,
parallel technologies and available hardware architectures. Rules allow one to perform output and obtain
information that is not explicitly presented in the knowledge base.

The information and analytical Internet resource (IAIR) module will be described in the next section.

The library of software components contains ready-to-use code fragments that can be implemented during
a problem-solving process.
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Figure 1. The upper level of the intelligent support system

Another vital part of ISS is a set of modules called the expert system. Throughout the process of solving a
problem, it implies a constant interaction between a user, a knowledge base and a library of software components.
The user should first specify his compute-intensive problem. Then the inference engine allows one to implement
the inference rules to construct the best ways for solving the problem. The inference engine works as an advisor
providing different methods within the available knowledge base. The code generation module is responsible for
supporting the construction of a parallel code. It provides the necessary elements of the software library that
will help during the programming process of the problem-solving scheme.

The module of simulation modeling provides the user with the ability to evaluate the scalability of his
parallel code. One can get a time estimate of program execution on a different number of cores on a specific
parallel architecture. Thus the user can choose the most effective time-wise and the capacity-wise way to solve
his problem, taking into account its features. Indeed, computing time is costly. For example, if there is one big
numerical test to be conducted, then the user should simply get as much computing power as he can afford. But
more often a series of numerical tests is carried out. Therefore, there is a problem of optimizing time and energy
(and costs) spent for each test compared to time and energy spent for all tests. That’s where code performance
simulation comes in. This approach has already been used in a few geophysical problems [16, 17].

We should note that ontologies are described with the aid of the OWL language [18]. This includes a
description of classes and their properties, as well as specific objects that fill the knowledge base — methods,
algorithms, software, parallel architectures, etc. The language SWRL (Semantic Web Rule Language) [19] is
used for setting the rules inside the ISS.

3. The informational and analytical internet resource. The information and analytical Internet
resource (TAIR), which is a part of the ISS under consideration, is a system with a web interface that contains
structured information related to the knowledge area “Support for solving compute-intensive problems on su-
percomputers” and provides meaningful access to it. The systematization of information and the functioning of
the TAIR is carried out on the basis of the ontology of this knowledge area. The ontology concepts hierarchy is
shown in the left panel of each page of the IAIR. When one selects any ontology concept, a list of its objects
will be displayed in the central part of the page (Fig. 2). The user can select an object of interest from the list
and get its description.

Figures 3 and 4 present a description of the balance method (also, might be called the balance technique).
The method allows meeting the law of energy conservation during the process of constructing a numerical solu-
tion to the problem. Figure 2 shows that the balance method is an element of the subclass “Numerical Method”
of the class “Research Method”. This class is highlighted in ontology. Figure 3 shows a table representation of
the balance method. It has a brief description and links to other elements of the ISS, such as problems existing
in the ISS that utilize this method, software that was created using this method, as well as the literature that
describes the implementation of the method. Fig. 4 shows a graphical representation of the considered method,
with all logical links, related classes (subclasses) and elements. Therefore, one can fully understand the method’s
place in the system.
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This way of presenting the information seems to be highly intuitive and should not cause any confusion for
inexperienced users. The website design has yet to be discussed and improved, but both logical and navigational
parts of the IAIR have already been finished (https://uniserv.iis.nsk.su/spsc/).

4. The ISS for solving geophysical problems. In this section, the authors present their view on the
ontological representation of the information on geophysical problems. The ontology is multileveled and includes
other ontologies as well. Note that ontologies are widely used in oil and gas surveys [20], geophysical studies [21]
and others. But the accessibility of these systems is restricted. Geophysics and geology are highly industrial
scientific areas and almost any useful software and data are proprietary, including databases.

Figure 5 represents the upper level of ontology for solving compute-intensive problems on supercomputers.
Further, we overview the main components that generally contribute to the original problem-solving process
and in subsections 4.1 and 4.2 we touch on a more detailed view of two specific problems.

The knowledge base of the ISS originates from the field of science, in our case from geophysics. The main
objects of the research are a physical phenomenon (wavefield) and a physical object (medium). Both objects can
be studied through real experiments and observations or numerical experiments or their combinations. Real
experiments involve sampling the medium and recording wavefield data on a set of receivers, and numerical
experiments involve mathematical modeling using modern supercomputing technologies. A medium is described
by the so-called “digital twin”, which is the closest discrete representation of a real object. To describe the
wavefield propagation, an approximate mathematical model is used (linear equation system of elasticity [22]).
The solution presentation might be analytical, semianalytical or numerical which is the general case. The
numerical method for a specific discrete domain decomposition is used to develop a parallel algorithm. A
program code is created for a parallel algorithm to perform numerical tests on a given parallel architecture.
For the most optimal performance, the code should consider the computation domain decomposition, what
calculator (computing device) is used and what parallel programming technologies are necessary.

The upper level of ontologies of parallel architectures, computational algorithms and methods are covered
in [5, 6] in detail.

4.1. Modeling of wave propagation in complex-built media with topography. In this subsection,
we offer an ontological representation of the problem-solving process of numerical wavefield modeling and how
the expert system logic works in this case. All utilized components and logical links are highlighted with a bold
frame in fig. 6.

The problem lies in the numerical modeling of 3D waves in media with surface topography [22]. The subject
of the study is wavefield propagation via numerical experiments. All parameters and structure of the medium
are known. The medium is isotropic and solid, the area under study has a curved surface (hills or mountains,
for example). When seismic waves move through the medium they create a deviation of particles from their
balanced state. The common way to study the wave field is to measure the displacement of the particles over
time or the velocity of this displacement. Both ways are best suited for different medium structures. For
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Figure 5. The upper level of the geophysical ontology
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numerical seismic field simulation

the mathematical model, a linear elastic system is chosen. It contains of 3 equations describing the particle
displacement. The structure of the medium is solid and the use of the system with 9 equations (in the case
of displacement velocities) is excessive. This approach allows us to save on RAM during numerical tests on a
parallel architecture. Discrete decomposition of the computational domain is represented by curved hexahedrons
[23]. This allows a good consistency between the boundaries of the numerical domain and the physical one.
Therefore it provides better accuracy of the free surface boundary conditions when we develop a finite-difference
scheme. More details can be found in [22].

As for a numerical method, there are used the balance technique, finite volume method and finite differences

method to create an explicit finite difference scheme. An explicit scheme makes a good base for a highly scalable
parallel algorithm, which is optimized for the 3D domain decomposition. Due to the massive data of real-scale
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digital models, the 3D decomposition is the most suited approach to handle the workload for used computational
cores, as we increase the model size. Based on the algorithm, a parallel code is created that is executed on a
supercomputer architecture. In this case, Intel Xeon Phi 7290 KNL accelerators are used, which are installed
at the NKS-1P cluster of the SSCC SB RAS (http://www.sscc.icmmg.nsc.ru/). The software technologies that
we used for code optimization are the MPI library that organizes data exchange between computers and AVX
technology for code vectorization. The module of simulation modeling provided the tools needed to investigate
the code for scalability and performance [17]. Results show over 90 percent scalability up to 32,000 cores but
beyond it the performance starts to decline which means that the code is memory bound and needs further
optimization.

4.2. The ontology for the problem of processing experimental seismic acquisition. Another
important problem is interpreting the data obtained in the fieldwork from the observation system. The data
recorded on receivers are scattered with much noise in the signal. So, processing and presenting the data in a
usable form is an urgent task.

Commonly, the field data is packed in the SEG-Y format files that do not include seismic observation
system parameters. On the contrary, three types of SPS files have their full description. While processing,
samples are required from the CSP file (a common source point), the CRP (a common receiver point) and the
CMP (a common midpoint). Index files are used to select the required gathers. They consist of trace numbers
for each gathering. Usually, the input data are scattered over multiple files. The index files are, basically, a
multi-key database of a dataset. This way of organizing the data is a novelty from one of the authors. The
same technique and logic are used almost in all widely known commercial packages of geophysical processing,
but there are no publicly available papers on this subject [24].

Figure 7 shows the ontological representation of one schematic procedure (the DMO processing stage)
used in obtaining the so-called seismogeological section, which is an image of the medium reconstructed after
processing the data from the field observation system. It is done with the aid of a ray-diffraction wave field
model which is based on restoring the averaged velocity model, commonly via longitudinal waves (p-waves).
Next, these velocity models are used to construct stacked seismic profiles. The seismic processing graph is a
set of procedures required to reconstruct seismogeologial sections. It includes many components with feedback.
All the components of the graph are used coherently one by one. A parallel algorithm and a code are created,
optimized for the CPU. For this problem, the RAM demand is relatively small (<100GB) even for real-scale
tasks, therefore it is sufficient to use one computing node of the cluster NKS-1P of SSCC SB RAS (a node
with two eight-core Intel Xeon E5-2697A v4 processors and 128 GB of RAM). For a single node, the OpenMP
package is sufficient to organize parallel execution of the code. The AVX technology is used for vectorization
as well.

The graph of seismic processing was applied to real field data of one of the West Siberian regions. The
reconstructed seismogeologial sections are presented in fig. 8 and fig. 9. The obtained snapshots are of practical
value for professional researchers in geophysics and geology. It does not represent a “real” slice of the medium,
since the horizontal axis is in milliseconds and the vertical axis is spatial. But one can see the multi-layered
heterogeneous structure of the studied region. Similar images are used in industrial research when a company
develops new oil deposits.

5. Results and Discussion. The general system that is being developed with the framework of this
project has several distinctive features:
e Allows access to well-structured information on solving different problems of computational physics.
e Open source: allows not only to use the presented information but also update it.

e Provides the access to problems, methods and hardware architectures not presented in existing program
packages.

Enables to use the system for scientific and educational purposes.
e Free access and no specific licensing compared to commercial products.

The novelty of the research covered in this paper consists in developing a free-access resource that al-
lows connecting two different areas: geophysics and supercomputers. The authors present a concept of the
intelligent support system for solving geophysical problems on supercomputers. The ontological information
representation in this subject area is described. The system incorporates algorithms and methods, useful soft-
ware and available supercomputer hardware. The main purpose of the system is to save time and provide
organized knowledge. The user can significantly reduce the time required to familiarize himself with a cer-
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3.2

Figure 8. West Siberian region. The stacked section after the prestack time migration

Figure 9. West Siberian region. The stacked section after the prestack depth migration
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tain subject area and improve his knowledge base as a specialist and find the most suitable way to solve his
scientific problem, depending on the features of the task. The authors also provide the ontological representation
for two problems: 1) 3D modeling of the wavefield in areas with curvilinear surface and 2) reconstructing a 3D
seismogeological section from data of one of the regions in West Siberia.

The internet resource https://uniserv.iis.nsk.su/spsc/ was created in the framework of this project. It

provides an interactive interface for users and contains ontologies of various subject areas. It is routinely being
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ated with new information since the system is a “living” object.
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