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Abstract: The Runge–Kutta–Nyström (RKN) explicit symplectic difference schemes are considered
with a number of stages from 1 to 5 for the numerical solution of molecular dynamics problems
described by systems with separable Hamiltonians. For the numbers of stages 2 and 3, the parameters
of the RKN schemes are obtained using the Gröbner basis technique. For the number of stages 4 and
5, new schemes were found using the Nelder–Mead numerical optimization method. In particular,
four new schemes are obtained for the number of stages 4. For the number of stages 5, three new
schemes are obtained in addition to the four schemes, which are well-known in the literature. For
each specific number of stages, a scheme is found being the best in terms of the minimum of the
leading term of the approximation error. Verification of the schemes is carried out on a problem
that has an exact solution. It is shown that the symplectic five-stage RKN scheme provides a more
accurate conservation of the total energy balance of the particle system than schemes of lower orders
of accuracy. The stability studies of the schemes were performed using the Mathematica software
package.
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1. Introduction. One of the most relevant directions of contemporary research in solid state mechan-
ics is the study of material behavior under shock-wave load using molecular dynamics (MD) methods. This
area of research emerged in mid-20th century, with the advent of new pulse technologies, which required high
concentrations of energy. The essence of the MD method is to solve the equations describing motion of atoms
interacting through a potential that depends on the coordinates of the atoms. This method does not require
formulating state equations. It is well known that obtaining these equations is one of the most challenging
problems in continuum mechanics [1].

Another advantage of the molecular dynamics method as compared to the classical continuum mechanics
is that the MD method naturally takes into account the effect of the solid bodies’ crystal structure on their
deformation and fracture processes under dynamic loads.

As shown in [2], within a limit where the number of particles in a volume tends to ∞, the MD equations
are transformed to the well-known continuum mechanics equations, which were studied and solved in [1] using
the Mathematica software package.
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The molecular dynamics equations are formulated as ordinary differential Hamilton equations for atoms in
a solid body. MD equations have an exact analytical solution in a very limited number of cases [3]. Therefore, as
a general rule, these equations are solved numerically, using difference schemes in which the differential operator
is replaced by a difference operator.

When solving the Hamilton equations, it is natural to use difference schemes that preserve the symplectic
properties of these equations. Violating this condition results in a failure to preserve the Poincaré invariants
and introduction of non-physical instability in numerical calculations [4]. It follows that the difference operator
in the numerical scheme should possess the canonical transformation properties. The symplectic difference
schemes are constructed using operator method [5-8] and the RKN method [7, 9–11].

Explicit difference schemes are known to impose a limitation on the integration step [2, 12]. On the
other hand, the advantage of explicit schemes is the simplicity of their software implementation. In addition,
the increases in performance of desktop computers enables solving many important application tasks within a
reasonable time using explicit schemes. Therefore, explicit difference schemes are preferred in this paper.

Numerical methods for solving MD problems are developing rapidly. Despite the apparent simplicity of
the MD method, the issues of accuracy, stability and dispersion of difference schemes for MD problems have
not been fully investigated so far.

According to the theory of Hamilton’s equations, the law of conservation of total energy of the particles
system must be fulfilled [3]. It is natural to demand that the difference scheme must also meet the requirement
for conservation of total energy. However, as the computational practice shows, imbalance of the total energy
in the system turns out to be more significant for explicit symplectic difference RKN schemes of low orders
of accuracy (second- and third-order). At the same time, it is shown in [12] that a three-stage RKN scheme
of fourth-order accuracy provides less error in energy imbalance than the second- and third-order accuracy
schemes. Hence, it is reasonable to develop explicit symplectic RKN schemes of higher orders of accuracy. As
was shown in [12], the derivation of symplectic three-stage RKN schemes involves a large amount of symbolic
computation. These computations were performed in [12] using the Maple 12 software package.

For all RKN schemes, the systems of polynomial equations that the weight parameters should satisfy to
provide the highest accuracy for a given number of stages, are presented below. The solutions of polynomial
systems are found for numbers in stages 2 and 3 using Gröbner bases. We must note that the available
publications on RKN schemes provide incomplete information on the stability regions. In particular, we were
unable to find this information in the case of two-, four-, and five-stage RKN schemes. We fill the gap in this
article. The schemes have been verified by comparing numerical solutions with the exact solution of the test
problem. It is shown that the symplectic five-step RKN scheme provides more accurate conservation of the
total energy balance of the particle system than schemes with lower-order accuracy described in [2, 12].

2. Basic Equations. In the molecular dynamics method the calculation of 𝑁 particle motion is carried
out by solving Hamilton’s equations ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑑𝑥𝑖𝛼

𝑑𝑡
=

𝜕𝐻

𝜕𝑝𝑖𝛼
,

𝑑𝑝𝑖𝛼
𝑑𝑡

= − 𝜕𝐻

𝜕𝑥𝑖𝛼
,

𝐻(𝑥𝑖𝛼, 𝑝𝑖𝛼) = 𝐾(𝑝𝑖𝛼) + 𝑉 (𝑥𝑖𝛼),

𝐾(𝑝𝑖𝛼) =
𝑁∑︀
𝑖=1

3∑︀
𝛼=1

𝑝2𝑖𝛼
2𝑚𝑖

,

(1)

where 𝑖 is the particle number, 𝛼 is the coordinate number 𝑥𝑖𝛼 and momentum number 𝑝𝑖𝛼, 𝑚𝑖 is the particle
mass, 𝐾(𝑝𝑖𝛼) is the kinetic energy, 𝑉 (𝑥𝑖𝛼) is the potential energy of the interaction of particles, 𝐻(𝑥𝑖𝛼, 𝑝𝑖𝛼)

is the Hamiltonian of the particle system. The solution of the system of equations (1) given initial conditions
𝑥𝑖𝛼(𝑡 = 0) = 𝑥0

𝑖𝛼, 𝑝𝑖𝛼(𝑡 = 0) = 𝑝0𝑖𝛼 is a canonical transformation from initial state to final state

𝑥𝑖𝛼 = 𝑥𝑖𝛼(𝑥
0
𝑖𝛼, 𝑝0𝑖𝛼, 𝑡), 𝑝𝑖𝛼 = 𝑝𝑖𝛼(𝑥

0
𝑖𝛼, 𝑝0𝑖𝛼, 𝑡). (2)

The solution (2) of the Hamilton equations (1) preserves the phase volume (Liouville’s theorem [3]). The
phase volume conservation condition has the following form [2]:

𝐺𝑇𝐽𝐺 = 𝐽 , 𝐺 =
𝜕(𝑥𝑖𝛼, 𝑝𝑖𝛼)

𝜕(𝑥0
𝑖𝛼, 𝑝

0
𝑖𝛼)

, 𝐽 =

⃒⃒⃒⃒⃒⃒⃒⃒
0 𝐼𝑁

−𝐼𝑁 0

⃒⃒⃒⃒⃒⃒⃒⃒
, (3)
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where 𝐺 is Jacobi matrix, 𝐽 is symplectic matrix, 𝐼𝑁 is the identity matrix of size 𝑁 × 𝑁 , upper index 𝑇

denotes the transpose operation. It follows from (3) that the Jacobian transformation equals one: |𝐺| = 1. For
the subsequent discussion, let us rewrite the Hamiltonian equations (1) for the one-dimensional case in the form

𝑑𝑥𝑖/𝑑𝑡 = 𝑝𝑖(𝑡)/𝑚, 𝑑𝑝𝑖/𝑑𝑡 = 𝑓𝑖(𝑥𝑖), (4)

where 𝑓𝑖(𝑥𝑖) is the force acting on the 𝑖-th particle, 𝑓𝑖(𝑥𝑖) = −𝜕𝑉 (𝑥𝑖)/𝜕𝑥𝑖, 𝑖 = 1, 2, . . . ,𝑁 . Starting from here,
we will omit the lower index 𝑖 when discussing difference schemes for solving the system of ordinary differential
equations (4).

3. Symplectic difference RKN schemes. The 𝐾-stage RKN scheme for the Hamiltonian equations
(4) has the following form:

𝑥(𝑖) = 𝑥𝑛 + ℎ𝛼𝑖
𝑝𝑛

𝑚
+

ℎ2

𝑚

𝐾∑︁
𝑗=1

𝑎𝑖𝑗𝑓(𝑥
(𝑗)),

𝑥𝑛+1 = 𝑥𝑛 + ℎ
𝑝𝑛

𝑚
+

ℎ2

𝑚

𝐾∑︁
𝑗=1

𝛽𝑗𝑓(𝑥
(𝑗)),

𝑝𝑛+1 = 𝑝𝑛 + ℎ
𝐾∑︀
𝑗=1

𝛾𝑗𝑓(𝑥
(𝑗)),

(5)

where ℎ is the time step, 𝑛 is the number of the time layer, 𝑛 = 0, 1, 2, . . .; 𝛼𝑖,𝛽𝑖, 𝛾𝑖, 𝑖 = 1, . . . ,𝐾 are fixed
parameters, 𝐾 ⩾ 1.

Let us require that scheme (5) performs the canonical transformation (𝑥𝑛, 𝑝𝑛) → (𝑥𝑛+1, 𝑝𝑛+1) at transition
from temporal layer 𝑛 to layer 𝑛+ 1. For this purpose it is necessary to impose the condition [3] on the Jacobi
matrix 𝐺𝑛+1 in accordance with (3)

𝐺𝑛+1,𝑇𝐽𝐺𝑛+1 = 𝐽 , 𝐺𝑛+1 =
𝜕(𝑥𝑛+1, 𝑝𝑛+1)

𝜕(𝑥𝑛, 𝑝𝑛)
, 𝐽 =

(︂
0 1

−1 0

)︂
. (6)

Condition (6) generates a class of explicit two-parameter RKN(𝛼, 𝛾) schemes, for which 𝛽𝑖, 𝑎𝑖𝑗 in (5) meet the
conditions [11]

𝛽𝑖 = 𝛾𝑖(1− 𝛼𝑖), 𝑎𝑖𝑗 =

{︂
0, if 1 ⩽ 𝑖 ⩽ 𝑗 ⩽ 𝐾,

𝛾𝑗(𝛼𝑖 − 𝛼𝑗), if 1 ⩽ 𝑗 < 𝑖 ⩽ 𝐾.
(7)

There are no explicit Runge-Kutta schemes preserving the canonicity of transformation (6) [11].
Verlet [10] proposed a single-stage RKN scheme of the second-order accuracy for system (4). Ruth [5]

proved for the first time that the Verlet scheme is symplectic (canonical) and discovered a three-stage RKN
method of the third-order accuracy. A three-stage symplectic RKN-method of the fourth-order accuracy was
obtained in [7]; two real symplectic four-stage schemes were also obtained in analytical form without using
Gröbner bases. In [12], analytical expressions for 𝛼𝑖,𝛽𝑖, 𝛾𝑖 ratios of the three-stage method were obtained, using
Gröbner basis.

Let us describe the technique for determining the order of accuracy of the RKN scheme using the RKN
scheme for calculating the momentum 𝑝𝑛+1 at time 𝑡𝑛+1 = 𝑡𝑛 + ℎ as an example. We assume the value
of 𝑝𝑛 to be known. In each subsequent node 𝑡𝑛+1, the solution is calculated using the following formula:
𝑝𝑛+1 = 𝑝𝑛 +∆𝑝ℎ,𝑛. The formula for calculating ∆𝑝ℎ,𝑛 depends on the number of stages 𝐾 in the RKN scheme
being considered and on the 3𝐾 variables 𝛼𝑖,𝛽𝑖, 𝛾𝑖, 𝑖 = 1, . . . ,𝐾. On the other hand, one can easily obtain the
“exact” formula for calculating the increment ∆𝑝 by decomposing the value 𝑝𝑛 into a truncated Tailor series:

∆𝑝𝑛 = 𝑝(𝑡𝑛 + ℎ)− 𝑝(𝑡𝑛) ≈
𝑁𝑇∑︀
𝑗=1

ℎ𝑗

𝑗!

𝑑𝑗𝑝(𝑡𝑛)

𝑑𝑡𝑗
, where 𝑁𝑇 is the given natural value, 𝑁𝑇 ⩾ 𝐾 + 1. If the difference

𝛿𝑝𝑛 = ∆𝑝𝑛 −∆𝑝ℎ,𝑛 meets the condition 𝛿𝑝𝑛/ℎ = 𝑂(ℎ𝜆), where 𝜆 > 0, then the RKN scheme has the order of
accuracy 𝑂(ℎ𝜆). 𝜆 degree is maximized by adjusting the parameters 𝛼𝑖,𝛽𝑖, 𝛾𝑖 (𝑖 = 1, . . . ,𝐾) for each specific
𝐾.

3.1. One-stage RKN scheme. Let us assume 𝐾 = 1 in (5) and find the highest possible order of
accuracy for this scheme (Verlet scheme [10]) as applied to calculating the momentum 𝑝𝑛+1 by varying the
ratios 𝛼1 and 𝛾1. Before citing the corresponding code fragments in the Mathematica language, let us explain
the meaning of the notations used in this program:

ntayl = 𝑁𝑇 , tn = 𝑡𝑛, pnew = 𝑝𝑛+1, u[t] = �̇�(𝑡), dp = ∆𝑝𝑛,
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dph = ∆𝑝ℎ,𝑛, errp = 𝛿𝑝𝑛, a1 = 𝛼1, g1 = 𝛾1.
First we calculate the “exact” decomposition of ∆𝑝𝑛 (which corresponds to the variable dp in the Mathematica
code fragment below):

pnew = Normal[ Series[ p[t], t, tn, ntayl] ] /. t -> tn + h;
dp = pnew - p[tn].

These commands produce the following expression for ∆𝑝𝑛:
dp = hp’[tn] + 1/2h2p"[tn] + 1/6h3p(3)[tn].

To facilitate collecting like terms in the expression for 𝛿𝑝𝑛, it helps to perform rather obvious transformations
in the resulting expression, using the Hamiltonian equations (4):

𝑝′(𝑡𝑛) = 𝑓(𝑥(𝑡)), 𝑝′′(𝑡𝑛) = 𝑓 ′(𝑥(𝑡))𝑢(𝑡), 𝑝(3)(𝑡𝑛) = 𝑢2(𝑡)𝑓 ′′(𝑥(𝑡)) + 𝑓 ′(𝑥(𝑡))𝑢′(𝑡).

According to the Hamiltonian equations (4), calculating 𝑝𝑛+1 requires the value of 𝑥(1). In our Mathematica
program, it was calculated in symbolic form using the following function:

x1[t_] := x[t] + h*a1*u[t].

After that the value ∆𝑝ℎ,𝑛 is calculated in symbolic form using the commands
ftayl1 = Normal[ Series[ f[y], y, y0, ntayl] ] /. {y -> x1[t], y0 -> x[t]};

dph = h*g1*ftayl1.

The value sought 𝛿𝑝𝑛 is calculated with this command: errp = Simplify[dp - dph]. As a result, the following
expression for the error 𝛿𝑝𝑛 was obtained:

𝛿𝑝𝑛 = ℎ𝑃1𝑓(𝑥) +
ℎ2

2
𝑃2𝑢(𝑡)𝑓

′(𝑥) +
ℎ3

6
[𝑓(𝑥)𝑓 ′(𝑥)/𝑚+ 𝑃3𝑢

2𝑓 ′′(𝑥)].

Here 𝑃1, 𝑃2, 𝑃3 are polynomials dependent on the parameters 𝛼1, 𝛾1: 𝑃1 = 1 − 𝛾1, 𝑃2 = 1 − 2𝛼1𝛾1,
𝑃3 = 1− 3𝛼2

1𝛾1. As follows from these formulas, to ensure the second-order accuracy of the Verlet scheme,
the parameters 𝛼1, 𝛾1 need to be adjusted so that 𝑃1 = 0, 𝑃2 = 0. From these conditions we find: 𝛾1 = 1,
𝛼1 = 1/2. Given these parameters, the value of the 𝑃3 ratio is different from zero: 𝑃3 = 1/4.

Using similar symbolic calculations, the following expression for the error 𝛿𝑥𝑛 = ∆𝑥𝑛 −∆𝑥ℎ,𝑛 is derived
from the 𝑥𝑛+1 calculation using the Verlet scheme:

𝛿𝑥𝑛 = (ℎ2/2)𝑅2𝑓(𝑥)/𝑚+ (ℎ3/6)𝑅3 𝑝(𝑡) 𝑓
′(𝑥)/𝑚2. (8)

Here 𝑅2, 𝑅3 are polynomials dependent on the parameters 𝛼1,𝛽1: 𝑅2 = 1−2𝛽1, 𝑅3 = 1−6𝛼1𝛽1. In order for the
RKN scheme for 𝑥𝑛+1 to have the same order of accuracy as the RKN-scheme for computing 𝑝𝑛+1, the equation
𝑅2 = 0 must remain true for all the solutions of the polynomial system 𝑃1 = 0, 𝑃2 = 0. The Mathematica
function PolynomialReduce[...] makes it possible to find an expression for a polynomial 𝑅2 as a linear combination
of given polynomials. In the case of polynomial 𝑅2, the command PolynomialReduce[R2,{P2,P1}] produces the
following result: 𝑅2 = 2𝑃1−𝑃2. In a similar manner, we find that 𝑅3 = 3𝑃2−2𝑃3. The optimal values 𝛼1 = 1/2

and 𝛾1 = 1 were obtained above, based on the conditions 𝑃1 = 0, 𝑃2 = 0, which result in the equations 𝑅2 = 0,
𝑅3 = −1/2. Thus, the equation for 𝑥(𝑡) is also approximated by the Verlet scheme with the second-order
accuracy.

3.2. Two-stage RKN scheme. In the case considered, we must assume 𝐾 = 2 in (5). Performing
symbolic calculations similarly to the case of the one-stage scheme, we arrive at the following expression for 𝛿𝑝𝑛:

𝛿𝑝𝑛 = ℎ𝑃1𝑓(𝑥) +
ℎ2

2
𝑃2𝑢𝑓

′(𝑥) +
ℎ3

6𝑚

[︀
𝑃31𝑓(𝑥)𝑓

′(𝑥) + 𝑃32𝑚𝑢2𝑓 ′′(𝑥)
]︀
,

where

𝑃1 = 1−
𝐾∑︀
𝑗=1

𝛾𝑗 , 𝑃2 = 1− 2
𝐾∑︀
𝑗=1

𝛼𝑗𝛾𝑗 , 𝑃31 = 1− 6
𝐾∑︀
𝑖=1

𝐾∑︀
𝑗=𝑖+1

𝛾𝑖𝛾𝑗(𝛼𝑗 − 𝛼𝑖), 𝑃32 = 1− 3
𝐾∑︀
𝑗=1

𝛼2
𝑗𝛾𝑗 . (9)

A system of four nonlinear algebraic equations 𝑃1 = 0, 𝑃2 = 0, 𝑃31 = 0, 𝑃32 = 0 gives the following two solutions
for parameters 𝛼1,𝛼2, 𝛾1, 𝛾2: 𝛼1 = (3± i

√
3)/12, 𝛼2 = (9± i

√
3)/12, 𝛾1 = (3± i

√
3)/6, 𝛾2 = (3∓ i

√
3)/6. This

means there are no real third-order accuracy schemes in this case. The choice of parameters 𝛼1,𝛼2, 𝛾1, 𝛾2 from
the conditions 𝑃1 = 0, 𝑃2 = 0 ensures second-order accuracy of the RKN scheme in question. These two
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equations are linear with respect to 𝛾1, 𝛾2. Let us put them down as a system 𝑉 · 𝑋 = 𝑓 , where 𝑉 is the
Vandermonde matrix:

𝑉 =

(︂
1 1

𝛼1 𝛼2

)︂
, 𝑋 =

(︂
𝛾1
𝛾2

)︂
, 𝑓 =

(︂
1
1
2

)︂
. (10)

First let us consider the case where the determinant Det𝑉 = 𝛼2 − 𝛼1 = 0. In this case we arrive from (10)
to a one-parameter solution in the form 𝛾2 = 1 − 𝛾1, 𝛼1 = 𝛼2 = 1/2. Moreover, we obtain from (9): 𝑃31 = 1,
𝑃32 = 1/4, so that 144 · (𝑃 2

31 + 𝑃 2
32) = 144 · 17

16 = 153.
Let us now consider the case when 𝛼1 ̸= 𝛼2. In this case, from the conditions 𝑃1 = 0, 𝑃2 = 0 it is easy to

obtain the following two-parameter solution ensuring second-order accuracy of the two-stage RKN scheme:

𝛾1 = (1− 2𝛼2)/ [2(𝛼1 − 𝛼2)] , 𝛾2 = (2𝛼1 − 1)/ [2(𝛼1 − 𝛼2)] . (11)

In the theory of ordinary (non-symplectic) Runge-Kutta multistage schemes, it is common to find such scheme
parameters (in the case in question, parameters 𝛼1,𝛼2) that ensure a minimum of error terms, in this case with
the order of smallness 𝑂(ℎ3) [13]. Since both polynomials 𝑃31 and 𝑃32 depend on the parameters 𝛼1,𝛼2, it
makes sense to introduce the following quadratic functional:

𝐹 (𝛼1,𝛼2) = 144
(︀
𝑃 2
31 + 𝑃 2

32

)︀
= [(𝛼1(8− 12𝛼2) + 4𝛼2 − 3)/(𝛼1 − 𝛼2)]

2
+ (𝛼1(6𝛼2 − 3) + 2− 3𝛼2)

2
. (12)

This expression is obtained by substituting formulas (11) into 𝑃31 and 𝑃32. At the minimum point of function
𝐹 (𝛼1,𝛼2), the relations 𝜕𝐹 (𝛼1,𝛼2)/𝜕𝛼𝑙 = 0, 𝑙 = 1, 2 must be true. The numerators of the resulting rational
fractional expressions are as follows:

𝑄1 = −3 + 8𝛼1 − 2𝛼3
1 + 3𝛼4

1 + 16𝛼2 − 44𝛼1𝛼2 + 6𝛼2
1𝛼2 − 2𝛼3

1 𝛼2 − 12𝛼4
1 𝛼2 − 28𝛼2

2 + 74𝛼1𝛼
2
2 − 12𝛼2

1 𝛼
2
2+

+30𝛼3
1 𝛼

2
2 + 12𝛼4

1 𝛼
2
2 + 18𝛼3

2 − 30𝛼1𝛼
3
2 − 18𝛼2

1𝛼
3
2 − 36𝛼3

1𝛼
3
2 − 7𝛼4

2 − 6𝛼1𝛼
4
2 + 36𝛼2

1𝛼
4
2 + 6𝛼5

2 − 12𝛼1𝛼
5
2,

𝑄2 = 3− 20𝛼1 + 44𝛼2
1 − 34𝛼3

1 + 7𝛼4
1 − 6𝛼5

1 − 4𝛼2 + 28𝛼1𝛼2 − 58𝛼2
1𝛼2 + 30𝛼3

1𝛼2 + 6𝛼4
1𝛼2 + 12𝛼5

1𝛼2−
−6𝛼1𝛼

2
2 + 12𝛼2

1𝛼
2
2 + 18𝛼3

1𝛼
2
2 − 36𝛼4

1𝛼
2
2 + 2𝛼3

2 + 2𝛼1𝛼
3
2 − 30𝛼2

1𝛼
3
2 + 36𝛼3

1𝛼
3
2 − 3𝛼4

2 + 12𝛼1𝛼
4
2 − 12𝛼2

1𝛼
4
2 .

The solution of the system 𝑄1 = 0, 𝑄2 = 0 was found using the Gröbner basis. For this, we used the
GroebnerBasis[ {Q1,Q2}, {a1,a2} ] function that is built in the Mathematica software package. Here a1= 𝛼1,
a2= 𝛼2. It turned out that the Gröbner basis consists of four polynomials, of which the first three are reducible,
as we discovered using the Factor[...] built-in function of the software package used:

𝐺1 =
(︀
−1 + 2𝛼2

)︀9 (︀
15 + 2𝛼2

)︀ (︀
7− 18𝛼2 + 12𝛼2

2

)︀ (︀
−3 + 7𝛼2 − 9𝛼2

2 + 6𝛼3
2

)︀
,

𝐺2 =−
(︀
(−1 + 2𝛼2)

2 (−782292886326335781 + 84791412129792𝛼1 + 13518496830811327517𝛼2−
− 105687991753500756247𝛼2

2 + 494822074007590215378𝛼3
2 − 1547761103857501203524𝛼4

2+

+ 3413403141608874304288𝛼5
2 − 5445027180463857323808𝛼6

2 + 6305466223138181638976𝛼7
2−

− 5183080249993946906752𝛼8
2 + 2828691383728661777664𝛼9

2 − 855368209356906329856𝛼10
2 +

+ 51213785868624923136𝛼11
2 + 30677230391300103168𝛼12

2 )
)︀
,

𝐺3 =(−1 + 2𝛼2)
(︀
138375335965152699 + 15898389774336𝛼1 − 31796779548672𝛼2

1+

+ 21197853032448𝛼3
1 − 2643993979226915641𝛼2 + 23052596110039882255𝛼2

2−
− 121523546615414976256𝛼3

2 + 432612502387510859032𝛼4
2 − 1099597565438948027224𝛼5

2+

+ 2054466563803837779616𝛼6
2 − 2852904523255219553920𝛼7

2 + 2925159692595283888384𝛼8
2−

− 2147987507024103404032𝛼9
2 + 1048555229436013268736𝛼10

2 − 279638949859173402624𝛼11
2 +

+ 10628391427610609664𝛼12
2 + 9693762746554238976𝛼13

2

)︀
,

𝐺4 =− 6378840443102352741 + 105989265162240𝛼1 − 402759207616512𝛼2
1+

+ 423957060648960𝛼3
1 − 42395706064896𝛼4

1 + 134645083671004390385𝛼2+

+ 339165648519168𝛼1𝛼2 − 339165648519168𝛼2
1𝛼2 − 1306553371471540227807𝛼2

2+

+ 7728385463568967182882𝛼3
2 − 31152292224976113655272𝛼4

2 + 90595546230140582933880𝛼5
2−

− 196140611828089238849712𝛼6
2 + 321032661222529636238400𝛼7

2−
− 398020598628892865210880𝛼8

2 + 368863060403416970198016𝛼9
2−

− 246489793612098299292928𝛼10
2 + 109621999423243454814720𝛼11

2 −
− 26287557235123544745984𝛼12

2 + 533712029766168066048𝛼13
2 + 894285199654734163968𝛼14

2 .

(13)
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Equation 𝐺1 = 0 has a total of 15 solutions, counted together with their multiplicities. The equation −1+2𝛼2 =

0 gives the root 𝛼2 = 1/2. By substituting this value into (13), we obtain:

𝐺4 = −2649731629056 (−17 + 2𝛼1)(−1 + 2𝛼1)
3.

From this we derive that the root 𝛼2 = 1/2 corresponds to the following two roots 𝛼1: 𝛼1 = 17/2 and 𝛼1 = 1/2.
The pair of roots 𝛼1 = 𝛼2 = 1/2 has already been obtained above, in the singular case where the Vandermonde
determinant Det𝑉 turns to zero.

The second polynomial multiplier in 𝐺1 gives a single root 𝛼2 = −15/2. By substituting this value into
𝐺4, we obtain the following factorized polynomial:

−2649731629056 (−1 + 2𝛼1)
2 (−239− 36𝛼1 + 4𝛼2

1).

The value 𝛼1 = 1/2 is one of its roots. Note that 𝐹 (1/2,−15/2) = 17/4. The equation 4𝛼2
1 − 36𝛼1 − 239 = 0

has two roots: 𝛼
(4),(5)
1 =

1

2

(︁
9± 8

√
5
)︁
. The third polynomial multiplier in 𝐺1 gives two complex roots. The

fourth multiplier in 𝐺1 leads to the equation 6𝛼3
2 − 9𝛼2

2 + 7𝛼2 − 3 = 0, which has one real solution 𝛼2 =
1

6

(︂
3− 5

𝑧
+ 𝑧

)︂
≈ 0.8207801830727278, where 𝑧 =

(︀
18 +

√
449

)︀ 1
3 .

Substituting this solution into 𝐺4, we obtain the fourth-degree equation for finding 𝛼1, which is not given
here due to its bulkiness. It has two real roots: 𝛼

(6)
1 = 0.1792198169272722 and 𝛼

(7)
1 = 8.1664593831518564.

Thus, we found seven real solutions. The value of function 𝐹 is shown below to the right of each 𝛼1, 𝛼2 value
pair:(︂

𝛼
(1)
1 =

1

2
, 𝛼

(1)
2 =

1

2
, 153

)︂
,

(︂
𝛼
(2)
1 =

17

2
, 𝛼

(2)
2 =

1

2
,
17

4

)︂
,

(︂
𝛼
(3)
1 =

1

2
, 𝛼

(3)
2 = −15

2
,
17

4

)︂
,(︂

𝛼
(4)
1 =

1

2
(9− 8

√
5), 𝛼

(4)
2 = −15

2
, 80071.2

)︂
,

(︂
𝛼
(5)
1 =

1

2
(9 + 8

√
5), 𝛼

(5)
2 = −15

2
, 389185

)︂
,(︁

𝛼
(6)
1 = 0.1792198169272722, 𝛼

(6)
2 = 0.8207801830727278, 0.019455592

)︁
,(︁

𝛼
(7)
1 = 8.1664593831518564, 𝛼

(7)
2 = 0.8207801830727278, 236.8001073

)︁
.

(14)

It follows that the values 𝛼(6)
1 and 𝛼

(6)
2 are the optimal values at which the functional (12) reaches its minimum.

Let us prove that the equation 𝛼
(6)
1 + 𝛼

(6)
2 = 1. is true. To do this, we replace the value of 𝛼1 in 𝐺4 by the

formula: 𝛼1 = 1− 𝛼2. We arrive at the following polynomial with one variable:

𝐺4(1−𝛼2,𝛼2) = (−1+2𝛼2)
3
(︀
−3+7𝛼2−9𝛼2

2+6𝛼3
2

)︀ (︀
−2126251883896740983+27162794604792749766𝛼2−

−147499546183106185992𝛼2
2 + 440174256113268636584𝛼3

2 − 775625158741778488992𝛼4
2+

+797031342913409808288𝛼5
2 − 424250889183899140736𝛼6

2+

+67011825598549386624𝛼7
2 + 18630941659473628416𝛼8

2

)︀
.

Using the expression 𝛼2 =
1

6

[︂
3− 5

𝑧
+ 𝑧

]︂
, where 𝑧 =

(︀
18 +

√
449

)︀ 1
3 , we obtain: 𝐺4(1− 𝛼2,𝛼2) = 0.

Using symbolic calculations similar to the case of the Verlet scheme, the expression for the error 𝛿𝑥𝑛 is
found in the form (8), where 𝑅2 = 2𝑃1 − 𝑃2, 𝑅3 = 3𝑃2 − 2𝑃32. Let us use the expressions from (7) for 𝛽1

and 𝛽2 and substitute 𝑅2, 𝑅3 with formulas (11) obtained above from the second-order accuracy requirement
of the RKN scheme in question for momentum 𝑝𝑛+1. The result is: 𝑅2 = 0, 𝑅3 = −2 + 𝛼1(3 − 6𝛼2) + 3𝛼2.
Now let us substitute in 𝑅3 the values

(︁
𝛼
(𝑙)
1 , 𝛼

(𝑙)
2

)︁
from (14), 𝑙 = 1, . . . , 7. Let us denote the corresponding

numerical values of the value 𝑅3 through 𝑅
(𝑙)
3 . It turns out that 𝑅

(1)
3 = 𝑅

(2)
3 = 𝑅

(3)
3 = −1

2
, 𝑅(4)

3 = −49

2
+

24
(︁
9− 8

√
5
)︁
≈ −237.825, 𝑅(5)

3 = −49

2
+ 24

(︁
9 + 8

√
5
)︁
≈ 620.825, 𝑅(6)

3 = (25 − 13𝑧2 + 𝑧4)/(6𝑧2) ≈ 0.11740,

where 𝑧 =
(︀
18 +

√
449

)︀ 1
3 , 𝑅(7)

3 ≈ −15.2555. It follows that the value 𝑅
(6)
3 is the smallest absolute value among

the seven values 𝑅
(𝑙)
3 , 𝑙 = 1, . . . , 7, where |𝑅(𝑙)

3 |/𝑅(6)
3 = 4.259 at 𝑙 ⩽ 3. Thus, the point

(︁
𝛼
(6)
1 , 𝛼

(6)
2

)︁
is optimal
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in terms of accuracy also when calculating 𝑥𝑛+1 using the two-stage RKN scheme. We should also note that the
values of 𝑅(𝑙)

3 at 𝑙 ⩽ 3 match the value of 𝑅3 obtained in the previous section for the one-stage RKN scheme.
Therefore, when using the point

(︁
𝛼
(6)
1 , 𝛼

(6)
2

)︁
in the two-stage scheme, a higher accuracy of the numerical

solution should be expected than in the case of the Verlet scheme.
The general conclusion is that the two-stage scheme in question has only the second-order accuracy, and

cannot be advanced to third-order accuracy.
3.3. A three-stage RKN scheme. Assuming 𝐾 = 3 in (5) and performing symbolic calculations similar

to the case of the two-stage scheme, we obtain the expression for 𝛿𝑝𝑛 in the form

𝛿𝑝𝑛,3 = ℎ𝑃1𝑓(𝑥) + (ℎ2/2)𝑃2𝑢𝑓
′(𝑥) + (ℎ3/(6𝑚))[𝑃31𝑓(𝑥)𝑓

′(𝑥) + 𝑃32𝑚𝑢2𝑓 ′′(𝑥)]+

+ (ℎ4𝑢)/(24𝑚){𝑃41 · [𝑓 ′(𝑥)]2 + 3𝑃42𝑓(𝑥)𝑓
′′(𝑥) + 𝑃43𝑚𝑢2𝑓 (3)(𝑥)}+

+ [ℎ5/(120𝑚2)](3𝑃51𝑓
2(𝑥)𝑓 ′′(𝑥) + 𝑓(𝑥)(𝑃52 · [𝑓 ′(𝑥)]2 + 6𝑃53𝑚𝑢2𝑓 (3)(𝑥))+

+𝑚𝑢2(5𝑃54𝑓
′(𝑥)𝑓 ′′(𝑥) + 𝑃55𝑚𝑢2𝑓 (4)(𝑥)),

(15)

where the polynomials 𝑃1, 𝑃2, 𝑃31, 𝑃32 are described by formulas (9);

𝑃41 = 1− 24

𝐾∑︁
𝑖=1

𝐾∑︁
𝑗=𝑖+1

𝛾𝑖𝛾𝑗𝛼𝑖(𝛼𝑗 − 𝛼𝑖),

𝑃42 = 1− 8

𝐾∑︁
𝑖=1

𝐾∑︁
𝑗=𝑖+1

𝛾𝑖𝛾𝑗𝛼𝑗(𝛼𝑗 − 𝛼𝑖),

𝑃43 = 1− 4

𝐾∑︁
𝑗=1

𝛼3
𝑗𝛾𝑗 ,

𝑃51 = 1− 20

𝐾∑︁
𝑖=1

𝐾∑︁
𝑗=𝑖+1

𝐾∑︁
𝑙=𝑗+1

𝛾𝑖𝛾𝑗𝛾𝑙(𝛼𝑗 − 𝛼𝑖)(𝛼𝑖 − 𝛼𝑙),

𝑃52 = 1− 120

𝐾∑︁
𝑖=1

𝐾∑︁
𝑗=𝑖+1

𝐾∑︁
𝑙=𝑗+1

𝛾𝑖𝛾𝑗𝛾𝑙(𝛼𝑗 − 𝛼𝑖)(𝛼𝑗 − 𝛼𝑙),

𝑃53 = 1− 10

𝐾∑︁
𝑖=1

𝐾∑︁
𝑗=𝑖+1

𝛾𝑖𝛾𝑗𝛼
2
𝑖 (𝛼𝑖 − 𝛼𝑗),

𝑃54 = 1− 12

𝐾∑︁
𝑖=1

𝐾∑︁
𝑗=𝑖+1

𝛾𝑖𝛾𝑗𝛼
2
𝑗 (𝛼𝑖 − 𝛼𝑗),

𝑃55 = 1− 5

𝐾∑︁
𝑗=1

𝛼4
𝑗𝛾𝑗 .

(16)

This RKN scheme was investigated in [12] using Maple 12 software package and Gröbner bases. In
Section 5, we will compare the three-stage scheme in terms of accuracy with the other four schemes, so below
we give three sets of parameters 𝛼𝑙, 𝛾𝑙, 𝑙 = 1, 2, 3, which were derived in [12] from the fourth-order accuracy
requirement of the three-stage scheme in question:

𝛼1 =
3∓ 𝑧

6
, 𝛼2 =

3± 𝑧

6
, 𝛼3 =

3∓ 𝑧

6
, 𝛾1 =

3± 2𝑧

12
, 𝛾2 =

1

2
, 𝛾3 =

3∓ 2𝑧

12
, (17)

where 𝑧 =
√
3. Let us call the scheme with the upper “+” and “−” signs in (17) the RKN34A scheme. The

scheme with the lower “+” and “−” signs in (17) will be called the RKN34B scheme. The third set of parameters
is as follows (𝜁 = 21/3):

𝛼1 =
𝜁

6
+

𝜁2

12
+

1

3
, 𝛼2 =

1

2
, 𝛼3 =

2

3
− 𝜁

6
− 𝜁2

12
,

𝛾1 =
𝜁

3
+

𝜁2

6
+

2

3
, 𝛾2 = −2𝜁

3
− 𝜁2

3
− 1

3
, 𝛾3 =

𝜁

3
+

𝜁2

6
+

2

3
.

(18)

We call this scheme the RKN34C scheme.
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Let us find out which of the three RKN schemes RKN34A, RKN34B, RKN34C produces the best accuracy.
To do this, we compute the weighted RMS value of the five polynomials 𝑃5𝑗 , 𝑗 = 1, . . . , 5:

𝑃5, rms =

⎯⎸⎸⎷1

5

5∑︁
𝑗=1

(𝜎𝑗𝑃5𝑗)
2
. (19)

Here 𝜎1, . . . ,𝜎5 are the multipliers of polynomials 𝑃5𝑗 in (15); they are not dependent on the specifics of the
problem being solved; 𝜎1 = 3, 𝜎2 = 1, 𝜎3 = 6, 𝜎4 = 5, 𝜎5 = 1. Let us denote the values of polynomial (19) for
the RKN34A, RKN34B, RKN34C schemes as 𝑃5A,rms, 𝑃5B,rms, 𝑃5C,rms, respectively. The following results are
produced:

𝑃5A,rms = 𝑃5B,rms =
1

72

√︂
5953

5
≈ 0.47924, 𝑃5C,rms =

1

288

[︂
5560768

5
+ 886480𝜁 + 698117𝜁2

]︂ 1
2

≈ 6.3431, (20)

where 𝜁 = 21/3. It follows that RKN34A and RKN34B schemes are the most accurate of the three three-stage
fourth-order accuracy schemes.

Let us denote the error obtained when calculating the coordinate of 𝑥𝑛+1 particle using the three-stage
RKN scheme by 𝛿𝑥𝑛,3. This error is found using symbolic calculations similar to the two-stage RKN scheme
case, and has the following form:

𝛿𝑥𝑛,3 = 𝛿𝑥𝑛+
ℎ4

24𝑚3

[︀
𝑅41𝑚𝑓(𝑥)𝑓 ′(𝑥) +𝑅42𝑝

2𝑓 ′′(𝑥)
]︀
+

+
ℎ5𝑝(𝑡)

120𝑚4

{︁
𝑅51𝑚[𝑓 ′(𝑥)]2+ 3𝑅52𝑚𝑓(𝑥)𝑓 ′′(𝑥) +𝑅53𝑝

2𝑓 (3)(𝑥)
}︁
.

(21)

Here, 𝛿𝑥𝑛 is calculated using formula (8), in which 𝑅2 = 2𝑃1 − 𝑃2, 𝑅3 = 3𝑃2 − 2𝑃32, and polynomials
𝑃1,𝑃2,𝑃31,𝑃32 are calculated using formula (9) with 𝐾 = 3. Further, 𝑅41 = 4𝑃31 − 3𝑃42, 𝑅42 = 4𝑃32 − 3𝑃43.

From the formulas for 𝑅2, 𝑅3, 𝑅41, 𝑅42, it follows that the value 𝑥𝑛+1 is also found with the fourth-order
accuracy using the three-stage RKN scheme. The polynomials 𝑅51, 𝑅52, 𝑅53 have the following form:

𝑅51 = 1− 120

𝐾∑︁
𝑖=1

𝐾∑︁
𝑗=𝑖+1

(𝛼𝑗 − 𝛼𝑖)𝛾𝑖𝛼𝑖𝛽𝑗 ,

𝑅52 = 1− 40

𝐾∑︁
𝑖=1

𝐾∑︁
𝑗=𝑖+1

(𝛼𝑗 − 𝛼𝑖)𝛾𝑖𝛼𝑗𝛽𝑗 ,

𝑅53 = 1− 20

𝐾∑︁
𝑖=1

𝛼3
𝑖𝛽𝑖.

(22)

3.4. A four-stage RKN scheme. Assuming 𝐾 = 4 in (5) and performing symbolic calculations similar
to the case of the three-stage scheme, we obtain the expression for 𝛿𝑝𝑛 in the form (15), where the expressions
for 𝑃1, 𝑃2, 𝑃31, 𝑃32, 𝑃41, 𝑃42, 𝑃43, 𝑃51, 𝑃52, 𝑃53, 𝑃54, 𝑃55 match the formulas (9), (16) at 𝐾 = 4. The

GroebnerBasis[{P1, P2, P31, P32, P41, P42, P43, P51, P52, P53, P54, P55}, {a1, a2, a3, a4, g1, g2, g3, g4}]
command produces the following output: {1}. According to the Hilbert’s theorem on zeros [14], if the ideal is
{1}, then 12 polynomials 𝑃1, . . . ,𝑃55 have no common zero values. Hence we conclude there are no four-stage
schemes of the fifth-order accuracy.

The system of equations 𝑃1 = 0, 𝑃2 = 0, 𝑃32 = 0, 𝑃43 = 0 is linear relative to 𝛾𝑖, 𝑖 = 1, . . . , 4. Its matrix
is a Vandermonde matrix 𝑉 of size 4× 4, and

Det𝑉 = (𝛼1 − 𝛼2)(𝛼1 − 𝛼3)(𝛼1 − 𝛼4)(𝛼2 − 𝛼3)(𝛼2 − 𝛼4)(𝛼3 − 𝛼4).

Using Gröbner bases, all six cases of this determinant turning to zero were considered, and 20 real schemes of
fourth-order accuracy were discovered. For each scheme, the weighted RMS value of the five polynomials 𝑃5𝑗 ,
𝑗 = 1, . . . , 5 was calculated, similar to (19):

𝑃
(𝑙)
5, rms =

⎯⎸⎸⎷1

5

5∑︁
𝑗=1

(𝜎𝑗𝑃5𝑗)2, 𝑙 = 1, . . . , 20.
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Next, the case of a non-zero Vandermonde determinant was considered. Applied molecular dynamics
problems are non-linear, so they have to be solved using numerical methods, in particular, RKN-methods.
To implement these methods programmatically it is sufficient to set the parameters 𝛼𝑗 , 𝛾𝑗 (𝑗 = 1, . . . ,𝐾) as
floating-point numbers in machine representation. The problem of finding a solution to a polynomial system
that satisfies the aforementioned parameters can be formulated as a problem of numerical minimization of a
target function representing a sum total of squared left-hand sides of the polynomial system being solved.

The progress in numerical solution of optimization problems achieved over the last decades makes it
possible to approximate a numerical solution to the optimization problems within acceptable machine time, at
sufficient accuracy for practical applications. The Mathematica function NMinimize[...] makes it possible to find
the minimum of a multivariate function.

Let us assume 𝑋 = (𝛼1,𝛼2,𝛼3,𝛼4, 𝛾1, 𝛾2, 𝛾3, 𝛾4). We proceed by introducing a non-negative target function

𝑃 (𝑋) = 𝑃 2
1 + 𝑃 2

2 + 𝑃 2
31 + 𝑃 2

32 + 𝑃 2
41 + 𝑃 2

42 + 𝑃 2
43. (23)

Further, let Ω8d be a hypercube with 2𝑟 edge length in an eight-dimensional Euclidean space of 𝑋-points,
Ω8d = {(𝛼1,𝛼2,𝛼3,𝛼4, 𝛾1, 𝛾2, 𝛾3, 𝛾4) | − 𝑟 ⩽ 𝛼𝑗 ⩽ 𝑟, −𝑟 ⩽ 𝛾𝑗 ⩽ 𝑟, 𝑗 = 1, . . . , 4}. We will seek a solution to
the following numerical minimization problem: finding min𝑋∈Ω8d 𝑃 (𝑋).

In the case of nonlinear target function, the NMinimize[...] function in Mathematica uses the minimization
algorithm proposed in [15]. Let us assume that 𝑋* is an approximate solution of the minimization problem for
function (23) in hypercube Ω8d, if |𝑃 (𝑋*)| < 10−30. Then the RMS value of the functions 𝑃1, . . . ,𝑃43 meets

the inequality condition
√︂(︁

𝑃 2
1 + · · ·+ 𝑃 2

43

)︁
/7 <

10−15

√
7

≈ 0.378 · 10−15, i.e., it will stay at the level of machine

rounding errors at double-precision computation upon executing the machine code generated by the FORTRAN
program translator. Thus, the accuracy observed in determining the components of vector 𝑋* is sufficient for
numerical solution of molecular dynamics problems by means of RKN schemes.

In order to obtain several solutions to the minimization problem of function (23) in one run of the Mathe-
matica program, several initial 𝑋-points were set in the Ω8d region. The number of points was set by the user.
The point coordinates were set using the pseudorandom number generator built into the Mathematica software.

By placing 1000 initial points randomly in Ω8d, 164 numerical solutions of the polynomial system in
question were obtained. Of these, we selected only the solutions in which the value 𝑃5,rms is smaller than the
lowest value obtained when considering all special cases of the Vandermond determinant turning to zero. The
number of these solutions is 21. Of these, four solutions are presented in Table 1 in ascending order of the
corresponding values of 𝑃 (𝑙)

5,rms. It turned out that in the general case, when Det𝑉 ̸= 0, it is possible to obtain
schemes that have more than half as low 𝑃

(𝑙)
5,rms values than in the cases of Det𝑉 = 0.

Table 1. Parameter values of the schemes RKN4-𝑙a, 𝑙 = 1, . . . , 4, at Det𝑉 ̸= 0

Method 𝛼𝑗 𝛾𝑗 𝑃
(𝑙)
5,rms 𝜅cr

1a −0.163552401143382292 0.048726380769174189 0.1450 2.601107169201
0.315379254000269726 0.604671155309221442
0.849651865097469039 0.377059806193216329
0.101814165555907346 −0.030457342271611940

2a −0.132366908603509081 0.050382034698121490 0.1659 2.853927732257
0.554050453573154522 −0.106956632411513153

0.337015545852672127 0.632484935164970730
0.831831238456345323 0.424089662548420954

3a 0.168126182298635241 0.419065819011724183 0.1676 2.855254281741
0.636979619359235749 0.421942016918863572
0.922878504633673047 0.176843502495841326
0.136094487172141509 −0.017851338426429109

4a 0.073135959738290263 0.179911393946207976 0.1763 2.8424607874720
0.757772082233232225 −0.041533676753871755

0.377483410023031707 0.436525266982659255
0.831654913466108980 0.425097015825004532
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Let us use 𝛿𝑥𝑛,4 to denote the error obtained when calculating the coordinates 𝑥𝑛+1 of a particle us-
ing the four-step RKN scheme. This error is found using symbolic calculations similar to the three-stage
RKN scheme case, and is expressed using the formula (21), in which one must assume that 𝐾 = 4. Next,
𝑅2 = 2𝑃1 − 𝑃2, 𝑅3 = 3𝑃2−2𝑃32, 𝑅41 = 4𝑃31−3𝑃42, 𝑅42 = 4𝑃32−3𝑃43, 𝑅52 = 5𝑃42−4𝑃53, 𝑅53 = 5𝑃43−4𝑃55,
𝑅51 = 5(1− 𝛼2)𝑃41 + 𝑟1𝑃2 + 𝑟2𝑃32 + 𝑟3, where 𝑟1 = 60(𝛼2𝛼3𝛾3−𝛼2

3𝛾3+𝛼2𝛼4𝛾4−𝛼2
4𝛾4), 𝑟2 = 40(𝛼2𝛾3−𝛼3𝛾3+

𝛼2𝛾4−𝛼4𝛾4), 𝑟3 = −4+5(𝛼2+8𝛼2𝛾3−8𝛼3𝛾3−12𝛼2𝛼3𝛾3+12𝛼2
3𝛾3−4((𝛼2−𝛼4)(3𝛼4−2)+6(𝛼2−𝛼3)𝛼4(𝛼4−

𝛼3)𝛾3)𝛾4). If we substitute the polynomial system solution ⟨𝑃1 = 0,𝑃2 = 0,𝑃31 = 0,𝑃32 = 0,𝑃41 = 0,𝑃42 =

0,𝑃43 = 0⟩, in the expressions for 𝑅51,𝑅52,𝑅53, we obtain: 𝑅51 = 𝑟3, 𝑅52 = −4𝑃53, 𝑅53 = −4𝑃55. It follows
that the equation for 𝑥(𝑡) is also approximated by the RKN4 scheme with the fourth-order accuracy.

3.5. A five-stage RKN scheme. When 𝐾 = 5 in (5), the expression for 𝛿𝑝𝑛, taking into account (15),
looks as follows:

𝛿𝑝𝑛 = 𝛿𝑝𝑛,3 +
[︀
ℎ6𝑢/(720𝑚2)

]︀ {︁[︀
𝑓 ′(𝑥)

]︀3
+ 15𝑃61𝑓

2(𝑥)𝑓 (3)(𝑥)− 𝑓 ′(𝑥)
[︀
𝑃62𝑓(𝑥)𝑓

′′(𝑥) + 𝑃63𝑚𝑢2𝑓 (3)(𝑥)
]︀
+

+𝑚𝑢2
[︀
5𝑃64

(︀
𝑓 ′′(𝑥)

)︀2
+ 10𝑃65𝑓(𝑥)𝑓

(4)(𝑥) +𝑚𝑃66𝑢
2𝑓 (5)(𝑥)

]︀}︁
,

(24)

where the polynomials 𝑃1, 𝑃2, 𝑃31, 𝑃32, 𝑃41, 𝑃42, 𝑃43, 𝑃51–𝑃55 are described by formulas (9) and (16) at 𝐾 = 5.
Here are the expressions for the polynomials 𝑃61, . . . ,𝑃66:

𝑃61 = 1− 24

⎡⎣ 𝐾∑︁
𝑖=1

𝐾∑︁
𝑗=𝑖+1

𝛾2
𝑖 𝛾𝑗𝛼𝑗(𝛼𝑖 − 𝛼𝑗)

2 + 2

𝐾∑︁
𝑖=1

𝐾∑︁
𝑗=𝑖+1

𝐾∑︁
𝑙=𝑗+1

𝛾𝑖𝛾𝑗𝛾𝑙𝛼𝑙(𝛼𝑖−𝛼𝑙)(𝛼𝑗 − 𝛼𝑙)

⎤⎦ ,

𝑃62 = 18− 720

⎡⎣ 𝐾∑︁
𝑖=1

𝐾∑︁
𝑗=𝑖+1

𝛾2
𝑖 𝛾𝑗𝛼𝑖(𝛼𝑖−𝛼𝑗)

2+

𝐾∑︁
𝑖=1

𝐾∑︁
𝑗=𝑖+1

𝐾∑︁
𝑙=𝑗+1

𝛾𝑖𝛾𝑗𝛾𝑙(𝛼𝑗−𝛼𝑙)
[︀
(𝛼2

𝑖 − 𝛼2
𝑗 ) + 2𝛼𝑗(𝛼𝑖 − 𝛼𝑙)

]︀⎤⎦ ,

𝑃63 = 11− 120

⎡⎣ 𝐾∑︁
𝑖=1

𝐾∑︁
𝑗=𝑖+1

𝛾𝑖𝛾𝑗𝛼𝑖(𝛼𝑗 − 𝛼𝑖)(𝛼
2
𝑖 + 3𝛼2

𝑗 )

⎤⎦ ,

𝑃64 = 1− 72

𝐾∑︁
𝑖=1

𝐾∑︁
𝑗=𝑖+1

𝛾𝑖𝛾𝑗𝛼
2
𝑖𝛼𝑗(𝛼𝑗 − 𝛼𝑖),

𝑃65 = 1− 12

𝐾∑︁
𝑖=1

𝐾∑︁
𝑗=𝑖+1

𝛼3
𝑗𝛾𝑖𝛾𝑗(𝛼𝑗 − 𝛼𝑖),

𝑃66 = 1− 6

𝐾∑︁
𝑗=1

𝛼5
𝑗𝛾𝑗 .

(25)

It was shown in [16, 17] that the conditions 𝑃41 = 0, 𝑃52 = 0 are redundant. In [16], the numerical values of
the parameters 𝛼𝑖, 𝛾𝑖 (𝑖 = 1, . . . , 5) were found by numerical calculation with an error not exceeding 10−10. As
a result, four real methods were obtained [16, Table 1].

To determine which of the four methods is the most accurate, we calculated the weighed RMS numerical
values of

𝑃6, rms =

⎯⎸⎸⎸⎷1

7

⎛⎝1 +

6∑︁
𝑗=1

(𝜎𝑗𝑃6𝑗)2

⎞⎠ (26)

for all four RKN methods of the fifth-order accuracy, where 𝜎1 = 15, 𝜎2 = 𝜎3 = −1, 𝜎4 = 5, 𝜎5 = 10, 𝜎6 = 1 in
accordance with (24). It was found that 𝑃6, rms ≈ 11.33081 for methods 1 and 3; 𝑃6, rms ≈ 7.11113 for methods
2 and 4. The matching values (26) for pairs 1, 3 and 2, 4 is not accidental: as explained in [16], method 3 is
conjugate to method 1 and method 4 is conjugate to method 2 [16, Table 1]. The conjugate method is obtained
by replacing ℎ, 𝑥𝑛, 𝑢𝑛, with −ℎ, 𝑥𝑛+1, 𝑢𝑛+1, respectively.

As shown above, we used the NMinimize[...] function in Mathematica to obtain a large number of
real solutions to a polynomial system corresponding to the RKN4 scheme. We use this function in a sim-
ilar manner to find new real solutions of the polynomial system corresponding to the RKN5 scheme. As-
sume 𝑋 = (𝛼1,𝛼2,𝛼3,𝛼4,𝛼5, 𝛾1, 𝛾2, 𝛾3, 𝛾4, 𝛾5). Let us introduce a non-negative target function 𝑃 (𝑋) =
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𝑃 2
1 + 𝑃 2

2 + 𝑃 2
31 + 𝑃 2

32 + 𝑃 2
42 + 𝑃 2

43 + 𝑃 2
51 + 𝑃 2

53 + 𝑃 2
54 + 𝑃 2

55. Further, let Ω10d be a rectangular parallelepiped
in the ten-dimensional Euclidean space of 𝑋-points, Ω10d = {(𝛼1,𝛼2,𝛼3,𝛼4,𝛼5, 𝛾1, 𝛾2, 𝛾3, 𝛾4, 𝛾5)

⃒⃒
−𝑟1 ⩽ 𝛼𝑗 ⩽

𝑟1,−𝑟2 ⩽ 𝛾𝑗 ⩽ 𝑟2, 𝑗 = 1, . . . , 5}. Here 𝑟1, 𝑟2 are user-defined positive constants defining the lengths of
the parallelepiped’s edges. We will seek a solution to the following numerical minimization problem: finding
min𝑋∈Ω10d 𝑃 (𝑋).

The smaller the 𝑟1, 𝑟2 values, the fewer iterations are required to obtain a solution with machine accuracy.
Given the results of [16], we set 𝑟1 = 1.2, 𝑟2 = 2.0. The minimization problem in question was solved numerically
using the NMinimize[...] function in Mathematica, in a manner quite similar to the case of eight-dimensional
space. As in the case of the four-stage RKN scheme, an approximate solution of the problem in question was
defined as the solution satisfying the inequality |𝑃 (𝑋)| < 10−30.

By placing 2·104 starting points randomly in Ω10d, three numerical solutions of the polynomial system in
question were obtained. They are presented in Table 2 in ascending order of the respective values of 𝑃 (𝑙)

6,rms. As
can be seen from this table, the values of 𝑃 (𝑙)

6,rms are much smaller than in methods 1–4 of [16].
Further, Table 3 shows that the values |𝑃1(𝑋)|, |𝑃2(𝑋)|, . . . , |𝑃55(𝑋)| in case of methods 5, 6, 7 lie within

the range of 0 to 3.1·10−15, and in the case of methods from [16] they lie, in descending order, in the range of
𝑂(10−15) to 𝑂(10−11), as shown in Table 4.

Let us use 𝛿𝑥𝑛,5 to denote the error obtained when calculating the coordinate 𝑥𝑛+1 of a particle using the
five-step RKN scheme. This error is found using symbolic calculations similar to those in the three-stage RKN

scheme and comes in the following form: 𝛿𝑥𝑛,5 = 𝛿𝑥𝑛,3 +
ℎ6

720𝑚5

{︀
𝑚2𝑅61𝑓(𝑥)[𝑓

′(𝑥)]2 + 3𝑅62𝑚
2𝑓2(𝑥)𝑓 ′′(𝑥) +

5𝑅63𝑚𝑝2𝑓 ′(𝑥)𝑓 ′′(𝑥) + 6𝑅64𝑚𝑓(𝑥)𝑝2𝑓 (3)(𝑥) + 𝑅65𝑝
4𝑓 (4)(𝑥)}, where 𝛿𝑥𝑛,3 is set by formula (21), in which one

should assume 𝐾 = 5. The expressions for 𝑅2, 𝑅3, 𝑅41, 𝑅42 in terms of polynomials 𝑃1, 𝑃2, 𝑃31, 𝑃32, 𝑃42, 𝑃43

Table 2. Values of RKN5-𝑙 schemes, 𝑙 = 5, 6, 7, at Det𝑉 ̸= 0

Method 𝛼𝑗 𝛾𝑗 𝑃
(𝑙)
6,rms 𝜅cr

5 0.2180137428269302846130 0.6820219126111968233062 0.7781 2.296717145585
−0.6630941900724356408148 0.0016344908811675544491
0.9162815210519267283829 0.1913562866884614688257
0.2754877361702176563618 −0.2702137971750414591199

0.6363798707383668817883 0.3952011069942156229473
6 0.2196475212048931979769 0.6943833404764609973370 0.8707 1.637899789244

0.9267747775526675724223 0.1788491925494029854970
0.2634969208444160604365 −0.2803713165469455814716

−0.3745890710865884543078 0.0051231201077848427874
0.6405808696031580762309 0.4020156634132967532480

7 0.1426544325995554307606 0.3426149230052762950649 1.5344 2.760588329702
0.4972289919220082565765 0.4755156268306003353175
0.9805992092388250425116 0.1230187470009109773628
0.4948837279995942362020 −0.2975707328892313041635

0.6770500031205852753402 0.3564214360524436964184

Table 3. The residuals 𝑃1(𝑋), 𝑃2(𝑋), . . . ,𝑃55(𝑋) in new RKN-methods of the fifth-order accuracy

Method 𝑃1 𝑃2 𝑃31 𝑃32 𝑃41 𝑃42

5 −5.6E−17 0.0 0.0 0.0 3.1E−15 0.0
6 2.8E−17 1.1E−16 1.1E−16 2.2E−16 −1.8E−15 −2.2E−16

7 0.0 1.1E−16 −2.2E−16 2.2E−16 2.2E−16 2.8E−16

Method 𝑃43 𝑃51 𝑃52 𝑃53 𝑃54 𝑃55

5 2.2E−16 −4.4E−16 2.1E−15 1.2E−16 5.6E−17 0.0
6 0.0 0.0 3.1E−15 −3.0E−16 −3.3E−16 0.0
7 1.1E−16 2.2E−16 −2.2E−16 −1.1E−16 1.7E−16 1.1E−16
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Table 4. The values of polynomials 𝑅51,𝑅52,𝑅53 at the four numerical solutions obtained in [16]

Method 𝑅51 𝑅52 𝑅53

1 −3.672E−11 −9.812E−12 3.007E−12

2 7.073E−12 1.287E−12 −5.633E−14

3 2.174E−13 6.882E−14 −1.930E−16

4 3.810E−13 1.162E−13 3.719E−16

are the same as those for the error (21), and 𝑅51, 𝑅52,𝑅53 are given by formulas (22). Further,

𝑅61 = 1− 720

𝐾∑︁
𝑖=1

𝐾∑︁
𝑗=𝑖+1

𝐾∑︁
𝑙=𝑗+1

(𝛼𝑗 − 𝛼𝑖)(𝛼𝑙 − 𝛼𝑗)𝛽𝑙𝛾𝑖𝛾𝑗 ,

𝑅62 = 1− 120

𝐾∑︁
𝑖=1

𝐾∑︁
𝑗=𝑖+1

[︁
(𝛼𝑗 − 𝛼𝑖)

2𝛽𝑗𝛾
2
𝑖 + 2

𝐾∑︁
𝑙=𝑗+1

(𝛼𝑙 − 𝛼𝑖)(𝛼𝑙 − 𝛼𝑗)𝛽𝑙𝛾𝑖𝛾𝑗

]︁
,

𝑅63 = 1− 72

𝐾−1∑︁
𝑖=1

𝐾∑︁
𝑗=𝑖+1

(𝛼𝑗 − 𝛼𝑖)(𝛼𝑖 + 2𝛼𝑗)𝛼𝑖𝛽𝑗𝛾𝑖,

𝑅64 = 1− 60

𝐾∑︁
𝑖=1

𝐾∑︁
𝑗=𝑖+1

(𝛼𝑗 − 𝛼𝑖)𝛼
2
𝑗𝛽𝑗𝛾𝑖,

𝑅65 = 1− 30

𝐾∑︁
𝑖=1

𝛼4
𝑖𝛽𝑖.

Table 4 shows the values of the polynomials 𝑅51, 𝑅52, 𝑅53 obtained after substitution of the four numerical
solutions obtained in [16]. These values are at the level of machine rounding errors, from which it follows that
the equation for 𝑥(𝑡) is also approximated by the RKN5 scheme with the fifth-order accuracy. One can see
that methods 2 and 4 have slightly smaller values of residuals of the form 𝑅5𝑙(𝑋), 𝑙 = 1, 2, 3, where 𝑋 is the
approximate solution vector from [16].

4. Stability conditions for RKN schemes. It is known that a symplectic scheme is stable when all
the roots of its characteristic equation lie on the unit circle of the complex plane. As a physical model, let us
consider an oscillator with quadratic potential 𝑉 (𝑥) = 𝑚𝜔2𝑥2/2, for which the equilibrium position is at 𝑥 = 0,
𝑝 = 0. Substituting this expression 𝑉 (𝑥) into equations (4), we obtain the linear equations of motion

𝑑𝑥/𝑑𝑡 = 𝑝/𝑚, 𝑑𝑝/𝑑𝑡 = −𝑚𝜔2𝑥. (27)

Let us introduce the vectors �⃗�
𝑛

= (𝑥𝑛, 𝑝𝑛)𝑇 and �⃗�
𝑛+1

= (𝑥𝑛+1, 𝑝𝑛+1)𝑇 into consideration. In the
matrix notation, equations (5) applied to system (27) have the form: �⃗�

𝑛+1
= 𝐺�⃗�

𝑛
, where 𝐺 is a matrix

of size 2 × 2. Let 𝑔𝑖𝑗 , 𝑖, 𝑗 = 1, 2 be the elements of this matrix. The characteristic equation of matrix 𝐺

is: |𝐺 − 𝜆𝐸| = 𝜆2 + Tr(𝐺)𝜆 + 1 = 0, where Tr(𝐺) is the trace of matrix 𝐺, Tr(𝐺) = −𝑔11 − 𝑔22; 𝐸 is the
identity matrix of size 2 × 2. The value Tr(𝐺) is a function of the parameters 𝛼𝑗 , 𝛾𝑗 , 𝑗 = 1, . . . ,𝐾, and the
Courant number 𝜅 = 𝜔ℎ. The stability condition of scheme (5) is the condition |𝜆𝑖| ⩽ 1, where 𝜆𝑖, 𝑖 = 1, 2 are
the eigenvalues of matrix 𝐺, i.e., the roots of the characteristic equation. If the discriminant of this equation
𝐷 = [Tr(𝐺)/2]2 − 1 is negative, then by Vieta’s theorem, it has two complex-conjugate roots 𝜆1,𝜆2, so that
|𝜆1| = |𝜆2| = 1. In this case there exists a nonzero stability region |𝜅| ⩽ 𝜅cr, where 𝜅cr is the critical Courant
number. Let us introduce the notation 𝐷2(𝜅) = |Tr(𝐺)| − 2. For the RKN schemes considered, 𝜅cr is a solution
to the equation 𝐷2(𝜅) = 0, and the sought stability condition is derived from the inequality 𝐷2 < 0 that follows
from the inequality 𝐷 < 0.

The symplectic schemes are known to preserve the phase volume |𝐺| = 1. This relationship was used
to check if the formulas for calculating the ratios of the characteristic equation are correct. The determinant
|𝐺| was calculated analytically for all schemes using Mathematica’s Simplify[Expand[Det[G]] commands, and the
equality |𝐺| = 1 was obtained in all cases.
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4.1. One-stage RKN scheme. The Verlet scheme (5), 𝐾 = 1, takes the following form when applied to
linear equations (27):

𝑥(1) = 𝑥𝑛 +
ℎ

2

𝑝𝑛

𝑚
, 𝑥𝑛+1 = 𝑥𝑛 + ℎ

𝑝𝑛

𝑚
− ℎ2𝜔2

2
𝑥(1), 𝑝𝑛+1 = 𝑝𝑛 − ℎ𝑚𝜔2𝑥(1). (28)

The characteristic equation |𝐺− 𝜆𝐸| = 0 has the form 1− 2𝜆+ 𝜅2𝜆+ 𝜆2 = 0. This produces the formula
for the discriminant 𝐷 = 𝜅2(𝜅2/4− 1). The stability condition is satisfied if 𝐷 ⩽ 0. In the realm of positive 𝜅

numbers, this leads to the stability condition of the form 0 < 𝜅 ⩽ 2 (Fig. 1).
As is known, the Hamilton equations are invertible in time with simultaneous inversion of time and particle

velocities ??. It follows that the difference symplectic schemes are also invertible in time, as are the Hamilton
equations. As follows from Fig. ??, 𝐷 ⩽ 0 is also in the interval [−2, 0] that is the Verlet scheme is stable in
this interval as well. Therefore, the stability condition of this scheme should be written as 0 < |𝜅| ⩽ 2.

-4 -2 2 4

-1

-0.5

0.5

1

1.5

2

Κ

D

Figure 1. Discriminants
𝐷 = 𝐷(𝜅) for the case of the
Verlet scheme (solid line) and
the optimal two-stage scheme

(dashed line)

4.2. Two-stage RKN scheme. The characteristic equation is not
given here due to its bulkiness. In the corresponding discriminant 𝐷,
we express the parameters 𝛾1, 𝛾2 through 𝛼1,𝛼2 using the formulas (11).
The resulting discriminant comes in the form 𝐷 = 𝜙(𝜅,𝛼1,𝛼2)[8(𝛼1 −
𝛼2)]

−2 − 1, where 𝜙(𝜅,𝛼1,𝛼2) = (2𝛼2
2𝜅

4 + 2𝛼2
1(2𝛼2 − 1)𝜅4 + 𝛼2(−3𝜅4 +

4𝜅2 − 8) − 𝛼1(4𝛼
2
2𝜅

4 − 4𝛼2𝜅
4 + 𝜅4 + 4𝜅2 − 8) + 𝜅4)2. When 𝑙 = 6

in (14), the following expression is obtained for discriminant 𝐷: 𝐷 =

0.00082628
(︀
𝜅4 − 17.3943𝜅2 + 34.7886

)︀2 − 1. Let us denote the roots of the
equation 𝐷 = 0 via the roots 𝜅1, . . . ,𝜅8. They have the following form:
𝜅1 = −𝜅8, 𝜅2 = −𝜅7, 𝜅3 = −𝜅6, 𝜅4 = 𝜅5 = 0, 𝜅6 = 2.496957971257,
𝜅7 = 3.340580819059, 𝜅8 = 4.170644952389. From Fig. 1 (dashed line),
considering the intervals where 𝐷 ⩽ 0, we arrive at the following stability
conditions for the two-stage RKN scheme: 0 < |𝜅| ⩽ 𝜅6, 𝜅7 ⩽ |𝜅| ⩽ 𝜅8.

4.3. A three-stage RKN scheme. The symbolic calculation of the transition matrix elements 𝐺 cor-
responding to the three-stage scheme is performed using a Mathematica program developed similarly to the
case of the two-stage scheme. We must note that irrespective of the number of stages in the RKN method, the
transition matrix 𝐺 is always of size 2× 2. To simplify the expressions for the elements 𝑔𝑖𝑗 , 𝑖, 𝑗 = 1, 2 of matrix
𝐺, the relations 𝑃1 = 0, 𝑃2 = 0, 𝑃32 = 0 were used.

Given the constraints 𝑃1 = 0, 𝑃2 = 0, 𝑃32 = 0, the trace Tr(𝐺) = −(𝑔11 + 𝑔22) = −2 + 𝜅2 − 𝜅4/12 +𝑍𝜅6,
where 𝑍 = 𝛾1𝛾2𝛾3(𝛼3 − 𝛼2)(𝛼2 − 𝛼1)(1− 𝛼3 + 𝛼1); besides, |𝐺| = 1.

Let us find the stability region of the RKN34A scheme. The scheme is defined by parameters (17) with
upper signs. Figure 2a charts the function 𝐷2(𝜅) = |Tr(𝐺(𝜅))| − 2 where Tr(𝐺) > 0. In this case, equation
𝐷2(𝜅) = 0 has two real roots 𝜅 = ±𝜅cr, where 𝜅cr = 2

√
2 + 21/3 − 22/3 ≈ 2.5865189. From Fig. 2a , we can

see that in the intervals [−𝜅cr, 0] and [0,𝜅cr] there are no intervals where 𝐷2(𝜅) > 0, so the stability region of
the RKN34A scheme has the form 0 < |𝜅| ⩽ 𝜅cr. Similar calculations for the RKN34B scheme give the same
stability condition.

The RKN34C scheme is defined by parameters (18). In this case, the equation for determining 𝜅cr

looks as follows: (1/144)𝜅2
(︀(︀
6 + 5 3

√
2 + 4 · 22/3

)︀
𝜅 4 + 12𝜅2 − 144

)︀
= 0. This equation has four real roots

and two complex conjugate roots. The real roots are 𝜅 = 0 (root of multiplicity 2) and 𝜅 = ±𝜅cr, where
𝜅cr =

√︀
6(2− 22/3) ≈ 1.573401947435. As can be seen from Fig. 2a, the intervals [−𝜅cr, 0] and [0,𝜅cr] do not
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a) b)

RKN34A
− − RKN34C

RKN4-1a
− − RKN4-2a
− · − RKN4-3a
△ △ RKN4-4a

Figure 2. Charts of the values 𝐷2 = 𝐷2(𝜅): a) for RKN34A and RKN34C schemes;
b) for RKN4-1a, RKN4-2a, RKN4-3a, RKN4-4a schemes
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contain an area where |Tr(𝐺)| − 2 > 0; therefore, the stability region of the RKN34C scheme has the form
0 < |𝜅| ⩽ 𝜅cr. The RKN34A scheme has a larger stability margin than the RKN34C scheme, so the RKN34A
scheme is preferable for molecular dynamics applications.

4.4. A four-stage RKN scheme. The formulas for the matrix elements 𝐺 are not given here due to
their bulkiness; instead we proceed straight to an expression for the trace of matrix 𝐺: Tr(𝐺) = −2 + 𝜅2 −
𝜅4/12 + 𝑍6𝜅

6 + 𝑍8𝜅
8, where

𝑍6 = (𝛼1 − 𝛼3)(1 + 𝛼1 − 𝛼4)(𝛼3 − 𝛼4)(𝛾1 + 𝛾2)𝛾3𝛾4+

+ (𝛼1 − 𝛼2)𝛾2{𝛼4(−1− 𝛼1 + 𝛼4)(𝛾1 − 𝛾3)𝛾4 − (1 + 𝛼1)𝛼3𝛾3(𝛾1 + 𝛾4) + 𝛼2
3𝛾3(𝛾1 + 𝛾4)+

+ 𝛼2[(𝛼4 − 𝛼3)𝛾3𝛾4 + 𝛾1(𝛾3 + 𝛼1𝛾3 − 𝛼3𝛾3 + 𝛾4 + 𝛼1𝛾4 − 𝛼4𝛾4)]},
𝑍8 = (𝛼1 − 𝛼2)(𝛼2 − 𝛼3)(1 + 𝛼1 − 𝛼4)(𝛼3 − 𝛼4)𝛾1𝛾2𝛾3𝛾4.

In the general case where Det𝑉 ̸= 0 (Table 1), RKN4 schemes have been found that have a much
smaller leading error term than the schemes obtained in the special cases of the Vandermonde determinant
turning to zero. We found the 𝜅cr values for all the schemes listed in Table 1. The respective charts of
𝐷2 = 𝐷2(𝜅) = 𝑇𝑟(𝐺(𝜅)) − 2 are presented in Fig. 2b. It follows from this figure that the stability region for
all the four schemes is described by the inequalities 0 < |𝜅| ⩽ 𝜅cr. The leading error term in each of the four
schemes in Table 1 is almost three times smaller than in the case of the schemes obtained in the special cases
of the Vandermonde determinant turning to zero. Therefore, the schemes presented in Table 1 are preferable
when solving applied problems.

4.5. A five-stage RKN scheme. In the case in question, the trace 𝑇𝑟(𝐺) = −2 + 𝜅2 − 𝜅4/12 +

0.002777777778𝜅6 + 𝑍8𝜅
8 + 𝑍10𝜅

10. The expressions for 𝑍8,𝑍10 are not given here due to their bulkiness.
In [16], the authors present tables of 𝛼𝑗 , 𝛾𝑗 (𝑗 = 1, . . . , 5) parameter values for four methods, which we call
RKN5-1, RKN5-2, RKN5-3, RKN5-4. Below is the form of equations 𝐷2(𝜅) = 0 and the corresponding sta-
bility conditions we obtained for each of the four methods. The behavior of curves 𝐷2(𝜅) = |Tr(𝐺(𝜅))| − 2 at
Tr(𝐺) > 0 (Fig. 3) was taken into consideration.

RKN5-1, RKN5-3, 𝑇𝑟(𝐺) > 0 :

− 4 + 𝜅2 − 𝜅4/12 + 0.002777777778𝜅6 + 0.019206667644𝜅8 + 0.001488249575𝜅10 = 0,

stability region: 0 < |𝜅| ⩽ 1.709678742327.

RKN5-2, RKN5-4, 𝑇𝑟(𝐺) > 0 :

− 4 + 𝜅2 − 𝜅4/12 + 0.002777777778𝜅6 + 0.009374405183𝜅8 + 0.000595080910𝜅10 = 0,

stability region: 0 < |𝜅| ⩽ 1.836026193724.

At Tr(𝐺) < 0, the roots of the equation −Tr(𝐺)− 2 = 0 are grouped similarly for all four methods: there
is a root 𝜅 = 0 of multiplicity 2, four purely imaginary roots, and two pairs of complex conjugate roots.

After conducting the analysis, we conclude that RKN5-2 and RKN5-4 methods have a slightly larger
stability region than the RKN5-1 and RKN5-3 methods. Furthermore, as shown in 3.5, the weighted RMS
value of the polynomials 1,𝑃61, . . . ,𝑃66 in the case of RKN5-2 and RKN5-4 methods is smaller than in the
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Figure 3. Charts of the curves 𝐷 = 𝐷(𝜅) for RKN5 schemes considered in [16]:
a) For methods 1 to 4; b) For methods 5 to 7
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case of RKN5-1 and RKN5-3 methods. Therefore, RKN5-2 and RKN5-4 are the preferred methods for use in
molecular dynamics problems, compared to RKN5-1 and RKN5-3.

For methods 5, 6, 7 (Table 2) the equations 𝐷2(𝜅) = |Tr(𝐺(𝜅))| − 2 = 0 have the following form at
Tr(𝐺) > 0:

Method 5:
− 4 + 𝜅2 − 𝜅4/12 + 0.014070112667𝜅6 − 0.001296648123𝜅8 + 4.263921514569 · 10−6𝜅10 = 0,

stability region: 0 < |𝜅| ⩽ 2.296717145585.

Method 6:
− 4 + 𝜅2 − 𝜅4/12 + 0.120356465194𝜅6 − 0.007649609920𝜅8 + 0.000075698663𝜅10 = 0,

stability region: 0 < |𝜅| ⩽ 1.637899789244.

Method 7:
− 4 + 𝜅2 − 𝜅4/12 + 0.005858440103𝜅6 − 0.000521738767𝜅8 + 0.000015008970𝜅10 = 0,

stability region: 0 < |𝜅| ⩽ 2.760588329702.

According to Table 2, method 5 is the best in terms of the smallness of the leading error term; in addition,
the value of 𝜅cr in this method is 1.25 times larger than in the case of methods 2 and 4 of [16].

4.6. Comparison of the efficiency of the considered RKN schemes. The main computational
effort of RKN schemes is related to computing the function 𝑓(𝑥) included in (4). To calculate the values of
𝑥𝑛+1, 𝑝𝑛+1 using the 𝐾-stage RKN scheme, we must calculate values 𝐾 of the function 𝑓(𝑥). At first sight,
the machine time required should increase linearly with the number of stages. But we should also take into
account the value of the critical Courant number 𝜅cr, which is different for different RKN schemes. In the case
of applying ordinary (non-symplectic) Runge-Kutta schemes for numerical solution of aerodynamics problems
in [18, 19] it was shown that as the number of stages of the explicit Runge-Kutta scheme increases, the value of
the Courant critical number also increases. Therefore it is possible to carry out stable calculations with larger
values of the Courant number than in the case of Runge-Kutta schemes with a small number of stages. This can
ultimately lead to a reduction in the machine time required to solve the problem. In this regard, a quantitative
characterization of the efficiency of Runge-Kutta schemes was first introduced in [18], which will be denoted by
ef : ef = 𝜅cr/𝐾. [18, 19] provided values of the efficiency parameter ef for a number of explicit Runge-Kutta
schemes, which are still widely used in aerodynamic calculations.

Table 5. Efficiency index ef for a number of
RKN schemes

RKN scheme 𝐾 𝜅cr ef

Verlet 1 2 2

𝛼1 = 0.17922, 𝛼2 = 0.82078 2 4.17064 2.08532

RKN34A scheme 3 2.58652 0.86217

RKN34C scheme 3 1.57340 0.52447

RKN4-1a scheme 4 2.60111 0.65028

RKN5 scheme, methods 1, 3 5 1.70968 0.34193

RKN5 scheme, methods 2, 4 5 1.83603 0.36721

RKN5 scheme, method 5 5 2.29672 0.45934

The value of ef can also be calculated for each of
the RKN schemes discussed above. Results of these
calculations are presented in Table 5. In particular,
the ef value in RKN34A scheme is 1.56 times higher
than in the RKN34C scheme.

Table 5 shows that as the number of stages 𝐾

increases, the value of ef decreases. This is the es-
sential difference between explicit symplectic RKN
schemes and explicit non-symplectic Runge-Kutta
schemes.

5. The Kepler problem. The problem on
the motion of a system consisting of two interacting
particles (two-body problem, Kepler problem) allows
for a complete analytical solution in general terms
[3]. The potential energy 𝑈 of the interaction of two
particles depends only on the distance between them,
i.e., on the absolute value of the difference of their radius vectors. Let’s consider a special case when both
particles move in the plane (𝑥, 𝑦). The Hamiltonian of such system has the following form:

𝐻 = |𝑝1|2/(2𝑚1) + |𝑝2|2/(2𝑚2) + 𝑈(|𝑟1 − 𝑟2|),

where �⃗�1, �⃗�2 are the vectors of the momentums of the first and second particle, �⃗�𝑗 = (𝑚𝑗𝑢𝑗 ,𝑚𝑗𝑣𝑗), �⃗�𝑗 = (𝑥𝑗 , 𝑦𝑗),
𝑗 = 1, 2, 𝑚𝑗 is the mass of the 𝑗th particle, 𝑢𝑗 and 𝑣𝑗 are the components of the velocity vector of the 𝑗th
particle along the axes 𝑥 and 𝑦, respectively; |�⃗�𝑗 |2/(2𝑚𝑗) = 𝑚𝑗(𝑢

2
𝑗 + 𝑣2𝑗 )/2 is the kinetic energy of the 𝑗th
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particle. The potential energy is specified in the form

𝑈(|𝑟1 − 𝑟2|) = −�̃�𝑚1𝑚2/|𝑟1 − 𝑟2|,

where �̃� is the gravitational constant.
Below we consider the special case when 𝑚1 = 𝑚2 = 1, �̃� = 1. Let us introduce the notation 𝑝𝑗 =

(𝑝𝑗𝑥, 𝑝𝑗𝑦), 𝑗 = 1, 2. Then the solution of the problem in question is reduced to solving the following system of
ordinary differential equations:

𝑑𝑝1𝑥
𝑑𝑡

= − (𝑥1 − 𝑥2)

𝑟3
,

𝑑𝑥1

𝑑𝑡
= 𝑝1𝑥,

𝑑𝑝1𝑦
𝑑𝑡

= − (𝑦1 − 𝑦2)

𝑟3
,

𝑑𝑦1
𝑑𝑡

= 𝑝1𝑦,

𝑑𝑝2𝑥
𝑑𝑡

=
(𝑥1 − 𝑥2)

𝑟3
,

𝑑𝑥2

𝑑𝑡
= 𝑝2𝑥,

𝑑𝑝2𝑦
𝑑𝑡

=
(𝑦1 − 𝑦2)

𝑟3
,

𝑑𝑦2
𝑑𝑡

= 𝑝2𝑦.

(29)

Here 𝑟 is the distance between two particles, 𝑟 = |𝑟1 − 𝑟2| =
√︀

(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2, and we assume that
𝑥1, 𝑦1, 𝑥2, 𝑦2, 𝑝1𝑥, 𝑝1𝑦, 𝑝2𝑥, 𝑝2𝑦 are time-dependent functions 𝑡.

The system (29) is solved under the following initial conditions given at 𝑡 = 0 (Fig. 4a):

𝑥1(0) = 𝑎0, 𝑦1(0) = 0, 𝑥2(0) = −𝑎0, 𝑦2(0) = 0,

𝑝1𝑥(0) = 0, 𝑝1𝑦(0) = 𝑣0, 𝑝2𝑥(0) = 0, 𝑝2𝑦(0) = −𝑣0,
(30)

where 𝑎0 is a set positive number, 𝑣0 is the absolute initial velocity value of each particle in the direction of the
𝑦 axis; the value 𝑣0 > 0 is a set value.

According to the Noether’s theorem [3], at 𝑡 > 0 the total energy 𝐸 should remain constant for a system
of two particles. Taking into account (30) we obtain:

|𝐸| = |𝐻| = |𝑣20 − 1/(2𝑎0)|. (31)

As shown in [3], the motion of a two-body system is finite at 𝐸 < 0, and infinite at 𝐸 > 0. The case
of finite motion is considered below. To ensure finiteness, the constants 𝑣0 and 𝑎0 must satisfy the inequality
𝑣20 − 1/(2𝑎0) < 0. In this case, the motion of each particle at 𝑡 > 0 occurs along its own elliptical orbit. Let us
introduce the mutual distance vector of the two points 𝑟 = 𝑟2 − 𝑟1 and place the origin of coordinates at the
center of inertia, which produces the equality 𝑚1𝑟1 + 𝑚2𝑟2 = 0. Proceeding from the last two equalities, we
find:

𝑟1 = − 𝑚2

𝑚1 +𝑚2
𝑟, 𝑟2 =

𝑚1

𝑚1 +𝑚2
𝑟. (32)

The value 𝑚 = 𝑚1𝑚2/(𝑚1 + 𝑚2) is called reduced mass; since in our case 𝑚1 = 𝑚2 = 1, then 𝑚 = 1/2. In
order to obtain the complete solution of the two-body problem, we need to find the formula for 𝑟 = (𝑥(𝑡), 𝑦(𝑡))

in accordance with (32). The formula is given in [3]:

𝑥 = 𝑎(cos 𝜉 − 𝑒), 𝑦 = 𝑎
√︀
1− 𝑒2 sin 𝜉. (33)

Here 𝑎 is the major semiaxis of the ellipse, 𝑒 is the eccentricity of the elliptical orbit,

𝑎 = 𝛼/(2|𝐸|), 𝑒 =

√︁
1 + 2𝐸𝑀2/(𝑚𝛼2). (34)
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Figure 4. Particle trajectories: a) Initial velocity vectors for the system (29);
b) the result of numerical solution by all RKN methods at 𝑒 = 0
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Here 𝛼 = �̃�𝑚1𝑚2 = 1 according to the values of �̃�, 𝑚1, 𝑚2 chosen above; 𝑀 is the value of the momentum
vector directed along the normal to the plane (𝑥, 𝑦). The law of conservation of momentum [3] states: 𝑀 = const
∀𝑡 ⩾ 0. From the initial conditions (30) we obtain: 𝑀 = 2𝑎0𝑣0, where 2𝑎0 is the initial distance between the
particles.

From (32) and (33) it follows that at 𝑒 = 0 the particles move in circles. This fact can be used for additional
verification of the computer program implementing the RKN method for solving the two-body problem. Let us
find the condition for the parameters 𝑎0, 𝑣0 at which 𝑒 = 0. By substituting the expressions for 𝐸,𝑀 and 𝛼 in
(34), we arrive at

𝑒2 = 1 + 2𝐸𝑀2/(𝑚𝛼2) = 1 + 4(𝑣20 − 1/(2𝑎0))4𝑎
2
0𝑣

2
0 = (4𝑎0𝑣

2
0 − 1)2 = 0. (35)

It follows that to ensure zero eccentricity it is sufficient to assume 𝑣0 = 0.5/
√
𝑎0. In particular, at 𝑎0 = 2

we have: 𝑣0 = 0.5/
√
2 ≈ 0.35355. Further, the eccentricity 𝑒 > 0 is satisfied if the following inequalities are

satisfied: either 4𝑎0𝑣
2
0 < 1, or 1

4 < 𝑎0𝑣
2
0 < 1

2 . The inequality 𝑎0𝑣
2
0 < 1

2 provides the finiteness of motion of both
particles taking into account (31).

In the case of the two-body problem, we have the following vector-column of required quantities: 𝑋 =

(𝑥1, 𝑝1𝑥, 𝑦1, 𝑝1𝑦,𝑥2, 𝑝2𝑥, 𝑦2, 𝑝2𝑦)
𝑇 , where 𝑇 is an index denoting the transpose operation. In order to apply the

𝐾-stage RKN method to solve the problem in question, we must replace the vector-column (𝑥, 𝑝)𝑇 by 𝑋 in (5).
As a result, a system of eight ordinary differential equations (29) needs to be solved.

In order to verify the developed FORTRAN program, we carried out calculations of the two-body problem
by all RKN schemes with the number of stages 𝐾 = 1, 2, 3, 4, 5 for the cases of zero and non-zero eccentricity 𝑒 in
(34), as discussed in the previous sections. The numerical solution for the coordinates of both particles, obtained
at 𝑒 = 0 by all considered RKN methods after performing 7140 time steps with constant step ℎ = 0.005, is
shown in Fig. 4b. The coordinates of the particles were memorized every 80 steps by 𝑡. It is seen that both
particles move along the same circular orbit. Using the formula (15.8) from [3], it is easy to find the time period
𝑇 needed for a particle to make a complete revolution in a circular orbit in case of zero eccentricity: 𝑇 = 𝜋

√
𝑎,

where 𝑎 is the radius of the circle along which each particle moves; in our case 𝑎 = 2. From here, it is easy to
find that for time 𝑡 = 35.7 each of two particles has made 8 complete revolutions in a circle.

Table 6 presents the calculation results of the problem two particles moving along the circular orbit by all
five RKN schemes considered in the previous sections. The values 𝛿𝐸mean and |𝛿𝐸|mean were calculated as the
arithmetic mean of the values 𝛿𝐸𝑛 and |𝛿𝐸𝑛|, where 𝛿𝐸𝑛 = (𝐸𝑛−𝐸0)/𝐸0, 𝐸𝑛 = (1/2)[(𝑝𝑛1𝑥)

2+(𝑝𝑛1𝑦)
2+(𝑝𝑛2𝑥)

2+

(𝑝𝑛2𝑦)
2]−1/𝑟𝑛, 𝐸0 = 𝑣20 −1/(2𝑎0) in accordance with (31), 𝑟𝑛 = [(𝑥𝑛

1 −𝑥𝑛
2 )

2+(𝑦𝑛1 −𝑦𝑛2 )
2]1/2. Moreover, 𝛿𝑟𝑚,max

is the maximum relative deviation of the magnitude of the radius-vector 𝑟𝑛 of the 𝑚th particle (𝑚 = 1, 2) from
the exact radius 𝑎 = 2 of the circular orbit, i.e. 𝛿𝑟𝑚,max = max

𝑗

(︁√︁
𝑥2
𝑚𝑗 + 𝑦2𝑚𝑗 − 𝑎

)︁⧸︀
𝑎. It turned out that at

least the first 14 digits of the decimal mantissa are the same for the numbers 𝛿𝑟1,max and 𝛿𝑟2,max. Therefore,
only the value 𝛿𝑟1,max is given in Table 6. From the point of view of practical applications, the most important is

Table 6. Errors 𝛿𝐸mean, |𝛿𝐸|mean and 𝛿𝑟𝑚, max at 𝑒 = 0 for different RKN methods

𝐾 RKN scheme Error of the scheme 𝛿𝐸mean |𝛿𝐸|mean 𝛿𝑟1,max

1 (Verlet) 𝑂(ℎ2) −1.783E−14 1.783E−14 1.953E−7

2 𝛼1 = 𝛼
(6)
1 ,𝛼2 = 𝛼

(6)
2 𝑂(ℎ2) −7.879E−15 7.889E−15 9.605E−8

3 RKN34A 𝑂(ℎ4) −3.918E−15 4.048E−15 5.684E−14

4 RKN4-1a 𝑂(ℎ4) 1.703E−15 3.663E−15 6.706E−14

5 RKN5-2 𝑂(ℎ5) −5.876E−15 5.957E−15 1.510E−14

Table 7. Errors 𝛿𝐸mean, |𝛿𝐸|mean and 𝛿𝑟𝑚,max at 𝑒 = 0

for the fourth-order accuracy methods from Table 1

RKN scheme 𝛿𝐸mean |𝛿𝐸|mean 𝛿𝑟1,max

RKN4-1a 1.703E−15 3.663E−15 6.706E−14

RKN4-2a −3.378E−15 3.462E−15 2.243E−14

RKN4-3a −4.781E−15 5.126E−15 3.331E−14

RKN4-4a −2.504E−15 2.609E−15 1.954E−14
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Table 8. Errors 𝛿𝐸mean, |𝛿𝐸|mean and 𝛿𝑟𝑚,max at 𝑒 = 0

for the fifth-order accuracy methods from Table 3

RKN scheme 𝛿𝐸mean |𝛿𝐸|mean 𝛿𝑟1,max

RKN5-5 −4.270E−15 4.407E−15 6.128E−14

RKN5-6 −5.679E−15 5.785E−15 5.973E−14

RKN5-7 2.598E−15 2.710E−15 2.087E−14

Table 9. Errors 𝛿𝐸mean, |𝛿𝐸|mean and 𝛿𝑦1,mean

at 𝑣0 = 0.2 for different RKN methods

𝐾 𝛿𝐸mean |𝛿𝐸|mean 𝛿𝑦1,mean

1 2.749E−7 2.749E−7 −3.384E−5

2 8.754E−8 8.838E−8 −1.067E−5

3 5.438E−13 6.230E−13 −2.762E−7

4 6.047E−13 5.753E−13 −2.762E−7

5 −5.512E−15 9.388E−15 −2.761E−7

the accuracy of calculating the point coordinates (𝑥𝑛
𝑚, 𝑦𝑛𝑚). Table 6 shows that the best accuracy in calculating

these coordinates is achieved using the five-step RKN scheme.
From the comparison of Tables 6 and 7, it can be seen that the new RKN4-4a scheme provides lower errors

in 𝛿𝐸mean energy values, |𝛿𝐸|mean, than the RKN4-2 method. Further, a comparison of Tables 6 and 8 shows
that the new RKN schemes of fifth-order accuracy provide lower errors in 𝛿𝐸mean energy values, |𝛿𝐸|mean, than
method 2 from [16].
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Figure 5. Elliptical orbits of particle 1 (right ellipse)
and particle 2 (left ellipse) in the interval 0 < 𝑡 ⩽ 164.

Solid lines are exact ellipses, dotted lines are a
numerical solution obtained by RKN method

In order to consider the case of each particle moving
along its own elliptical orbit, let us assume 𝑣0 = 0.2,
𝑎0 = 2 in (30). This satisfies the inequality 4𝑎0𝑣

2
0 < 1, so

the eccentricity 𝑒 ̸= 0 and 𝐸 < 0. Each particle makes
one complete revolution in an elliptical orbit in time [3]

𝑇 = 𝜋𝛼

√︁
𝑚/(2|𝐸|3). By substituting the values 𝛼 = 1,

𝑚 = 1/2, 𝐸 = 𝑣20 − 1/(2𝑎0), we arrive at 𝑇 = 16.3227.
If we set physical time 𝑡 = 164, then each particle will
make 10 complete revolutions in its elliptical orbit. The
numerical solution for the coordinates of both particles,
obtained by all considered RKN methods at 𝑡 = 164 after
performing 82,000 time steps with the step ℎ = 0.002, is
shown in Fig. 5. The coordinates of the particles were
memorized every 100 steps by 𝑡. We can see that each
particle moves along its elliptical orbit, and positions of
the particles agree very well with exact elliptical orbits.

Table 9 presents the values of relative errors 𝛿𝐸mean and |𝛿𝐸|mean obtained in the numerical solution of
the two-body problem for two particles moving along elliptical orbits by all five RKN schemes considered in the
previous sections. Note that in the case of the RKN scheme of the fifth-order accuracy, these errors are two
decimal orders smaller than in the case of the fourth-order accuracy scheme (Fig. 6).

The value of 𝛿𝑦1,mean was calculated as the arithmetic mean of the values 𝛿𝑦1𝑗 = 𝑦1𝑗 − 𝑦1, ex. Here 𝑦1, ex is
the exact value of the coordinate 𝑦 at the intersection of the line 𝑥 = 𝑥1𝑗 with the ellipse of the first particle (see
the right ellipse in Fig. 5). At a fixed value of 𝑥 from the exact equation for the coordinate 𝑥 = −0.5𝑎(cos 𝜉− 𝑒)

for the first particle in elliptical orbit, we derive the argument 𝜉𝑗 = arccos[𝑒 − (2𝑥1𝑗/𝑎)]. After that the exact
value of the coordinate 𝑦 of the point lying on the ellipse is found by the formula: 𝑦1,𝑒𝑥 = 0.5𝑏 · sign(𝑦1𝑗) sin 𝜉𝑗 .
The value 𝛿𝑦2,mean is calculated in a similar way, by using exact formulas for the ellipse of the second particle.
It turned out that the first ten digits of mantissa of machine numbers 𝛿𝑦1,mean and 𝛿𝑦2,mean are the same, but
the signs of these numbers are opposite. For example, at 𝐾 = 5, the value 𝛿𝑦2,mean = +2.761𝑒−7 was obtained.

In general, the error 𝛿𝑦1𝑗 is much larger than 𝛿𝐸mean. A detailed examination of the local errors 𝛿𝑦1𝑗
in the case of the five-stage scheme for each value of 𝑥 = 𝑥1𝑗 has shown that the error increases in absolute
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Figure 6. The Kepler problem, the case of nonzero eccentricity. Values 105𝛿𝐸 as a function of time at different number
of stages 𝐾 in RKN methods: a) 𝐾 = 1, b) 𝐾 = 2, c) 𝐾 = 3, d) 𝐾 = 4, e) 𝐾 = 5

magnitude to a value of about 10−5 near the 𝑥 axis at |𝑦1𝑗 | < 0.1, that is where the ellipse curvature is greatest.
In the case when the particles move along a circular orbit (at 𝑒 = 0), the problem does not arise, since the
curvature of the circle is constant (see Table 6).
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Figure 7. Chart of the curve 𝑟(𝑡) = |𝑟1 − 𝑟2| at
non-zero eccentricity 𝑒

As can be easily seen in Fig. 6, at each 𝐾 the number of
bursts equals 10, i.e., the number of periods of each particle’s
motion in its elliptical orbit. To explain this phenomenon, let us
turn to Fig. 7. In this figure 𝑟 = 𝑟(𝑡) = |𝑟1 − 𝑟2|. The shape of
the curve shown in this figure is the same for all RKN schemes
considered. We see that the curve 𝑟(𝑡) has 10 minima. At each
minimum, the curvature radius is very small. The curvature
is inversely proportional to the curvature radius, so it is clear
that it reaches the maximum at the minima of function 𝑟(𝑡). In
turn, the curvature is proportional to the second derivative of
this function. Therefore, this derivative has the largest absolute
value at the minima of the function 𝑟(𝑡). The second- and
higher-order derivatives of functions 𝑥(𝑡), 𝑦(𝑡) are included in
the leading error terms in the RKN methods. It follows that
the scheme error should increase at the minima of the function
𝑟(𝑡), which is observed in Fig. 6.

Table 10. Errors 𝛿𝐸mean, |𝛿𝐸|mean and 𝛿𝑦1,mean

at 𝑣0 = 0.15 for different RKN methods

𝐾 𝛿𝐸mean |𝛿𝐸|mean 𝛿𝑦1,mean

1 8.361E−6 8.361E−6 −5.053E−3

2 2.954E−6 3.174E−6 −1.581E−3

3 9.686E−10 9.686E−10 −1.630E−7

4 9.686E−10 9.686E−10 −1.630E−7

5 4.157E−12 2.292E−11 +1.023E−6

It follows from (35) that the eccentricity 𝑒 =

|4𝑎0𝑣20 − 1| increases with decreasing 𝑣0. Table 10
shows the relative errors 𝛿𝐸mean and |𝛿𝐸|mean ob-
tained at 𝑣0 = 0.15, ℎ = 0.005. The calculations
were performed up to time 𝑇 = 500; 105 time steps
were taken. During this time, each of the two par-
ticles made more than 34 complete revolutions in
an elliptical orbit. Comparing Tables 9 and 10,
one can see that the relative errors of the energy
conservation law have increased by two to three
decimal orders of magnitude as compared to the
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case of 𝑣0 = 0.2. The following reasons for the decrease in accuracy can be pointed out: first, the calculations
were performed up to a time moment 𝑇 = 500, which is three times larger than the time moment 𝑇 = 164.
Second, the step ℎ = 0.005 was used, which is 2.5 times the step with which the calculations for Table 9 were
made. Third, at 𝑣0 = 0.15, the minor semiaxes of the ellipses are smaller than at 𝑣0 = 0.2. This led to an
increase in the curvature of ellipses in the vicinity of the 𝑥-axis. As in the case of Table 9, the RKN scheme of
the fifth-order accuracy is the most accurate one, compared to the schemes of lower orders of accuracy.

6. Conclusion. Explicit symplectic Runge-Kutta-Nyström (RKN) difference schemes with 1 to 5 stages
have been reviewed for numerical solution of molecular dynamics problems described by systems with separable
Hamiltonians. For 2- and 3-stage RKN schemes, the parameters are obtained using the Gröbner basis technique.
For 4 and 5 stages, new schemes are found using Nelder-Mead numerical optimization method. In particular,
four new schemes were obtained for stages numbering 4. In addition to the four schemes known in the literature,
three new schemes were obtained for stages numbering 5. For each specific number of stages, the best scheme in
terms of the minimum leading term of the approximation error is found. Stability conditions for all the schemes
in question were obtained, including new schemes.

A generalization of the notion of efficiency ef for a multistage non-symplectic Runge-Kutta scheme in
the cases of multistage symplectic RKN schemes is proposed. It is shown that the value of ef decreases with
increasing number of 𝐾 stages. This is the essential difference between the symplectic RKN schemes and the
explicit non-symplectic Runge-Kutta schemes, widely used nowadays in computational fluid dynamics.

By applying the RKN-methods under consideration to numerical solution of the Kepler problem with an
exact solution, it was discovered that increasing the number of stages 𝐾 results in higher accuracy of the particle
energy conservation law. This makes RKN schemes of high orders of accuracy preferable when solving applied
problems over a large time interval.

The RKN schemes considered are explicit, which makes it especially convenient to parallelize the compu-
tations for these schemes.
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