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OIAIIUILL IAMECOBCKOM ABTOMATUYECKOM AJAIITUBIION KBAAIIATYIIBI

I'. Agam!, C. Agam!

Beegenne 6alilecOBCKOr0 BBIBOJA B CXEMY aBTOMATHYECKOU ajallTUBHON KBajpaTyphl, pazpabo-
Tannonn B makete QUADPACK, cyiecTBeHHO yBeInYUBaeT HAJAeKHOCTH BLIUUCICHUA WHTErpaja
B OTCYTCTBHE aNpPUOPHBIX 3HAHUH O TMOBefeHWH (YHKINH B o6aacTh uHTerpuposanusa. Ilpen-
JOXKEH aHaJdW3 TOro Tporpecca, KOTOPBIH AOCTUTHYT K HACTOAMIEMY BpPEMEHW B >TOM Halpa-
Baennu. CTaThsd peKOMeHJOBaHa K TeYaTH MPOTPAMMHBIM KOMUTETOM MEXAYHAPOJHOU HAyIHON
KoH(peperun “MaTemaTudeckoe MojeanpoBanne u BeraucanTeabHad dusnka 20097 (MMCP2009,
http://mmcp2009.jinr.ru).

Kaio1deBrie ciaoBa: 9nc/IeHHOe NHTETPUPOBaHNe, aBTOMAaTHYeCKasa alalTHBHAA KBaApaTypa, aHadn3 Mpo-
st naTErpUPYEeMON (PYHKIINHN, HAJEKHOCTE, 6ANECOBCKUN BBIBOI.

1. Problem statement. The evaluation of (proper or improper) one-dimensional Riemann integrals by
automatic adaptive quadrature [1-3] has been implemented and is available in the most authoritative program
libraries (e.g., SLATEC, IMSL, and NAG). To alleviate severe code failures in cases of practical interest [4-6],
separate codes, each being able to solve a given specific class of integrals, have been implemented [7, 8]. Tt is
then user’s responsibility to choose an appropriate code from a library for the problem of interest.

Such an approach remains, however, useless in the case of parametric integrals arising in various physical
models (see, e.g., [9-13]). Since the variation of the model parameters results in the occurrence of integrals
falling in different classes, a prior: decisions concerning the assignment of the right code cannot be taken. We
are thus left with the trial and error approach, with an unacceptably high rate of failure and frustration.

If the reliability of the local quadrature rule output pairs (g, €) is explicitly questioned via the use of post
validation consistency criteria [14, 15], then the overwhelming fraction of the spurious (q,e) pairs is ruled out,
with the consequence that the class conscious decisions [2] of the automatic adaptive quadrature algorithms get
significantly improved.

In the present paper, we discuss a set of necessary consistency criteria allowing the identification of the
spurious (g, e) outputs prior to the activation of the local quadrature rules. This is an instance of Bayesian
inference [16] which, by elimination of the guaranteed spurious outputs (g, €), increases the chance of obtaining
meaningful (¢, e) pairs under complete lack of a priori knowledge on the integrand function.

2. Definitions and notations.

2.1. The integral. We consider the (proper or improper) one-dimensional Riemann integral

b
IEI[a,b]f:/f(x)dx, (1)

where the integrand function f : [a, 8] — R is assumed to be continuous almost everywhere on [a, b] such that (1)
exists and is finite.

If the integrand is factorized as a product g(x)f(z), where the weight function g(x) absorbs an analytically
integrable difficult part of the integrand (e.g., an endpoint singular or oscillatory function), then the following
considerations are equally valid for this integrand function f(z).

2.2. Local quadrature rules. Given [«, 3] C [a,b], a local quadrature rule produces an approximate
solution of I[a, B]f as a couple {q, e}, where ¢ = Q[«, 8]f denotes a quadrature sum approximation of Ia, 8]f,
while e > 0 denotes a probabilistic bound of the error (estimate of the error) associated to ¢. If e > |e,|, where
eq = I, B]f — q is the actual error associated to ¢, then the couple {q, e} is reliable, otherwise it is unreliable.
In the first case, the decisions of a class conscious automatic adaptive algorithm are meaningful, while in the
second a wrong decision branch may be chosen and the numerical solution fails.
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2n
We assume that ¢ is a (2n + 1)-knot interpolatory quadrature sum ¢ = qan = Qanlo, f1f = szf(l‘z) at
i=0
the 2n 4+ 1 abscissas (called the quadrature knots) inside [, G]:
aLpy <o <...<ay LB (2)

An automatic adaptive quadrature algorithm may operate with one or more local quadrature rules. In what
follows, we assume that these may be either Gauss—Kronrod (GK) or Clenshaw—Curtis (CC) quadrature rules [1-3].
Both of them result in symmetric quadrature sums, with the interpolation abscissas (2) given by #; = ¢+ hy; ;

1 1
c:§(ﬁ—|—0z); h:i(ﬁ—a); i=20,1,...,2n, where

0=yn < Unt1 <Yn42 < ... <Y <1, Ynoi = —Ynyi, i=1,...,n, (3)

denote the reduced quadrature knots y; defined over [—1, 1].

2.3. Standard automatic adaptive quadrature. The automatic adaptive quadrature was systematically
developed in QUADPACK [1], the de facto standard of one-dimensional globally adaptive numerical integration. A
globally adaptive quadrature algorithm involves the following two fundamental steps (QUADPACK [1], p. 60).

(1) Initialization: the number of integration subranges is set to N = 1 and the local quadrature rule (g, ¢) is
used to solve the given integral over the whole integration domain to yield the initial global pair (@1 = g,
F1 = e > 0). Using @, and the input accuracy specifications, an initial estimate 7 of the acceptable
tolerance associated to the initial solution is computed.

(i1) Error decrease by subrange subdivision: if Ex > 7 (i.e., the global error estimate Fy > 0 associated to the
composite quadrature sum approximation @y exceeds the tolerance level 7)), then the local quadrature
errors are decreased by subrange bisection (hence, N is increased to N + 1) and the global quantities
{QN, En, TN} are updated until the error tolerance level is achieved (En < 7n).

2.4. The integrand profile. The set of all currently computed values of the integrand over the current
subrange [a, 8] C [a, b] defines the integrand profile over [, f3].

Within the Bayesian automatic adaptive quadrature, the integrand profile comes from two kinds of abscissas:
inherited from the ancestor subranges and the local quadrature knots (3) inside (e, 3).

While not currently needed for the computation of the local (¢, e) pair, the inherited abscissas and integrand
values provide valuable enhancement of the quality of the integrand behavior analysis over [«, 3].

The role of the local quadrature knots (2) or (3) is twofold. First, they serve to the derivation of hints
on the integrand conditioning over [, 8]. Second, under fulfillment of all the well-conditioning criteria by the
integrand function, they serve to the derivation of the outputs (¢, e) for the local quadrature rules.

The union of the inherited and currently computed abscissas over [«, 8] defines the fine discretization set
of abscissas over [a, ]. This may be defined either in terms of {xl <41 < .. < xr}, the absolute abscissa
values, or in terms of {yl <Y1 < ... < yT}, the reduced abscissa values. Both sets of abscissas are uniquely
defined for any arbitrary subrange [«, 8] C [a, b].

In what follows, the distance between two reduced abscissas will be of interest:

2.5. Discrete neighborhoods over the integrand profile sampling. The analysis of the integrand
behavior around a certain quadrature knot ay € [, 5] asks for the use of neighborhoods which are defined in
terms of the already available integrand profile sampling. This analysis is local and involves several kinds of
neighborhoods.

The left fine discretization neighborhood of xy is given by

Filey) = {ﬂﬁk—z,ﬂﬁk—l,ﬂﬁk,mH}ﬁ{l‘l,~~~ ,l‘r}~ (5)

The left coarse discretization neighborhood of xy 1s given by

Cl(l‘k):{l‘k_z,l‘k}ﬂ{l‘l,...,l‘r}. (6)
Similar definitions hold for the right discretization neighborhoods F, (x) and C.(xy), respectively.
The left lateral neighborhood of xj is given by Li(xg) = {xk_g,xk_z,xk_l,xk} N {l‘l, c. ,l‘r}. The left

lateral neighborhood is complete provided it contains exactly four points. Similar definition holds for the right

lateral neighborhood £, ().
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The inner extremal point xj of the integrand profile is isolated to the left provided £;(xy) is complete and
the sequence {fk_g, fr_o, fr_1, fk} 18 monotonic.

An inner extremal point zy 18 isolated provided it is isolated both to the left and to the right.

A monotonic subset of sequential integrand profile values {fl, fig1, - ,fH_q} defines a monotonicity sub-
range inside [a, 5] provided its length ¢ + 1 > 6.

3. Integrand features subject to Bayesian inferences. There are integrand features which result in
conspicuously unreliable local quadrature rule (g, ) outputs if properly questioned and identified:

— severe precision loss due to cancellation by subtraction;

— occurrence of a range of variation of a monotonic integrand which exceeds the worst case bound inferred
from the polynomial set spanning the interpolatory quadrature sum;

— occurrence of a finite jump with finite lateral derivatives, immersed into a monotonicity subrange of the
integrand;

— same as previous, but turning point;

— 1ntegrand oscillations at a rate of variation beyond the current quadrature knot set resolving power;

— 1solated irregular integrand extremum.

The specific decisions following from the identification of one or another of the above-mentioned cases
depends on the diagnostic. One of the following three continuations is possible:

(1) stop immediately the computation and return the appropriate error flag (when there is no hope to improve
the output for the present problem formulation);

(ii) proceed immediately to symmetric subrange bisection (when it is expected that the refinement of the
discretization into subranges will result into a better resolved integrand profile);

(iii) proceed immediately to the solution of a number of auxiliary problems.

If the occurrence of an inner isolated offending point 2, was inferred, then resolve its location inside (v, 3)
to machine accuracy.

Proceed then to the splitting [a, 5] = [(a, z5) U (J:s,ﬁ)] The abscissa x; will be locked from now on at
subrange boundaries within the subrange subdivision process of [a,b]. If s = a or @z = b, then solve
one lateral boundary layer problem [17, 18] at z} or x, respectively, in order to determine the nature of

the integrand behavior at x; as well as appropriate integrand lateral limits. If z; € (a,b), then solve two

lateral boundary layer problems at x7 and xF

T, respectively.

The solutions of the auxiliary problems define the further continuation of the algorithm. If z, is an essential
singular point (i.e., it associates a singularity of f(x;) together with infinitely many oscillations of f(#) in
its neighborhood (like, e.g., sin (1/z) at @ = 0T)), then further continuation is useless. The computation
is stopped immediately and the appropriate error flag is returned.

If z; corresponds either to a finite jump or a turning point with finite lateral derivative, then its contri-
bution to the original Riemann integral is nil. The local quadrature outputs (g, ¢€) become insensitive to
the occurrence of the nearby offending locked endpoint.

If there is a lateral singularity at @, in the integrand and/or its first order derivative, then the local
quadrature outputs (¢, e) remain sensitive to the occurrence of the nearby offending isolated singularity.
Moreover, slow convergence under further symmetric subrange bisection occurs. However, convergence
acceleration 1s possible by the use of extrapolation techniques. Therefore, a flag exzplicitly pointing to the
allowance of the activation of a convergence acceleration procedure is set.

This discussion points to the need of three pointers for the integrand behavior characterization over a
subrange, corresponding to the left end, the right end, and the subrange interior respectively.

The pointer ipinn characterizing the interior of a subrange carries the output analysis information given
in Table 1.

The pointer ipend characterizing a subrange end carries the information given in Table 2.

4. Order of integrand computation at quadrature knots over subranges. Within the standard
automatic adaptive quadrature, all the integrand values asked by the local quadrature rule pair (¢,e) are
computed, irrespective of the meaningfulness of the (g, ) output or not.

Within the Bayesian automatic adaptive quadrature, the computation of the integrand values and the
analysis of the integrand behavior, prior to the activation of the local quadrature rule, are done in separate
distinct procedures. A noticeable decrease of the number of integrand evaluations may be obtained provided the
analysis is done as soon as possible after the computation of a new integrand value. The computation/analysis
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Table 1
ipinn
0 All consistency criteria passed. Local quadrature rule activation allowed.
-2 Insufficiently resolved integrand profile. Do immediate symmetric bisection.

-1 Localized integrand difficulty. Solve auxiliary and/or boundary layer problems.

2 Heavy cancellation by subtraction. Stop all computations and issue error flag.
Table 2
ipend
0 Free, presumably regular, subrange end.
1 Locked singularity in function and/or first order derivative. Allow extrapolation.
2 Locked zero measure subrange end. Extrapolation denied.
3 Essential singularity. Stop all computations and issue error flag.

process may be optimized as a two-step interlacing involving the computation of an appropriate subset of
integrand values, followed by the check of corresponding consistency criteria.

The minimal subset of integral values requested by the analysis comprises the subrange ends and the inner
local quadrature knots inside (o, 3) C (a,b). In order to make the following discussion independent of the open
(GK) or closed (CC) character of the local quadrature sum of interest, we consider the union of the quadrature
knots (3) with the reduced endpoint abscissas: {yw < Yyl < y2n+vr} = {yo <y <...< yzn} u{-1,1}.
The integrand values f, = f(a) and fz = f(5) at the endpoints y,, = —1 and yan4~, = +1 are either inherited
from the parent subrange or computed during the root initialization of the binary subrange tree.

A consequence of the use of local quadrature sums of interpolatory type is the characteristic symmetric
distribution of the quadrature knots inside every subrange («, 5) C (a, b): sparser towards the subrange center
(such that the norm of distribution (4) is given by max{|77jk|} = Ynt1 = —Yn—1) and denser towards the
subrange ends (with the outermost two quadrature knots lying significantly nearer to each other and to the
corresponding subrange end as compared to the remaining ones).

The average inter-knot distance

v=0Cn4y —y)"! (7)

provides a convenient threshold for the separation from each other of the sparse and dense knot regions respec-
tively inside the left and right subrange halves.

The center y, = 0 itself (or, in absolute units, v = (8 + «)/2) plays a special role within the symmetric
bisection since the pairs (fo, fy) and (fy, f3) provide endpoint inheritance for the descendent subranges.

This discussion points to a computation/analysis two stage process which is to be done for seven distinct
groups of inner quadrature knots: the center of [a, 5]; the left and right pairs of quadrature knots lying nearest
to the endpoints « and 8 respectively inside [a, 5]; the left-half and right-half subsets covering the remaining
dense quadrature knot distributions; ibid., for sparse quadrature knot distributions.

Under the inheritance of previously computed integrand values over the ancestor ranges, the analysis
process is completed by the operation of merging the inherited and just computed sequences with the purpose
of enhancing the reliability of the Bayesian inferences.

5. Severe precision loss due to cancellation by subtraction. Following the idea first developed in
QUADPACK ([1], p- 71), we formulate the following criterion which ends quickly the computation of a vanishing
integral value under non-vanishing integrand.

Criterion C1. If the integrand analysis at the initialization step of the automatic adaptive quadrature

2n+, 2n+vy,
returns the result Z flzg) < 100 &g Z |f(xk)|, where ¢y is the epsilon with respect to addition, then a
k= k=~

roundoff error flag is set and the computation is stopped.

6. Upper bound to the global range of variation of a monotonic integrand. The key to the
derivation of such a bound is provided by

Fact 1. Let Xj; = max {|a|,|3|} denote the endpoint maximum absolute value of the current quadrature
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subrange [a, 8] C [a, b].
The floating point degree of precision, K of an interpolatory quadrature sum showing an algebraic degree
of precision equal to d is an effective value defined as follows:

. 1/d -1
d ifft  Xpr €[em,2m], om =gy, oym =z},

K= {m eo/lnXM} i Xy < o,
{— In eo/lnXM} iff Xar > eu,
where [a] denotes the integer part of @ > 0.

d
Proof. The result follows from the consideration of the fundamental polynomial pg(z) = ZxK and
k=0

derivation of those conditions under which all the monomials of the fundamental power series {1, x,... ,xK}
bring significant bits to the computed values of p4(x) at various arguments x.

From py(z) it follows that 2% is a worst case upper bound for the range of variation of the integrand values
over the triplet {fa, fy, fs}. We may therefore formulate

Criterion C2. Let [a,8] C [a,b], fu = f(a). f5 = F(8), £, = S(3), 7 = (B+a)/2: Auy = |fy = fuls
A =|fs—fy| I {fa, Iy, f@} define a monotonic sequence, then the infringement of the condition

2K min{AM, AW} > max{AM, AW}

points to the need of exiting the computation/analysis process and to proceed to the immediate symmetric
bisection of [a, f].

7. Inferences from integrand slope approximation at a subrange endpoint.

Criterion C3 (the endpoint slope consistency criterion). Given:

(i) [, 8] C [a,b] and a sampling {fo, 11, fz} around the endpoint #¢ (2o = & or zg = 3) of [, §] over the
abscissas set {l‘o, x1, xz}, where 21 and x5 denote the two abscissas lying nearest to xy within the merged set
of currently generated and inherited abscissas,

(ii) the three estimates %(k) (k =1,2,3) of fi = f'(x0) following from the samplings S; = {fo, fl} and

So = {fo,fz} as a first order divided difference %(k) = dyg = fi = fo = fe = Jo , k = 1,2, or from the
B T — %o hiko o
sampling S5 = {anflaf2} as fo/(S) =dip + (d10 - dzo)mo,zo, £10,20 = % , then the set {fo/(l),fo/(z),fo/(g)} is
20
taken for being consistent provided
‘jfyo/(l) _ j?o/(s)‘ < ‘1?0/(2) _ j?o/(s)‘ <7 max{‘fol(l)‘, ‘fo/(z)‘, ‘fO/(S)" 1}’ 8)

where 7 is an empirical value set to 7 = 1/3.

If the consistency criterion (8) is infringed, then:

(a) under |h| = W; il
recommended, since it is expected that an insufficiently resolved integrand profile by the set (3) of the local
quadrature knots will result over [« 5];

(b) the solution of a boundary layer problem at xy inside [o, 3] is asked otherwise.

8. Check of Nyquist threshold for oscillatory integrands. The reconstruction of periodic signals
([17], Chap. 12) shows that the structural details recovered by analysis cannot be finer than the norm of the
discretization sampling. The Nyquist theorem established in this context has two straightforward implications
in the Bayesian automatic adaptive quadrature with respect to the faithful representation of the integrand
function structure by the integrand profile at the set of the local quadrature knots (3).

Criterion C4 (Nyquist local). The faithful representation of a non-monotonic integrand variation by the
profile derived at the local abscissa set (3) asks for a lower bound of the distance between two successive extrema
not smaller than 3/47, with v given by (7) and 3/4 being an empirical factor.

Criterion C5 (Nyquist global). The integrand profile derived at the local abscissa set (3) is faithful if the
number of counted oscillations inside it does not exceed the Nyquist threshold 2/y,11.

The infringement of any of these two criteria points to an insufficiently resolved integrand profile and this
asks for immediate symmetric subrange bisection.

> 1 or a nonmonotonic sequence Ss, immediate symmeltric bisection of [, ] is
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9. Integrand behavior at isolated inner extrema. If g is an extremal point of a smooth function f(z),
then f'(x¢) = 0 and there is a finite neighborhood V(zg) of g inside which f"(zg) # 0. These fundamental
properties result into the following Bayesian hint:

Criterion C6. The integrand f(x) is smooth at the isolated extremal knot zj provided

(1) |f}_—(xk)| < |fé(xk)|, where {F, C} is a symbolic notation for the pairs { Fi(zx),Ci(zx)} and respectively
{}"T(xk),CT(xk)}, Egs. (5) and (6);

(IT) the curvature of f(x) at {xk_l,xk,ka} keeps constant sign irrespective of the manifold £;(zy),
Fi(z), Fr(xg), or Lp(xy) over which it is computed from third degree interpolatory polynomials.

The infringement of any of conditions (I) and (IT) points to an irregular extremum . Scale invariance of
the diagnostic of an irregular extremum is checked under symmetric bisection until it is detected at a half-width
|h] < 1, therefrom the analysis follows the general pattern described at point (iii) of Section 3.

10. Checking integrand regularity over monotonicity subranges. The analysis done in this case is

Jrs1— fr

based [15] on the comparison of the first order divided differences dgy1 1 = T and 1s formalized in the
Nk+1k
following Bayesian hint:

Criterion C7. A quadrature knot x is assumed to belong to a neighborhood (#;_1, 2x+1) inside which
the integrand f(x) is continuous provided the first order divided differences satisfy

min {[dg g1, [dyr1 gl = 7 max {|dy g1l |dy1 4]}, (9)

where 7 18 an empirically defined threshold.

Under infringement of (9), the analysis follows the general pattern (iii), Section 3.

If Criterion C7 is fulfilled, then the analysis is refined using

Criterion C8. If the integrand profile is monotonic and the curvature keeps constant sign everywhere
inside (e, 3), then the activation of the local quadrature rules is accepted irrespective of the subrange width.

Criterion C9. If the integrand profile is monotonic and the pattern of the sign of the curvature over a
sequence of three consecutive intervals is either +—+ or —+4—, then a turning point with finite lateral derivatives
has to be resolved or disproved.

11. Mesoscopic analysis of the boundary layer [17, 18]. Assume that f(#) is a continuous twice
differentiable function over [a,b] and let x, € [a,b] denote a reference argument value. Then there exists a
non-vanishing neighborhood V' (x,) C [a, b] of #, inside which a linear Taylor series expansion holds true within
a predefined threshold 0 < ¢ < 1.

Numerical check of the continuity of f(x) is done from a sampling of its computed values,

{fi = fI(f(x1)) |i:0,1,...,m},

over a set of machine number arguments Sy, (z,) = {xl € Vi) |Z =0,1,... ,m}, m > 3, chosen such that
fl(zy) € Sy (x,), where fl({) denotes the floating point representation of € R . Let {f(a:l) [i=0,1,... ,m}
denote the set of actual values of f(x;) over Sy, (x,). In general, due to the round-off, f(x;) — fl(f(a:l)) #+ 0,
hence the best information on the smoothness properties of f(x) at x, following from the set {l‘i, fl} 1s obtained
from the scrutiny of the properties of a second degree polynomial least squares fit to the floating point data.
It is convenient to perform the scale transformation z; = xzg 4+ &h,, ¢ = 0,1,... ,m, & € Z, where h,
denotes the distance from x, to its nearest machine number inside [a,b]. This leads to the second degree
fitting polynomial ys(z;) = ag + a1h,p1(&) + ash?ps (&), spanned by the orthogonal basis polynomials py (&;),
k =0,1,2, of norms Ny, respectively. Under negligible as, the first order derivative of f(z) at », is given by

fer) ~ yh(x,) = a; = Nt Zpl(gz)fz
=0

The smallest sampling Sy, (#,) suitable for a least squares analysis providing insight on the smoothness

properties of f(x) at ., = a and x, = b respectively consists of four distinct abscissas (i.e., m = 3). We
choose them such that the set {ag,x1, 22} defines a uniform mesoscopic mesh &, = 0, &1 = p, & = 2p, €3 = ¢,
g #{0,p,2p}.

Then the validity of a linear Taylor expansion around the reference abscissa x, is found to hold true within
prescribed accuracy ¢ provided the minimal sampling yields scale invariant approximations of the first order
derivative f'(z). Details and implementation are reported in [17, 18].

12. The priority queue associated to the binary subrange tree. Within the standard automatic
adaptive quadrature, the magnitude of the local quadrature error e provides the simple key pointing to the
subrange to be bisected next.
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Within the Bayesian automatic adaptive quadrature, consistent subrange handling is secured by a composite
priority queue key. The magnitude of the local quadrature error is the primary priority queue key which secures
the storage of the subrange showing the largest local error at root. For a subrange in undefined state, the
conventional value e = oflow, where oflow i1s a value near to the machine overflow threshold. The depth
of the terminal nodes in the binary subrange tree provides the secondary priority queue key. If a smaller
depth is detected in the depth list, then the corresponding subrange is moved at the root with two important
consequences:

(1) systematic elimination of spurious well-conditioning diagnostics over large subranges;

(2) consistent extrapolation procedure activation.

The subranges the local quadrature errors of which fall below a significance threshold are ruled out from
the priority queue. This keeps the priority queue length to a minimal value.

13. Conclusions. A review of the principles of the Bayesian automatic adaptive quadrature has been
given. Special emphasis was put on the description of the integrand properties which result in conspicuously
unreliable local quadrature rule (g, €) outputs prior to their effective computation. Consistency criteria enabling
Bayesian hints are formulated. Detailed considerations of such criteria in separate publications pointed to the
substantial increase of the reliability of the automatic globally adaptive quadrature under their use.
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