
402 ¢»·¨±«¨²¥«¼­»¥ ¬¥²®¤» ¨ ¯°®£° ¬¬¨°®¢ ­¨¥. 2009. �. 10��� 519.6���������� ������������ ������� ������ ���������� ������� ���������� ���������T. � ­« ¢1, O. �³«³³­¡  ² °2� ±±¬ ²°¨¢ ¥²±¿ ¢«¨¿­¨¥ ¨²¥° ¶¨®­­®£® ¯ ° ¬¥²°  ¢ ­¥¯°¥°»¢­®¬  ­ «®£¥ ¬¥²®¤  �¼¾²®­ ­  ±µ®¤¨¬®±²¼ ¨ ±ª®°®±²¼ ±µ®¤¨¬®±²¨. � ©¤¥­  � -®¡« ±²¼ ±µ®¤¨¬®±²¨ ½²®£® ¬¥²®¤  ª ª ¤«¿±ª «¿°­»µ ³° ¢­¥­¨©, ² ª ¨ ¤«¿ ³° ¢­¥­¨© ¢ ¡ ­ µ®¢®¬ ¯°®±²° ­±²¢¥. �°¥¤«®¦¥­» ¯®·²¨ ®¯²¨-¬ «¼­»¥ ¢»¡®°» ¯ ° ¬¥²° . �®ª § ­®, ·²® µ®°®¸® ¨§¢¥±²­»¥ ¨²¥° ¶¨®­­»¥ ¬¥²®¤» ¢»±®ª®£®¯®°¿¤ª  ±µ®¤¨¬®±²¨ ¯°¨¢®¤¿² ª ­¥¯°¥°»¢­®¬³  ­ «®£³ ± ¯®·²¨ ®¯²¨¬ «¼­»¬ ¯ ° ¬¥²°®¬.�®«³·¥­» ¤®±² ²®·­»¥ ³±«®¢¨¿ ±µ®¤¨¬®±²¨ ¤«¿ ³ª § ­­»µ ¬¥²®¤®¢. �² ²¼¿ °¥ª®¬¥­¤®¢ ­ ª ¯¥· ²¨ ¯°®£° ¬¬­»¬ ª®¬¨²¥²®¬ ¬¥¦¤³­ °®¤­®© ­ ³·­®© ª®­´¥°¥­¶¨¨ \� ²¥¬ ²¨·¥±ª®¥¬®¤¥«¨°®¢ ­¨¥ ¨ ¢»·¨±«¨²¥«¼­ ¿ ´¨§¨ª  2009" (MMCP2009, http://mmcp2009.jinr.ru).�«¾·¥¢»¥ ±«®¢ : ¨²¥° ¶¨®­­»¥ ¬¥²®¤», ±ª®°®±²¼ ±µ®¤¨¬®±²¨, ¬¥²®¤» ²¨¯  �¼¾²®­ , ­¥«¨­¥©­»¥³° ¢­¥­¨¿.Introduction. In resent years much attention has been paid to the development of new high-order iterativemethods for solving nonlinear equations [1{13]. Among them there are the methods obtained by combiningNewton's method with other one-step methods [7, 8, 11, 12]. On the other hand, the so-called continuous analogof Newton's method (CANM), or the damped Newton method, with a parameter is often used [13, 14], althoughits convergence order is less than that of the above-mentioned methods. It is well known that a suitable choiceof this parameter allows us not only to enlarge the domain of convergence, but also to control the convergenceof the method in general. At present there are some choices of this parameter used in practice [13, 14]. In thispaper we show that such suitable choices of the iteration parameter in CANM allow one even to speed up theconvergence of the method under consideration.1. Su�cient convergence conditions for CANM for scalar equations. We consider the nonlinearequation f(x) = 0; (1:1)where f : 
 � R! R is a nonlinear twice continuously di�erentiable function on an open interval 
0 � 
. Weassume that x� is a simple root of equation (1.1), i.e., f(x�) = 0 and f 0(x�) 6= 0. The well-known CANM forequation (1.1) is xn+1 = xn � �n f(xn)f 0(xn) ; n = 0; 1; : : : ; (1:2)where x0 is an initial guess and �n > 0 is the iteration parameter. If �n � 1, then (1.2) leads to Newton'smethod.Theorem 1. We assume that(i) jf 00(x)j 6 k; x 2 
0,(ii) ����f 0(x0)��1��� 6 �,(iii) ����f 0(x0)��1f(x0)��� 6 �; a0 = k��,(iv) k����f 0(xn)��1��� ����f 0(xn)��1f(xn)��� 6 an < 2; n = 0; 1; : : : ;and �n 2 In = �0; �1 +p1 + 4anan � � (0; 2). Then, the sequence fxng de�ned by (1.2) and starting at x0 2 
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¢»·¨±«¨²¥«¼­»¥ ¬¥²®¤» ¨ ¯°®£° ¬¬¨°®¢ ­¨¥. 2009. �. 10 4031.1. Some choices of the iteration parameter. We assume that f(x) 2 C3(
0) and xn is su�cientlyclose to x�. Then, the Taylor expansion of f(x) about xn givesf(xn+1) = (1� �n)f(xn) + f 00(xn)2 � f(xn)f 0(xn)�2�2n + O�f3(xn)�:From this it follows thatf2(xn+1) = �(1� �n)2f(xn)2 + 2(1� �n)�2nf(xn)An +A2n�4n� + O�f4(xn)�; (1:3)where An = f 00(xn)2 � f(xn)f 0(xn)�2 6= 0: (1:4)It is worth to mention that the remainder O�f4(xn)� in (1.3) can be replaced by O�f5(xn)� when �n ! 1.In this sense we may call the quantity in the square brackets the main part of expansion (1.3). Our aim is tochoose the iteration parameter to be a minimum point of the main part in (1.3), i.e.,'(�n) � 4A2n�3n + 2Anf(xn)(2�n � 3�2n)� 2(1� �n)f2(xn) = 0: (1:5)Since '(0) = �2f(xn)2 < 0 and '(2) = 2�4An� f(xn)�2 > 0, there exists at least one root ��n of equation (1.5)that belongs to (0; 2). We call this root ��n an optimal one. However, it is di�cult to �nd ��n by solving the cubicpolynomial equation (1.5). To overcome this di�culty, as in [17], we use the notation�n = An�2n (1:6)and rewrite (1.3) in the formf2(xn+1) = �(1� �n)2f(xn)2 + 2(1� �n)f(xn)�n + �2n� +O�f(xn)4�: (1:7)The main part of (1.7) is a quadratic function with respect to �n, and we can �nd its minimum point��n = �(1 � �n)f(xn) (1:8)and the minimum value equal to zero. Hence, we have f2n+1(��n) = O�f4(xn)�.From (1.6) and (1.8) we obtain the following equation for �n:An�2n + (1� �n)f(xn) = 0: (1:9)The root of equation (1.9) that belongs to the interval In is given by�n = 12An  f(xn) � f(xn)s1� 4Anf(xn) !: (1:10)Since the quantity 4Anf(xn) is small, one we can use the expansions1� 4Anf(xn) = 1� 2Anf(xn) � 2A2nf(xn)2 � 4A3nf(xn)3 + O�f4(xn)�in (1.10) and, as a consequence, we obtain �n = 1 + Anf(xn) + 2A2nf(xn)2 +O�f3(xn)�. The values�n = 1 + Anf(xn) and �n = �1� Anf(xn)��1 (1:11)are called the almost optimal choices within the accuracy of O�f3(xn)�. In a similar way, the value given by�n = 1 + Anf(xn) + 2A2nf2(xn) (1:12)



404 ¢»·¨±«¨²¥«¼­»¥ ¬¥²®¤» ¨ ¯°®£° ¬¬¨°®¢ ­¨¥. 2009. �. 10is called the almost optimal choice within the accuracy of O�f4(xn)�.The well-known Chebyshev method xn+1 = xn� f(xn)f 0(xn)� f 00(xn)f2(xn)2�f 0(xn)�3 can be considered as CANM (1.2)with the almost optimal choice (1.12). Similarly, it is easy to show that, in particular, the well-known cubi-cally convergent iterative methods and the fourth-order convergent iterative methods given in [15] lead toiteration (1.2) with the almost optimal parameters given by (1.11) and (1.12), respectively.1.2. Su�cient conditions for convergence of some well-known iterations. Now we study theconvergence of some iterative methods with a given parameter �n. To this end, it su�ces to obtain someconditions under which the chosen parameter of the method being considered belongs to the � -region (�reg) ofconvergence.Theorem 2.We assume that the conditions (i)-(iv) in Theorem 1 are satis�ed. Then, the following iterativemethods are convergent if the corresponding numbers an in (iv) obey the condition given in the last column ofthe table.N Methods �n �n 2 In1 Chebyshev method 1 + f 00(xn)2f 0(xn) f(xn)f 0(xn) an < 0:52 Modi�cation of Chebyshev method [15] 1f(xn)"�1 + b2�f(yn) + (1 + b)f(xn)� �2 6 b 6 0;� b2 f�xn + f(xn)f 0(xn)�# an < 0:53 Method of Weerakoon and Fernando [7] 2f 0(xn)f 0(xn) + f 0(yn) an < 0:54 Method of Frontini and Sormani [7] f 0(xn)f 0�xn � f(xn)2f 0(xn)� an < 0:5and Homeier5 Halley-type iteration [9] �2f(xn)(�2 � � + 1)f(xn)� f�xn � �f(xn)f 0(xn) � an < 0:56 Method of Ostrawski and Traub [16] f(yn)� f(xn)2f(yn)� f(xn) an < a�7 Method given in [15] 1 + f 0(xn)f(xn) f(yn)f 0(yn) an < a�8 Method given in [18] 1 + f(yn) + f(zn)f(xn) an < 0:5Here yn = xn � f(xn)f 0(xn) , zn = yn � f(yn)f 0(xn) , 0 < � < 1, and a� 2 (0; 0:5) is a root of the cubic polynomialequation  (a) � a3 � 16a2 + 24a� 8 = 0. In [16, 19] it was shown thatan 6M
�n ; 
 2 (0; 1); (1:13)for the method of Ostrawski and Traub (� = 4) and for some modi�cations of Chebyshev method (� = 3). Here� is the convergence order of these methods. It seems also true for all the methods given in the table thatj1� �nj 6 can: (1:14)From (1.13) and (1.14) it follows that the rate of convergence of �n to 1 as n ! 1 is much greater when theconvergence order of the method is higher.2. Relation between the inexact Newton method and CANM. Let us consider the nonlinear systemF (x) = 0; (2:1)



¢»·¨±«¨²¥«¼­»¥ ¬¥²®¤» ¨ ¯°®£° ¬¬¨°®¢ ­¨¥. 2009. �. 10 405where F : Rn ! Rn is a continuously di�erentiable nonlinear mapping. Among all types of methods for solvingthe nonlinear equations (2.1), Newton's method is one of the most elementary, popular, and important one. Oneof the advantages of this method is its local quadratic convergence. However, its computational cost is expensive,particularly when the size of the problem is very large, since in each iteration step the Newton equationF (xk) + F 0(xk)sk = 0 (2:2)should be solved.2.1. An inexact Newton method. To reduce the computational cost of Newton's method, Dembo,Eisenstat and Steihaug proposed the inexact Newton method F 0(xk)sk = �F (xk) + rk; xk+1 = xk + sk,k = 0; 1; : : : , x0 2 D [20]. The terms rk 2 Rn represent the residuals of the approximate solutions sk, i.e., theNewton equation (2.2) is solved inexactly and a step sk is obtained such thatkrkk = 

F (xk) + F 0(xk)sk

 6 �k

F (xk)

; (2:3)where �k 2 [0; 1) is the forcing term. In each iteration step of the inexact Newton method, a real number �k shouldbe chosen �rst and, then, an inexact Newton step sk is obtained by solving the Newton equation approximatelywith an e�cient iterative solver for systems of linear equations. The forcing terms play an important role bothin reducing the residual of Newton equations and in the accuracy of method. In particular, if �k = 0 for all k,then the inexact Newton method will be reduced to Newton's method. The inexact Newton method (IN), likeNewton's method, is locally convergent if �k 2 [0; 1) for all k [20].Theorem 3 [20]. Assume that the IN iterations converge to x�. Then, the convergence is superlinear ifand only if krkk = o�

F (xk)

� as k!1.Theorem 4 [20].Assume that F : Rn ! Rn is continuously di�erentiable and x� 2 Rn such that F (x�) = 0and F 0(x�) is not singular. If the sequence xk generated by IN iterations converges to x�; then(1) xk converges to x� superlinearly when �k ! 0;(2) xk converges to x� quadratically if �k = O�

F (xk)

� and F 0(x) is Lipschitz continuous at x�.In [21] it is shown that the inexact Newton method, the inexact perturbed Newton method, and thequasi-Newton methods are equivalent.2.2. CANM for Banach spaces. One of the modi�cations of Newton's method is the well-known CANM,or damped Newton method,F 0(xk)vk = �F (xk); xk+1 = xk + �kvk; k = 0; 1; 2; : : : ; (2:4)where �k is the iteration parameter. A suitable choice of the parameter allows one to speed up the convergenceand to enlarge the convergence domain. If �k � 1 for all k, then CANM is reduced to Newton's method. Thereexists a closed relation between the CANM and IN iterations. Indeed, CANM can be considered as an INiteration F 0(xk)sk + F (xk) = rk = (1 � �k)F (xk); i.e., krkk = �k

F (xk)

 with �k = j1� �kj. We come to thefollowing local and semi-local convergence results.Theorem 5. There exits " > 0 such that, for any initial approximation x0 with kx0�x�k 6 ", the sequenceof CANM iterations with a parameter �k 2 (0; 2) converges to x�.Theorem 6. We assume that(i) 

F 00(x)

 6M , x 2 D0 (F 0(x)�1 exists for all x 2 D0),(ii) kF 0(x0)�1k 6 �;(iii) 

F 0(x0)�1F )(x0)

 6 �, a0 =M��;(iv) M

F 0(xk)�1

 

F 0(xk)�1F (xk)

 6 ak < 2, k = 0; 1; : : :,and �n 2 In = �0; �1 +p1 + 4anan � � (0; 2). Then, the sequence fxng de�ned by (2.4) converges to a solu-tion x� of equation (2.1).Remark. Assume that the sequence xk generated by CANM converges to x�. Then(1) fxkg converges to x� superlinearly when �k ! 1,(2) fxkg converges to x� quadratically if j1� �kj = O�

F (xk)

� or j1� �kj = O�

F (xk�1)

�.2.3. Some choices of the iteration parameters. It is easy to show that

F (xk)

� j1� �k�1j 

F (xk�1)



F (xk�1)

 = O�

F (xk�1)

� or 

F (xk)

� j1� �k�1j 

F (xk�1)



F (xk)

 = O�

F (xk�1)
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F (xk)

� j1� �k�1j��� 

F (xk�1)



Fk�1

 or j1� �kj = ���

F (xk)

� j1� �k�1j 

F (xk�1)

���

F (xk)

 ; (2:5)which allows the quadratic convergence of CANM. Relations (2.5) can be rewritten in terms of the forcing term�k as �k = j�k�k�1� 1j or �k = j�k�k�1 � 1j�k ; (2:6)where �k = 

F (xk�1)



F (xk)

 . Suppose that

F (xk)

 6 �k�1

F (xk�1)
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