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METPUYECKWUA APAJIN3 U PPUWIOYKEP U

A.B. Kpaues!, T'. B. JIykuu', 1. K. Yaymau!

ITpeanaraloTca HOBBIH MONXO B OCHOBaHHBIE Ha HEM CXEMBI H aJTOPHTMbI HHTEPIOLAINN (bYHKIINIT
OJHOW W MHOTHX TIeDEMEHHBIX M DKCTPATOMANNE (MPOTHO3MPOBAHUA) BPEMEHHEBIX DAJIOB, HA3BaH-
HEBEI aBTOpaMH 5TOTO Mofgxofa MeTpmdeckuM anaamzoM [1]. Tlokazamo, 9TO MeTPUIECKWN aHaIN3
C BBICOKOI CTEMeHBId TOYHOCTH MHTEPIOARPYET (PYHKINH MHOIHX IepeMEHHBIX faKe IMPH CPaBHH-
TeIbHO HeGOMBIIOM YHCIe TOYEK, B KOTOPBIX 3HaYeHNe (DYHKINN H3BECTHE. BHIABICHO, ITO METpHe-
CKHII aHaJI3 MO3BOAAET 3KCTPAOINPOBaTEL I IPOTHO3MPOBATh 3HadeHnd (QyHKIHI GoJlee MHPOKOro
KJAcca, 9eM U3BECTHBIN CHHIYJIAPHO-CIEeKTpadbHblil anamus [2]. CTaThid peKOMeHIOBaHA K MeYaTH
IPOrpaMMHBLIM KOMITETOM MeXAYHApONHON HayvIHOH KoHpepeHunn “MaTeMaTHIeCKOe MOJEIHPO-
BaHWe U BEIUHCANTeAbHAA puanka 20097 (MMCP2009, http://mmcp2009.jinr.ru).

KuarodeBrie ciioBa: METPIUYECKUH aHATN3, PYHKINT MHOTUX MTEPEMEHHBIX, MHTEPIOIATINA, SKCTPATOMATINSA,
MPOTHO3MPOBAHNE BPEMEHHEIX PSIOB.

1. Introduction. The problems of interpolation and extrapolation of function values and the problems
of forecasting the values of time processes are among the basic mathematical problems important for practice.
From the time of Newton and Lagrange, the problems of interpolation were formulated and solved for functions
of one variable; by now, quite complete results were obtained to develop various methods for interpolation and
revealing the properties of interpolated values, including the analysis of interpolation errors and the problems
of convergence of interpolated values to the exact ones [3, 4]. Recall that the classical scheme of interpolation
is based on representing a function y(z) in the form of the following linear combination:

m
(@) & Ln(x) = ¢ ¢(x). (1.1)
7=0
Here ¢;(z), j =0,...,m, is a system of prescribed basis functions and ¢; are the sought parameters.
We need to determine ¢; in such a way that y(z) be equal to known values Y; at given points #;, i = 1,... ,n.

For example, the Lagrange interpolation scheme uses the monomials ¢;(x) = z/ as a basis system in (1.1).
However, it was found that the Lagrange interpolation gives a uniform convergence of interpolation polynomials
to the function under consideration for a certain class of smooth functions only (e.g., the class of integer
functions). The reason for divergence is the presence of angular points at which the first derivative of the function
exhibits discontinuity. The example of Bernstein shows that even one angular point may cause the divergence
of interpolation polynomials on the entire interval under consideration. In the 1960-70s, as an alternative to the
Lagrange interpolation scheme, the spline interpolation scheme was proposed. This scheme allows one to localize
the effect of angular points and to ensure the uniform convergence of interpolating spline approximations for
any continuous function [5-8].

The scheme of representing the functions as linear combinations of basis functions, including polynomials
and spline approximations, in principle, can be generalized for the functions of several variables, but in practice
such schemes are suitable only for the functions of two or three variables. So far, no efficient general schemes of
interpolation and forecasting exist for the functions of many variables. There exist only some rough approximate
schemes of interpolation, such as piecewise-linear schemes that require a large amount of data to enable their
usage and often fail to provide a required accuracy even in the case when such an amount of data is available.
Another example of rough schemes are neural nets used to interpolate the functions of several variables [9].

In this paper we propose a universal computer-based approach to efficiently interpolate and extrapolate
the functions of several variables and to forecast time series without prior fixing a functional dependence on the
arguments of the function under consideration, but only with the use of computed function values Y7,...,Y,
at given points X1,..., X, including in the case of chaotic errors in Y7,...,Y,.
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2. Matrices of metric uncertainty and their properties. Below we consider the problems related
to the functional dependence Y = F(Xy1,...,Xn) = F(X), where F(X) is an unknown function to be

reconstructed at a point X* or at a set of given points on the basis of the function values Yy, k = 1,...,n,
known at fixed points X = (Xg1,..., Xem)".
Without loss of generality, we may assume that the values of the arguments X;, ¢ = 1,...,m, are nondi-

mensionalized and are brought into a common scale, for example, in such a way that the inequality 0 < X; < 1
is fulfilled for all X; (i.e., the points X belong to an m-dimensional unit cube K € E™ of space E™).
In the space E™, we choose a metric induced by the norm

X = w; X7, (2.1)
j=1

m

where w; > 0, E w; = m, are some metric weights.

j=1
Remark. An essential part of our metric analysis is the choice of the weights w;, s =1,...,m, on the basis
of the experimental data Vi and X, k = 1,...,n (see below), rather than the prior specification of weights,

i.e., the specification of norm (2.1). For a while we assume that the weights w; are given.

Let X™ be a point at which the value of a function Y* should be reconstructed. According to the metric
analysis scheme, we compose the following (n x n) matrix W of metric uncertainty for the point X * with respect
to the points Xq,..., X,

pz(XlaX*)w (XlaXZ)w (XlaXn)w

(XQ,Xl)w pz(Xz,X*)w (XQ,XH)U’
W =

(XnaXl)w (XnaXZ)w pz(XnaX*)w

Here p?(Xi, X )w = Y wi (Xix — X5)?, (X5, Xj)w = 3w (Xap — X7) (g — X5), i, j=1,...,n.

k=1 k=1
From the definition of the matrix W, it follows that this matrix is specified only by the location of the
points X1,..., X" and by the weights wy, ... ,w,, only.

3. Metric interpolation of functions of several variables. Let us assume that the interpolation
n

formula for the value Y* of a function Y = f(X) at a point X~ is given by V> = Z z;Yy, where the weights z;

i=1
n

satisfy the normalization condition Z z; = 1, like for any interpolation formula.
i=1
Note that the weights z; can be negative.
Let W be a nonsingular matrix. Let us define the following numerical characteristic % (Y *) of metric
uncertainty for the reconstructed value Y* at the point X* obtained on the basis of the known values of the

function at the points X, ..., X, with given weights z;, ¢ =1,... ,n:
oxp(Y*2) = (W(X* 5 X155 X))z, 2). (3.1)
Here z = (z1,...,2n)".
n
Now we choose weights z;, ¢ = 1,...  n, such that they satisfy the normalization condition Z z; = 1 and

i=1
the numerical value of the uncertainty characteristic (3.1) is minimal:

(z,1)=1, 1=(1,..., 1) (3.2)

The sought interpolation value Y* of the function F(X) at the point X™ obtained with the data X, ¥;,

=1 ,n, and with the minimum value of metric uncertainty as a solution to problem (3.2) is defined by the

Y, 1
%, where Y = (Y1,...,Y,)".

g oo

formula Y* =
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If the matrix W of metric uncertainty is singular, then the sought vector z* and the sought interpolation
value Y* (except for some special cases) are specified by the equalities (see [1])
Wwt1 WtY, 1)

(W+1,1)° W+L,1) (34)

where W is the pseudoinverse matrix or the inverse matrix after regularization of W [10-12].
Remark. When using (3.4), we assume that (#W*+1,1) > 0.
Let us define the metric uncertainty of the value Y* given in (3.4). We have
(Wwti, wt1)  (WTWwwti,1) (WT1,1) 1

oxp(Y7) = (W2, 27) = W+1, 12 (W+L,1)2 (WL 1) (WrL 1)

Here we take into account that the pseudoinverse matrix W+ is symmetric and that WTWW+T =W+,
The value % p (X*/Xl e ,Xn) =

> 0 1s called the measure of metric uncertainty in the

1
(W+1,1)

reconstruction of the function at point X™* on the basis of its known values at the points X;, i =1,..., n.

n n
The inverse value [(X*/X1 o ,Xn) = (Wt1,1) = Z Z VVJ is called the metric information of the
i=1j=1
point X™ with respect to the set of the points X,..., X,,.

From the properties of pseudoinverse matrices it follows that, when a new point X, ;1 is added to the
set of the points Xq,...,X,, the metric information at any point X with respect to the set of the points
X4,..., Xy, Xpy1 is not less than the metric information at the point X ™ with respect to the set of the points
Xl, ey Xni

I(X*/Xl,... ,Xn,XnH) > I(X*/Xl,... ,Xn).

The following equality is fulfilled for the measure of metric uncertainty:

oo (X*/Xl,... ,Xn,XnH) <o (X*/Xl,... X)

Now we consider the choice of the weights w in norm (2.1) that defines the norm in space E™ [1]. Such a
choice should take into account the nature of variation of the function under consideration when the independent
arguments are varied; therefore, the “weight” matrix takes into account not only the geometric arrangement of
the points in the original geometric space but also the different levels of the function’s variations with respect
to different arguments of the function.

If the prior information on the degree of variation for the function in relation to the variations of the
arguments (the values of partial derivatives) is known in the domain of the phase space E™ under consideration,
then the normalized weights (the sum of the weights should be equal to m) are chosen in proportion to the
absolute values of the corresponding partial derivatives.

Below we propose one of the possible schemes to estimate the weights on the basis of the degree of influence
of each argument (factor) on the variation of the function by eliminating this factor and by reconstructing
the values of the function at the point X* of interest when this factor is included or not to the truncated

. WOty
point XU = (X5, X7, XG4y, -, X5,)7 of dimension m — 1 by the formulas Yy = (,\,7’), =
(W®+1,1)
1,...,m, where W () is the matrix of metric uncertainty whose elements are Wg) = Z(Xlk — XX —X3),
=
ih,j=1,...,n.
The sought weights w are calculated as
wk = Z'/nnwk: 3 k = 1’ A ’m’ (3.5)
D
k=1
~ k 52 v (W+1,Y) o = . .
where wy = (Y( * Y*)? and Y* = ﬁ . The elements W;; of the matrix W of metric uncertainty are
W+1,1

obtained by the formulas ,W;j = Z(Xlk - X)X —X3), 4, 5=1,... n.
k=1
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m
Remark. From (3.5) it follows that Z wi = m. Therefore, if wy > 1 (wi < 1), then the level of variations
k=1
of the function becomes higher (lower) when the k-th argument is varied under the condition that the sensitivity
degree of the function is the same with respect to the variations of its arguments.

Thus, the above weight metric choice scheme allows one to specify the degree of influence of each argument
and to take into account the distinction in this degree by passing to a new metric with the corresponding
unequal weights.

Let us consider the degenerate case when the function under consideration has an argument (factor) that
the function does not depend on. Then, when we implement the scheme of finding the new metric’s weights,
we get an unambiguous result: the metric weight for this factor is equal to zero and this factor is automatically
eliminated from further consideration. Therefore, the above scheme of transition to the metric with weights
allows one to take into account the influence of arguments on the variations of a function and to eliminate the
inessential arguments, thus decreasing the dimension of the factor space, as is done in factor analysis.

The following theorems are true [1].

Theorem 1 (an inequality for the measure of metric uncertainty). The measure of metric uncertainty for
any interpolation value of a function Y at a point X* with respect to the known values of this function at points
X1,..., X, satisfies the following inequality of metric uncertainty:

o3 (X*/X1 o ,Xn) > (Iy (X*/X1 e ,Xn))_l. (3.6)

Here Iy (X*/Xl . ,Xn) is the metric information on the function Y at the point X™ with respect to the
points Xq,..., X,.

Definition. The interpolation value of a function Y* at a point X~ is said to be effective if (3.6) becomes
the equality for its measure of metric uncertainty.

Theorem 2 (on the effectiveness of the interpolation value of a function). The interpolation value of a
function Y* at a point X* is effective.

1 Y
1
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Fig. 1. The results of interpolation with 5 nodes
Example 1. Let us consider the interpolation of the function y(z) = |#| on the interval [a, b], where a = —1

bh—
and b = 1. For n € N we have h =

;e =a—+kh, k=0,... n, are the nodes of interpolation, i.e., we

know the values of the function y(z) atnthe points zg. As mentioned above, the existence of one angular point
may cause divergence of interpolation polynomials in the Lagrange method. The results of interpolation by the
metric analysis method and by the Lagrange method with different grid steps are shown in Figs. 1 and 2.

From these figures it follows that, when the grid steps are decreased, the Lagrange interpolation diverges,
whereas the accuracy of interpolation values obtained by the metric analysis method increases.
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Fig. 2. The results of interpolation with 21 nodes
Example 2. Let us consider the function ¥V = f(x) = (Va, &) + (e, @), ® = (21,...,20)", 0 < 2 < 1,
i=1,...,m, where V is an (m x m) constant matrix, ¢ = (c1,...,¢n)7 is a constant vector and m = 12 is
the space dimension. Let Y(X ) = Y3, k= 1,...,25, where X, are the nodes of interpolation and Y} are the

values of the function at the nodal points. Let N = 20 be the number of points at which the function should be
reconstructed. Both the nodal points and the points at which the function is reconstructed are chosen using a
random number generator in E™.

The results of interpolation for Example 2 is given in the table. In the first column, we indicate the number
of points at which the function is reconstructed; the second column contains the exact values of the function; the
third column contains the reconstructed values; and the fourth column contains the relative errors in percentage.

Results of multidimensional interpolation

N | exact | reconstructed relative N | exact | reconstructed relative
values values errors (in %) values values errors (in %)
1 38.00 38.59 1.54 11 | 35.18 35.89 2.02
2 | 44.38 45.81 3.20 12 | 44.57 45.28 1.59
3 | 44.40 46.44 4.58 13 | 42.63 44.04 3.30
4 | 49.94 49.42 1.04 14 | 49.50 49.89 0.79
5 36.30 37.66 3.74 15 | 25.84 25.22 2.38
6 | 44.76 45.42 1.48 16 | 41.00 41.38 0.92
7 | 43.19 42.45 1.70 17 | 55.39 53.83 2.83
8 | 43.46 42.82 1.47 18 | 42.05 44.93 6.86
9 37.43 36.51 2.45 19 | 38.95 39.86 2.35
10 | 30.78 29.06 5.60 20 | 47.37 47.22 0.32

In spite of a small number of nodal points, we achieve a high accuracy in the reconstructed values.

4. Extrapolation of functions by the metric analysis method using nonlinear autoregression.
Let us consider a function y = f(z) with its values 11 = f(#1),...,yn = f(xn) at points x1,...,2, €
E'. Tt is required to find a value Yn+1 at p41. The problem of finding the extrapolation value y,41 can be
reduced to the problem of interpolating a multidimensional function using nonlinear autoregression: Ym41 =
Flyr, - sUm)s Ymez = F (Y2, s Ymt1)s- -+ YUn = F(Yn—m,- -, Yn—1). Then, the extrapolation of y = f(x) is
reduced to the interpolation of the function Y = F'(y1, 42, ... , Ym) Whose values are known at the n —m points
X, = (y1,~~~ ,ym),~~~ y Xnem = (yn—ma~~~ ayn)~

The value y, 11 is determined as an interpolation value of the m-dimensional function F at the point X*:
Unt1 = F(X7™), where X™* = (Yn—m+t1, -+, Yn)-

The parameter m is very important in this scheme and is unknown in advance. Using the scheme of
extrapolation with different m for forecasting the value y,, we can determine m as follow: m = arg min (g, —yn),
where ¥, is determined using the above scheme of extrapolation.
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Fig. 3. The results of extrapolation Fig. 4. The results of extrapolation

Example 3. Let us consider the function y = (z+1)(z —1)(x —2) on the interval (a,b),a = —9.2, b6 = —4.2
with the step A = 0.1, so we have N = 50 points at which we know the values of this function. The results of
extrapolation for Neyy = 150 points are illustrated in Fig. 3.

The red points correspond to the exact values of the function, whereas the green points correspond to the
extrapolated values. In all the examples below, they have the same meaning. The extrapolated values of the

function almost coincide with the exact values; that is why it is impossible to distinguish them in the figures.

The relative error of extrapolation is ¢ = Yext — Yexact _ 10_3, where Yexact 18 the exact value of the function
Yexact

at the end of the extrapolation interval, i.e, Yexact = y(Zn4n.,, ). The optimal space dimension is meps = 31.
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Fig. 5. The results of extrapolation

Example 4. Let y = e”sin(wz), w = 2.9, a = —9.2,b = —4.2, h = 0.1, N = 50, and Nexy = 150. The
results of extrapolation are illustrated in Fig. 4. Here ¢ = 107'° and Mopt = 32.

Note that the well-known SSA method [2] yields adequate results for the extrapolation of functions being
superpositions of polynomials, exponentials, and sinusoids. For a wider class of functions, however, the SSA
method fails, whereas the metric analysis method gives acceptable results.

Example 5. Let y = e %2Vl gin (wr?), a=—=2,b=3, h = 0.05, w= 0.1, N = 100, and Nex; = 50. The
comparison results are given in Fig. 5. Figure 5a illustrates the results obtained by the metric analysis method;
the results obtained by the SSA method are represented in Fig. 5b. The optimal space dimension is mgpy = 77.
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