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CXOANMOCTDb HEHHEHBIBHOI'O AHAJIOTA METOJA HBIOTOHA
AJIS HEIMEHNW A HEJIMHENMHBIX YHABHEHWUH

T. XKanxas!, O. UyayyabaaTap?

PaccmaTpuBaeTca BANAHIE HTEPAIHOHHOTO IMapaMeTpa B HelPepLIBHOM aHaJore MeToja PhIoToHa
Ha CXOJHMOCTH H CKOPOCTH CXOAUMOCTH. PailfieHa T-06,1aCTh CXOMMMOCTH 5TOTO METOJa KaK A
CKaJAPHLIX YpaBHEHHI, TaK U 1A ypaBHEHIIT B 6aHAX0BOM IPOCTPAHCTBE. P peIoKe bl OYTH ON'TH-
MaJIbHEIE BEIGOPHI HapaMeTpa. P oKazaHo, 9T0 XOPOIIO H3BECTHBIE HTEPAlHOHHLIE MeTO bl BHICOKOT'O
HOPAJKA CXOJZUMOCTH NPHBOJAT K HENPEpPLIBHOMY aHAJOr'y ¢ MOYTH ONTHMAILHBEIM I1apaMeTpOM.
Poanydenel nocTaTOYHBIE YyCIOBHA CXOMMMOCTH A yKazaHHBIX MeTonoB. CTaThd pekoMeHgoBaHa
K IedaTH OPOrpaMMHBIM KOMHTETOM MeXTyHapoJHOU Hay4dHoll koHdepeHmun “MaTeMaTmaecKoe
MOIeANpOBaHne W BEIHCANTeAbHAA Pusnka 2009”7 (MMCP2009, http://mmcp2009 jinr.ru).

KuarodeBrie caoBa: nTepaluoHHBIE METOMBI, CKOPOCTH CXOAUMOCTH, METOIBI THNA P BIOTOHA, HETNHENHEIE
YpaBHEHUA.

Introduction. In resent years much attention has been paid to the development of new high-order iterative
methods for solving nonlinear equations [1-13]. Among them there are the methods obtained by combining
Newton’s method with other one-step methods [7, 8, 11, 12]. On the other hand, the so-called continuous analog
of Newton’s method (CANM), or the damped Newton method, with a parameter is often used [13, 14], although
its convergence order is less than that of the above-mentioned methods. It is well known that a suitable choice
of this parameter allows us not only to enlarge the domain of convergence, but also to control the convergence
of the method in general. At present there are some choices of this parameter used in practice [13, 14]. In this
paper we show that such suitable choices of the iteration parameter in CANM allow one even to speed up the
convergence of the method under consideration.

1. Sufficient convergence conditions for CANM for scalar equations. We consider the nonlinear
equation

f(x) =0, (1.1)

where f: Q CR — R is a nonlinear twice continuously differentiable function on an open interval Qq C Q. We
assume that z* is a simple root of equation (1.1), i.e., f(z*) = 0 and f/'(«*) # 0. The well-known CANM for
equation (1.1) is

flzn)
Tptl = Tpn — Tn ———, n=0,1,..., 1.2
+ f/(xn) ( )
where zg is an initial guess and 7, > 0 is the iteration parameter. If 7, = 1, then (1.2) leads to Newton’s

method.
Theorem 1. We assume that

() 1@<k =€
(i) |(F(@o) ™| <8,
(i) [(7(20)) ™" Flo)
(i) k| () (@)™ )
’_1+m)g

an
converges to a solution x* of equation (1.1).

< n, ao= k’ﬁﬁ,

<a, <2, n=0,1,...,

and 7, € I, = (0 (0,2). Then, the sequence {x,} defined by (1.2) and starting at zq € Qg
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1.1. Some choices of the iteration parameter. We assume that f(x) € C3(Qq) and z,, is sufficiently
close to #*. Then, the Taylor expansion of f(z) about x,, gives

—(1-r . J"(@n) [ fl2n) 27_2 3(yp
Fonn) = (1= f(an) + EL (L) a0, ),

From this it follows that
P (nn) = [(L= 7)2F(@n)? + 21 = m) 72 (@) A + A27] + O(F(20), (13)

where
_ (@) [ Fan) N
Ay = 9 (f’(l‘n)) # 0. (1.4)

It is worth to mention that the remainder O(f4(xn)) in (1.3) can be replaced by O(f5(xn)) when 7, — 1.
In this sense we may call the quantity in the square brackets the main part of expansion (1.3). Our aim is to
choose the iteration parameter to be a minimum point of the main part in (1.3), i.e.,

O(T) = 4A213 4 24, f(2,) (210 — 372) — 2(1 — 1) F* (%) = 0. (1.5)

Since ¢(0) = —2f(x,)? < 0 and (2) = 2(4An — f(avn))2 > 0, there exists at least one root 7% of equation (1.5)
that belongs to (0,2). We call this root 7 an optimal one. However, it is difficult to find 7,7 by solving the cubic
polynomial equation (1.5). To overcome this difficulty, as in [17], we use the notation

O = Ant;: (1.6)
and rewrite (1.3) in the form
P ngn) = [(1= )" f2n)? + 2(1 = 7) f(2n)0n + 03] + O(f(a)"). (1.7)
The main part of (1.7) is a quadratic function with respect to f,, and we can find its minimum point
0 = —(1—m)f(xn) (1.8)

and the minimum value equal to zero. Hence, we have f5+1(9:) = O(f4(xn)).
From (1.6) and (1.8) we obtain the following equation for 7,:

A2 4 (1 = 1) fn) = 0. (1.9)

The root of equation (1.9) that belongs to the interval I, is given by

1 44,
= n) — a1 — : 1.1
= o (f(x )~ Fen) f(%)) (110
Since the quantity m is small, one we can use the expansion
Tn
4A 2A 242 4A3
- —— =1-—"__ n__ "+ O(fH(xp
F) =T Fow) " Tl Fap T OV )
in (1.10) and btai 14y 24, + O(f3(xs)). The val
in (1.10) and, as a consequence, we obtain 7, = —t —= z,)). The values
fzn)  flan)?
A A, 7!
Th=1+—" and T, = (1— - ) 1.11
Flan) Flan) (1)

are called the almost optimal choices within the accuracy of O(f?’(xn)) In a similar way, the value given by

A 243
f(zn)  [(zn)

=14 (1.12)
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is called the almost optimal choice within the accuracy of O(f4(xn)).

flaa)  [(xn) P (2n)
['(wn)  2(f(20))°
with the almost optimal choice (1.12). Similarly, it is easy to show that, in particular, the well-known cubi-
cally convergent iterative methods and the fourth-order convergent iterative methods given in [15] lead to
iteration (1.2) with the almost optimal parameters given by (1.11) and (1.12), respectively.

1.2. Sufficient conditions for convergence of some well-known iterations. Now we study the
convergence of some iterative methods with a given parameter 7,. To this end, it suffices to obtain some
conditions under which the chosen parameter of the method being considered belongs to the 7-region (7eg) of
convergence.

Theorem 2. We assume that the conditions (i)-(iv) in Theorem 1 are satisfied. Then, the following iterative

methods are convergent if the corresponding numbers ay, in (iv) obey the condition given in the last column of
the table.

The well-known Chebyshev method z,41 = 2, —

can be considered as CANM (1.2)

N Methods Tn Tn € In
f'(zn) flzn)
1 | Chebyshev method 1+ an, < 0.5
2 (%) f'(2n)
1 b
2 | Modification of Chebyshev method [15] o) (1 + 5) Flyn)+ (1 +0)f(en) — | —2<5<0,
Tn
b flzn)
_ 2 " n <05
2f<$ +f/($n))] an <
3 | Method of Weerak d Fernando [7] 2/ (zn) <05
ethod of Weerakoon and Fernando -_— ap .
S (@n) + f'(yn)
_ . F(zn)
4 | Method of Frontini and Sormani [7] F@n) a, < 0.5
. / — Ln
and Homeier f (x” Qf/(l‘n))
2
5 | Halley-type iteration [9] 0" f(@n) 07 0en) an < 0.5
02 — 0+ 1)f(x, —f(xn— n)
(¢ 0+ 1)f(en) e
6 | Method of Ostrawski and Traub [16 - a, < a*
) 2/{5n) ~ (o)
7 | Method given in [15 1+ a, < a*
given in [19 Flza) (0]
8 | Method given in [18] 1+ ) + () ap < 0.5
f(zn)
Here y, = 2, — J{/((x”)) y Zn = Yn — jj;((yn)) ,0< 0 < 1,and a* € (0,0.5) is a root of the cubic polynomial
Tn Tn
equation ¥(a) = a® — 16a? + 24a — 8 = 0. In [16, 19] it was shown that
an < MY, v €(0,1), (1.13)

for the method of Ostrawski and Traub (¢ = 4) and for some modifications of Chebyshev method (o = 3). Here
o 1s the convergence order of these methods. It seems also true for all the methods given in the table that

|1 — 7] < cay. (1.14)

From (1.13) and (1.14) it follows that the rate of convergence of 7, to 1 as n — oo is much greater when the
convergence order of the method is higher.
2. Relation between the inexact Newton method and CANM. Let us consider the nonlinear system

F(z) =0, (2.1)
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where F': R® — R" is a continuously differentiable nonlinear mapping. Among all types of methods for solving
the nonlinear equations (2.1), Newton’s method is one of the most elementary, popular, and important one. One
of the advantages of this method is its local quadratic convergence. However, its computational cost is expensive,
particularly when the size of the problem is very large, since in each iteration step the Newton equation

F(l‘k) + F’(a:k)sk =0 (22)
should be solved.

2.1. An inexact Newton method. To reduce the computational cost of Newton’s method, Dembo,

Eisenstat and Steihaug proposed the inexact Newton method F'(xy)sy = —F(zk) + 75, Zry1 = &k + Sk,
k=0,1,..., 290 € D [20]. The terms r; € R" represent the residuals of the approximate solutions s, i.e., the
Newton equation (2.2) is solved inexactly and a step sj is obtained such that

el = (|2 (ex) + F' (er)siel| < me || F (), (2.3)

where 1, € [0, 1) is the forcing term. In each iteration step of the inexact Newton method, a real number 7 should
be chosen first and, then, an inexact Newton step si is obtained by solving the Newton equation approximately
with an efficient iterative solver for systems of linear equations. The forcing terms play an important role both
in reducing the residual of Newton equations and in the accuracy of method. In particular, if n; = 0 for all %,
then the inexact Newton method will be reduced to Newton’s method. The inexact Newton method (IN), like
Newton’s method, is locally convergent if n;, € [0, 1) for all £ [20].

Theorem 3 [20]. Assume that the IN iterations converge to a*. Then, the convergence is superlinear if

and only if ||rx|| = 0(||F(xk)||) as k — oo.

Theorem 4 [20]. Assume that F : R™ — R" is continuously differentiable and x* € R" such that F(x*) =0
and F'(x*) is not singular. If the sequence x, generated by IN iterations converges to x*, then

(1) @ converges to x* superlinearly when m, — 0;

(2) xp converges to x* quadratically if g, = O(HF(l‘k)H) and F'(x) is Lipschitz continuous at x*.

In [21] it is shown that the inexact Newton method, the inexact perturbed Newton method, and the
quasi-Newton methods are equivalent.

2.2. CANM for Banach spaces. One of the modifications of Newton’s method is the well-known CANM,
or damped Newton method,

F’(xk)vk :—F(l‘k), Tyl = Tk + TiVk, k=0,1,2,..., (24)

where 73 18 the iteration parameter. A suitable choice of the parameter allows one to speed up the convergence
and to enlarge the convergence domain. If 7, = 1 for all &, then CANM is reduced to Newton’s method. There
exists a closed relation between the CANM and IN iterations. Indeed, CANM can be considered as an IN
iteration F'(xi)si + F(xr) = e = (1 — ) F(g), ie., ||ri]] = 77k||F(l‘k)|| with ng = |1 — 7|. We come to the
following local and semi-local convergence results.

Theorem 5. There exits € > 0 such that, for any initial approzimation xg with ||zg—2*|| < £, the sequence
of CANM iterations with a parameter 7, € (0,2) converges to x*.

Theorem 6. We assume that

1) ||F//(l‘)|| <M, 2 € Dy (F'(x)7! exists for all x € Dy),

i) ||F" (o) THI < B,

iii) || F'(20) "1 F)(wo)|| <, a0 = M By,

) M| F'(zp) ™| | F/(or) T F (n) || S ax < 2,k=0,1,...,
—1+v1+4a,

’ a

(
(
(
(

and , € I, = (0 ) C (0,2). Then, the sequence {x,} defined by (2.4) converges to a solu-

n

tion ¥* of equation (2.1).
Remark. Assume that the sequence zj generated by CANM converges to z*. Then
(1) {xr} converges to #* superlinearly when 7, — 1,

(2) {xx} converges to z* quadratically if |1 — 7| = O(HF(l‘k)H) or |1 — 7| = O(HF(l‘k—l)H)

2.3. Some choices of the iteration parameters. It is easy to show that

[Pl = 1= sl 1]y o [Pl =1 = e [P
el (17 el GEs]

= O(||F(@e-)])-
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By the above remark, then, one can choose 7 such that

7o) =11 = 7l | (-]
=

7] =11 = mesl [ F ()|

1-— = 3
e TFGo]

(2.5)

or |1—m|=

which allows the quadratic convergence of CANM. Relations (2.5) can be rewritten in terms of the forcing term
Mg as

apnp_1 — 1
Me = |ogne—1 — 1| or mp = loemimy = 1 : (2.6)
o
Fx_
where oy = M . Suppose that
17 ()]
| F(zr)|| < me—1]|F(zr-1)||, 0< o1 <1 (2.7)
. ) ) ) ) apfe—1— 1
Then, o > 1 and ap -1 > 1. The minimum of the possible choices in (2.6) is 5, = ———— . If
ap

inequality (2.7) is not true, then (2.6) gives 1, = 1 — nx_1ay. Thus, we have

1 —ng_10r, when nr_10p <1,

T —M, when np_1ap > 1. (28)
o

The second choice in (2.8) allows us to decrease 9, i.e., 0 < < i1, while the first choice in (2.8) implies
that 0 < 7, < 1. In both these cases we have 0 < n; < 1. According to (2.3), it is possible that (2.7) is true and
thereby the second choice in (2.8) allows us to decrease n, i.e., 7, — 0 as k = co. In terms of 7, we have the
following choice

|1_Tk|:77k~ (29)

From this it follows that, if 0 < 1, < 1 and gy — 0 as &k — oo, we have 0 < 7, < 2 and 7, — 1 as k — co. Thus,
the choice of the iteration parameter is given by (2.8), (2.9) in CANM.

Conclusions. It is shown that the suitable choices of the iteration parameter in CANM allows us not only
to enlarge the convergence domain but also to speed-up the convergence.
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