
408 ¢»·¨±«¨²¥«¼­»¥ ¬¥²®¤» ¨ ¯°®£° ¬¬¨°®¢ ­¨¥. 2009. �. 10��� 519.6 ����������� ������ � �����������.�. �°¿­¥¢1, �. �. �³ª¨­1, �.�. �¤³¬¿­1�°¥¤« £ ¾²±¿ ­®¢»© ¯®¤µ®¤ ¨ ®±­®¢ ­­»¥ ­  ­¥¬ ±µ¥¬» ¨  «£®°¨²¬» ¨­²¥°¯®«¿¶¨¨ ´³­ª¶¨©®¤­®© ¨ ¬­®£¨µ ¯¥°¥¬¥­­»µ ¨ ½ª±²° ¯®«¿¶¨¨ (¯°®£­®§¨°®¢ ­¨¿) ¢°¥¬¥­­�»µ °¿¤®¢, ­ §¢ ­-­»©  ¢²®° ¬¨ ½²®£® ¯®¤µ®¤  ¬¥²°¨·¥±ª¨¬  ­ «¨§®¬ [1]. �®ª § ­®, ·²® ¬¥²°¨·¥±ª¨©  ­ «¨§± ¢»±®ª®© ±²¥¯¥­¼¾ ²®·­®±²¨ ¨­²¥°¯®«¨°³¥² ´³­ª¶¨¨ ¬­®£¨µ ¯¥°¥¬¥­­»µ ¤ ¦¥ ¯°¨ ±° ¢­¨-²¥«¼­® ­¥¡®«¼¸®¬ ·¨±«¥ ²®·¥ª, ¢ ª®²®°»µ §­ ·¥­¨¥ ´³­ª¶¨¨ ¨§¢¥±²­». �»¿¢«¥­®, ·²® ¬¥²°¨·¥-±ª¨©  ­ «¨§ ¯®§¢®«¿¥² ½ª±²° ¯®«¨°®¢ ²¼ ¨ ¯°®£­®§¨°®¢ ²¼ §­ ·¥­¨¿ ´³­ª¶¨© ¡®«¥¥ ¸¨°®ª®£®ª« ±± , ·¥¬ ¨§¢¥±²­»© ±¨­£³«¿°­®-±¯¥ª²° «¼­»©  ­ «¨§ [2]. �² ²¼¿ °¥ª®¬¥­¤®¢ ­  ª ¯¥· ²¨¯°®£° ¬¬­»¬ ª®¬¨²¥²®¬ ¬¥¦¤³­ °®¤­®© ­ ³·­®© ª®­´¥°¥­¶¨¨ \� ²¥¬ ²¨·¥±ª®¥ ¬®¤¥«¨°®-¢ ­¨¥ ¨ ¢»·¨±«¨²¥«¼­ ¿ ´¨§¨ª  2009" (MMCP2009, http://mmcp2009.jinr.ru).�«¾·¥¢»¥ ±«®¢ : ¬¥²°¨·¥±ª¨©  ­ «¨§, ´³­ª¶¨¨ ¬­®£¨µ ¯¥°¥¬¥­­»µ, ¨­²¥°¯®«¿¶¨¿, ½ª±²° ¯®«¿¶¨¿,¯°®£­®§¨°®¢ ­¨¥ ¢°¥¬¥­­�»µ °¿¤®¢.1. Introduction. The problems of interpolation and extrapolation of function values and the problemsof forecasting the values of time processes are among the basic mathematical problems important for practice.From the time of Newton and Lagrange, the problems of interpolation were formulated and solved for functionsof one variable; by now, quite complete results were obtained to develop various methods for interpolation andrevealing the properties of interpolated values, including the analysis of interpolation errors and the problemsof convergence of interpolated values to the exact ones [3, 4]. Recall that the classical scheme of interpolationis based on representing a function y(x) in the form of the following linear combination:y(x) � Ln(x) = mXj=0 cj 'j(x): (1:1)Here 'j(x), j = 0; : : : ;m, is a system of prescribed basis functions and cj are the sought parameters.We need to determine cj in such a way that y(x) be equal to known values Yi at given points xi, i = 1; : : : ; n.For example, the Lagrange interpolation scheme uses the monomials 'j(x) = xj as a basis system in (1.1).However, it was found that the Lagrange interpolation gives a uniform convergence of interpolation polynomialsto the function under consideration for a certain class of smooth functions only (e.g., the class of integerfunctions). The reason for divergence is the presence of angular points at which the �rst derivative of the functionexhibits discontinuity. The example of Bernstein shows that even one angular point may cause the divergenceof interpolation polynomials on the entire interval under consideration. In the 1960{70s, as an alternative to theLagrange interpolation scheme, the spline interpolation scheme was proposed. This scheme allows one to localizethe e�ect of angular points and to ensure the uniform convergence of interpolating spline approximations forany continuous function [5{8].The scheme of representing the functions as linear combinations of basis functions, including polynomialsand spline approximations, in principle, can be generalized for the functions of several variables, but in practicesuch schemes are suitable only for the functions of two or three variables. So far, no e�cient general schemes ofinterpolation and forecasting exist for the functions of many variables. There exist only some rough approximateschemes of interpolation, such as piecewise-linear schemes that require a large amount of data to enable theirusage and often fail to provide a required accuracy even in the case when such an amount of data is available.Another example of rough schemes are neural nets used to interpolate the functions of several variables [9].In this paper we propose a universal computer-based approach to e�ciently interpolate and extrapolatethe functions of several variables and to forecast time series without prior �xing a functional dependence on thearguments of the function under consideration, but only with the use of computed function values Y1; : : : ; Ynat given points X1; : : : ;Xn, including in the case of chaotic errors in Y1; : : : ; Yn.1National Research Nuclear University MEPHI, Kashirskoe Shosse, 31, 115409, Moscow; �.�. �°¿­¥¢, ¯°®-´¥±±®°, e-mail: avkryanev@mephi.ru; �.�. �³ª¨­, ¤®¶¥­², e-mail: gleb lukin@letograf.ru; �.�. �¤³¬¿­,  ±¯¨-° ­², e-mail: sinner5@mail.ruc
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¢»·¨±«¨²¥«¼­»¥ ¬¥²®¤» ¨ ¯°®£° ¬¬¨°®¢ ­¨¥. 2009. �. 10 4092. Matrices of metric uncertainty and their properties. Below we consider the problems relatedto the functional dependence Y = F (X1; : : : ; Xm) = F (X), where F (X) is an unknown function to bereconstructed at a point X� or at a set of given points on the basis of the function values Yk, k = 1; : : : ; n,known at �xed points Xk = (Xk1; : : : ; Xkm)².Without loss of generality, we may assume that the values of the arguments Xi, i = 1; : : : ;m, are nondi-mensionalized and are brought into a common scale, for example, in such a way that the inequality 0 6 Xi 6 1is ful�lled for all Xi (i.e., the points X belong to an m-dimensional unit cube K 2 Em of space Em).In the space Em, we choose a metric induced by the normkXk = mXj=1wjX2j ; (2:1)where wj > 0, mXj=1wj = m, are some metric weights.Remark. An essential part of our metric analysis is the choice of the weights wj, j = 1; : : : ;m, on the basisof the experimental data Yk and Xk, k = 1; : : : ; n (see below), rather than the prior speci�cation of weights,i.e., the speci�cation of norm (2.1). For a while we assume that the weights wj are given.Let X� be a point at which the value of a function Y � should be reconstructed. According to the metricanalysis scheme, we compose the following (n�n) matrixW of metric uncertainty for the pointX� with respectto the points X1; : : : ;Xn:W = 0BBBB@ �2(X1;X�)w (X1;X2)w : : : (X1;Xn)w(X2;X1)w �2(X2;X�)w : : : (X2;Xn)w: : : : : : : : : : : :(Xn;X1)w (Xn;X2)w : : : �2(Xn;X�)w1CCCCA :Here �2(Xi;X�)w = mXk=1wk (Xik �X�k )2, (Xi;Xj)w = mXk=1wk (Xik �X�k ) (Xjk �X�k ), i; j = 1; : : : ; n.From the de�nition of the matrix W , it follows that this matrix is speci�ed only by the location of thepoints X1; : : : ;X� and by the weights w1; : : : ; wm only.3. Metric interpolation of functions of several variables. Let us assume that the interpolationformula for the value Y � of a function Y = f(X) at a point X� is given by Y � = nXi=1 ziYi, where the weights zisatisfy the normalization condition nXi=1 zi = 1, like for any interpolation formula.Note that the weights zi can be negative.Let W be a nonsingular matrix. Let us de�ne the following numerical characteristic �2ND(Y �) of metricuncertainty for the reconstructed value Y � at the point X� obtained on the basis of the known values of thefunction at the points X1; : : : ;Xn with given weights zi, i = 1; : : : ; n:�2ND(Y �; z) = �W (X�;X1; : : : ;Xn)z; z�: (3:1)Here z = (z1; : : : ; zn)²:Now we choose weights zi, i = 1; : : : ; n, such that they satisfy the normalization condition nXi=1 zi = 1 andthe numerical value of the uncertainty characteristic (3.1) is minimal:( (Wz; z)�min z(z;1) = 1; 1 = (1; : : : ; 1)²: (3:2)The sought interpolation value Y � of the function F (X) at the point X� obtained with the data X i, Yi,i = 1; : : : ; n, and with the minimum value of metric uncertainty as a solution to problem (3.2) is de�ned by theformula Y � = (W�1Y ;1)(W�11;1) , where Y = (Y1; : : : ; Yn)²:



410 ¢»·¨±«¨²¥«¼­»¥ ¬¥²®¤» ¨ ¯°®£° ¬¬¨°®¢ ­¨¥. 2009. �. 10If the matrix W of metric uncertainty is singular, then the sought vector z� and the sought interpolationvalue Y � (except for some special cases) are speci�ed by the equalities (see [1])z� = W+1(W+1;1) ; Y � = (W+Y ;1)(W+1;1) ; (3:4)where W+ is the pseudoinverse matrix or the inverse matrix after regularization of W [10{12].Remark. When using (3.4), we assume that (W+1;1) > 0.Let us de�ne the metric uncertainty of the value Y � given in (3.4). We have�2ND(Y �) = (Wz�; z�) = (WW+1;W+1)(W+1;1)2 = (W+WW+1;1)(W+1;1)2 = (W+1;1)(W+1;1)2 = 1(W+1;1) :Here we take into account that the pseudoinverse matrix W+ is symmetric and that W+WW+ =W+:The value �2ND�X�=X1 ; : : : ;Xn� = 1(W+1;1) > 0 is called the measure of metric uncertainty in thereconstruction of the function at point X� on the basis of its known values at the points X i, i = 1; : : : ; n.The inverse value I�X�=X1 ; : : : ;Xn� = (W+1;1) = nXi=1 nXj=1W+ij is called the metric information of thepoint X� with respect to the set of the points X1; : : : ;Xn.From the properties of pseudoinverse matrices it follows that, when a new point Xn+1 is added to theset of the points X1; : : : ;Xn, the metric information at any point X� with respect to the set of the pointsX1; : : : ;Xn;Xn+1 is not less than the metric information at the point X� with respect to the set of the pointsX1; : : : ;Xn: I�X�=X1 ; : : : ;Xn;Xn+1� > I�X�=X1 ; : : : ;Xn�:The following equality is ful�lled for the measure of metric uncertainty:�2ND�X�=X1 ; : : : ;Xn;Xn+1� 6 �2ND�X�=X1 ; : : : ;Xn�:Now we consider the choice of the weights w in norm (2.1) that de�nes the norm in space Em [1]. Such achoice should take into account the nature of variation of the function under consideration when the independentarguments are varied; therefore, the \weight" matrix takes into account not only the geometric arrangement ofthe points in the original geometric space but also the di�erent levels of the function's variations with respectto di�erent arguments of the function.If the prior information on the degree of variation for the function in relation to the variations of thearguments (the values of partial derivatives) is known in the domain of the phase space Em under consideration,then the normalized weights (the sum of the weights should be equal to m) are chosen in proportion to theabsolute values of the corresponding partial derivatives.Below we propose one of the possible schemes to estimate the weights on the basis of the degree of in
uenceof each argument (factor) on the variation of the function by eliminating this factor and by reconstructingthe values of the function at the point X� of interest when this factor is included or not to the truncatedpoint X (j)� = (X�1 ; : : : ; X�j�1; X�j+1; : : : ; X�m)² of dimension m� 1 by the formulas Y (l)� = (fW (l)+1;Y )(fW (l)+1;1) , l =1; : : : ;m, where fW (l) is the matrix of metric uncertainty whose elements are fW (l)ij = mXk=1k 6=l(Xik�X�k )(Xjk�X�k ),i; j = 1; : : : ; n.The sought weights w are calculated aswk = m ewkmXk=1 ewk ; k = 1; : : : ;m; (3:5)where ewk = (Y (k)� � ~Y �)2 and eY � = (fW+1;Y )(fW+1;1) : The elements fWij of the matrix fW of metric uncertainty areobtained by the formulas fWij = mXk=1(Xik �X�k)(Xjk �X�k), i; j = 1; : : : ; n:



¢»·¨±«¨²¥«¼­»¥ ¬¥²®¤» ¨ ¯°®£° ¬¬¨°®¢ ­¨¥. 2009. �. 10 411Remark. From (3.5) it follows that mXk=1wk = m. Therefore, if wk > 1 (wk < 1), then the level of variationsof the function becomes higher (lower) when the k-th argument is varied under the condition that the sensitivitydegree of the function is the same with respect to the variations of its arguments.Thus, the above weight metric choice scheme allows one to specify the degree of in
uence of each argumentand to take into account the distinction in this degree by passing to a new metric with the correspondingunequal weights.Let us consider the degenerate case when the function under consideration has an argument (factor) thatthe function does not depend on. Then, when we implement the scheme of �nding the new metric's weights,we get an unambiguous result: the metric weight for this factor is equal to zero and this factor is automaticallyeliminated from further consideration. Therefore, the above scheme of transition to the metric with weightsallows one to take into account the in
uence of arguments on the variations of a function and to eliminate theinessential arguments, thus decreasing the dimension of the factor space, as is done in factor analysis.The following theorems are true [1].Theorem 1 (an inequality for the measure of metric uncertainty). The measure of metric uncertainty forany interpolation value of a function Y at a point X� with respect to the known values of this function at pointsX1; : : : ;Xn satis�es the following inequality of metric uncertainty:�2Y�X�=X1 ; : : : ;Xn� >  IY�X�=X1 ; : : : ;Xn�!�1: (3:6)Here IY�X�=X1 ; : : : ;Xn� is the metric information on the function Y at the point X� with respect to thepoints X1; : : : ;Xn:De�nition. The interpolation value of a function Y � at a point X� is said to be e�ective if (3.6) becomesthe equality for its measure of metric uncertainty.Theorem 2 (on the e�ectiveness of the interpolation value of a function). The interpolation value of afunction Y � at a point X� is e�ective.
Fig. 1. The results of interpolation with 5 nodesExample 1. Let us consider the interpolation of the function y(x) = jxj on the interval [a; b], where a = �1and b = 1. For n 2 N we have h = b� an ; xk = a + kh, k = 0; : : : ; n, are the nodes of interpolation, i.e., weknow the values of the function y(x) at the points xk. As mentioned above, the existence of one angular pointmay cause divergence of interpolation polynomials in the Lagrange method. The results of interpolation by themetric analysis method and by the Lagrange method with di�erent grid steps are shown in Figs. 1 and 2.From these �gures it follows that, when the grid steps are decreased, the Lagrange interpolation diverges,whereas the accuracy of interpolation values obtained by the metric analysis method increases.
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Fig. 2. The results of interpolation with 21 nodesExample 2. Let us consider the function Y = f(x) = (V x;x) + (c;x), x = (x1; : : : ; xm)², 0 6 xi 6 1,i = 1; : : : ;m; where V is an (m � m) constant matrix, c = (c1; : : : ; cm)² is a constant vector and m = 12 isthe space dimension. Let Y (Xk) = Yk, k = 1; : : : ; 25; where Xk are the nodes of interpolation and Yk are thevalues of the function at the nodal points. Let N = 20 be the number of points at which the function should bereconstructed. Both the nodal points and the points at which the function is reconstructed are chosen using arandom number generator in Em.The results of interpolation for Example 2 is given in the table. In the �rst column, we indicate the numberof points at which the function is reconstructed; the second column contains the exact values of the function; thethird column contains the reconstructed values; and the fourth column contains the relative errors in percentage.Results of multidimensional interpolationN exact reconstructed relative N exact reconstructed relativevalues values errors (in %) values values errors (in %)1 38.00 38.59 1.54 11 35.18 35.89 2.022 44.38 45.81 3.20 12 44.57 45.28 1.593 44.40 46.44 4.58 13 42.63 44.04 3.304 49.94 49.42 1.04 14 49.50 49.89 0.795 36.30 37.66 3.74 15 25.84 25.22 2.386 44.76 45.42 1.48 16 41.00 41.38 0.927 43.19 42.45 1.70 17 55.39 53.83 2.838 43.46 42.82 1.47 18 42.05 44.93 6.869 37.43 36.51 2.45 19 38.95 39.86 2.3510 30.78 29.06 5.60 20 47.37 47.22 0.32In spite of a small number of nodal points, we achieve a high accuracy in the reconstructed values.4. Extrapolation of functions by the metric analysis method using nonlinear autoregression.Let us consider a function y = f(x) with its values y1 = f(x1); : : : ; yn = f(xn) at points x1; : : : ; xn 2E1. It is required to �nd a value yn+1 at xn+1. The problem of �nding the extrapolation value yn+1 can bereduced to the problem of interpolating a multidimensional function using nonlinear autoregression: ym+1 =F (y1; : : : ; ym), ym+2 = F (y2; : : : ; ym+1), : : : , yn = F (yn�m; : : : ; yn�1). Then, the extrapolation of y = f(x) isreduced to the interpolation of the function Y = F (y1; y2; : : : ; ym) whose values are known at the n�m pointsX1 = (y1; : : : ; ym); : : : ;Xn�m = (yn�m; : : : ; yn).The value yn+1 is determined as an interpolation value of the m-dimensional function F at the point X�:yn+1 = F (X�); where X� = (yn�m+1; : : : ; yn).The parameter m is very important in this scheme and is unknown in advance. Using the scheme ofextrapolation with di�erent m for forecasting the value yn, we can determinem as follow: m = arg min(eyn�yn),where eyn is determined using the above scheme of extrapolation.
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Fig. 3. The results of extrapolation Fig. 4. The results of extrapolationExample 3. Let us consider the function y = (x+1)(x�1)(x�2) on the interval (a; b), a = �9:2, b = �4:2with the step h = 0:1, so we have N = 50 points at which we know the values of this function. The results ofextrapolation for Next = 150 points are illustrated in Fig. 3.The red points correspond to the exact values of the function, whereas the green points correspond to theextrapolated values. In all the examples below, they have the same meaning. The extrapolated values of thefunction almost coincide with the exact values; that is why it is impossible to distinguish them in the �gures.The relative error of extrapolation is " = yext � yexactyexact = 10�3, where yexact is the exact value of the functionat the end of the extrapolation interval, i.e, yexact = y(xN+Next ). The optimal space dimension is mopt = 31.

Fig. 5. The results of extrapolationExample 4. Let y = ex sin (!x), ! = 2:9, a = �9:2; b = �4:2, h = 0:1, N = 50, and Next = 150. Theresults of extrapolation are illustrated in Fig. 4. Here " = 10�10 and mopt = 32.Note that the well-known SSA method [2] yields adequate results for the extrapolation of functions beingsuperpositions of polynomials, exponentials, and sinusoids. For a wider class of functions, however, the SSAmethod fails, whereas the metric analysis method gives acceptable results.Example 5. Let y = e�0:2pjxj sin (!x2), a = �2, b = 3, h = 0:05, ! = 0:1, N = 100, and Next = 50. Thecomparison results are given in Fig. 5. Figure 5a illustrates the results obtained by the metric analysis method;the results obtained by the SSA method are represented in Fig. 5b. The optimal space dimension is mopt = 77:References1. Kryanev A.V., Lukin G.V.Metric analysis for interpolation and forecasting of functions of several variables. PreprintÂ 003{2005. M.: MEPHI, 2005.2. Golyandina N., Nekrutkin V., Zhiglyavskiy A. Analysis of time series structure. SSA and related techniques. London:Chapman & Hall, 2001.
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