
¢»·¨±«¨²¥«¼­»¥ ¬¥²®¤» ¨ ¯°®£° ¬¬¨°®¢ ­¨¥. 2009. �. 10 391��� 519.644:519.226.3:004.021:004.05�������� ����������� �������������� ���������� �����������. �¤ ¬1, �. �¤ ¬1�¢¥¤¥­¨¥ ¡ ©¥±®¢±ª®£® ¢»¢®¤  ¢ ±µ¥¬³  ¢²®¬ ²¨·¥±ª®©  ¤ ¯²¨¢­®© ª¢ ¤° ²³°», ° §° ¡®-² ­­®© ¢ ¯ ª¥²¥ QUADPACK, ±³¹¥±²¢¥­­® ³¢¥«¨·¨¢ ¥² ­ ¤¥¦­®±²¼ ¢»·¨±«¥­¨¿ ¨­²¥£° « ¢ ®²±³²±²¢¨¥  ¯°¨®°­»µ §­ ­¨© ® ¯®¢¥¤¥­¨¨ ´³­ª¶¨¨ ¢ ®¡« ±²¨ ¨­²¥£°¨°®¢ ­¨¿. �°¥¤-«®¦¥­  ­ «¨§ ²®£® ¯°®£°¥±± , ª®²®°»© ¤®±²¨£­³² ª ­ ±²®¿¹¥¬³ ¢°¥¬¥­¨ ¢ ½²®¬ ­ ¯° -¢«¥­¨¨. �² ²¼¿ °¥ª®¬¥­¤®¢ ­  ª ¯¥· ²¨ ¯°®£° ¬¬­»¬ ª®¬¨²¥²®¬ ¬¥¦¤³­ °®¤­®© ­ ³·­®©ª®­´¥°¥­¶¨¨ \� ²¥¬ ²¨·¥±ª®¥ ¬®¤¥«¨°®¢ ­¨¥ ¨ ¢»·¨±«¨²¥«¼­ ¿ ´¨§¨ª  2009" (MMCP2009,http://mmcp2009.jinr.ru).�«¾·¥¢»¥ ±«®¢ : ·¨±«¥­­®¥ ¨­²¥£°¨°®¢ ­¨¥,  ¢²®¬ ²¨·¥±ª ¿  ¤ ¯²¨¢­ ¿ ª¢ ¤° ²³° ,  ­ «¨§ ¯°®-´¨«¿ ¨­²¥£°¨°³¥¬®© ´³­ª¶¨¨, ­ ¤¥¦­®±²¼, ¡ ©¥±®¢±ª¨© ¢»¢®¤.1. Problem statement. The evaluation of (proper or improper) one-dimensional Riemann integrals byautomatic adaptive quadrature [1{3] has been implemented and is available in the most authoritative programlibraries (e.g., SLATEC, IMSL, and NAG). To alleviate severe code failures in cases of practical interest [4{6],separate codes, each being able to solve a given speci�c class of integrals, have been implemented [7, 8]. It isthen user's responsibility to choose an appropriate code from a library for the problem of interest.Such an approach remains, however, useless in the case of parametric integrals arising in various physicalmodels (see, e.g., [9{13]). Since the variation of the model parameters results in the occurrence of integralsfalling in di�erent classes, a priori decisions concerning the assignment of the right code cannot be taken. Weare thus left with the trial and error approach, with an unacceptably high rate of failure and frustration.If the reliability of the local quadrature rule output pairs (q; e) is explicitly questioned via the use of postvalidation consistency criteria [14, 15], then the overwhelming fraction of the spurious (q; e) pairs is ruled out,with the consequence that the class conscious decisions [2] of the automatic adaptive quadrature algorithms getsigni�cantly improved.In the present paper, we discuss a set of necessary consistency criteria allowing the identi�cation of thespurious (q; e) outputs prior to the activation of the local quadrature rules. This is an instance of Bayesianinference [16] which, by elimination of the guaranteed spurious outputs (q; e), increases the chance of obtainingmeaningful (q; e) pairs under complete lack of a priori knowledge on the integrand function.2. De�nitions and notations.2.1. The integral.We consider the (proper or improper) one-dimensional Riemann integralI � I[a; b]f = bZa f(x) dx; (1)where the integrand function f : [a; b]! R is assumed to be continuous almost everywhere on [a; b] such that (1)exists and is �nite.If the integrand is factorized as a product g(x)f(x), where the weight function g(x) absorbs an analyticallyintegrable di�cult part of the integrand (e.g., an endpoint singular or oscillatory function), then the followingconsiderations are equally valid for this integrand function f(x).2.2. Local quadrature rules. Given [�; �] � [a; b], a local quadrature rule produces an approximatesolution of I[�; �]f as a couple fq; eg, where q � Q[�; �]f denotes a quadrature sum approximation of I[�; �]f ,while e > 0 denotes a probabilistic bound of the error (estimate of the error) associated to q. If e > jeqj, whereeq = I[�; �]f � q is the actual error associated to q, then the couple fq; eg is reliable, otherwise it is unreliable.In the �rst case, the decisions of a class conscious automatic adaptive algorithm are meaningful, while in thesecond a wrong decision branch may be chosen and the numerical solution fails.1 Laboratory of Information Technologies, Joint Institute for Nuclear Research, 141980, Dubna, Russia andHoria Hulubei National Institute for Physics and Nuclear Engineering (IFIN-HH), 407 Atomistilor, Magurele,Bucharest, 077125, Romania; �. �¤ ¬, ¯°®´¥±±®°, e-mail: adamg@jinr.ru; �. �¤ ¬, ¯°®´¥±±®°, e-mail:adams@jinr.ruc
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392 ¢»·¨±«¨²¥«¼­»¥ ¬¥²®¤» ¨ ¯°®£° ¬¬¨°®¢ ­¨¥. 2009. �. 10We assume that q is a (2n+ 1)-knot interpolatory quadrature sum q � q2n � Q2n[�; �]f = 2nXi=0wif(xi) atthe 2n+ 1 abscissas (called the quadrature knots) inside [�; �]:� 6 x0 < x1 < : : : < x2n 6 � : (2)An automatic adaptive quadrature algorithm may operate with one or more local quadrature rules. In whatfollows, we assume that these may be either Gauss{Kronrod (GK) or Clenshaw{Curtis (CC) quadrature rules [1{3].Both of them result in symmetric quadrature sums, with the interpolation abscissas (2) given by xi = c+ hyi ;c = 12 (� + �) ; h = 12 (� � �) ; i = 0; 1; : : : ; 2n, where0 = yn < yn+1 < yn+2 < : : : < y2n 6 1; yn�i = �yn+i; i = 1; : : : ; n; (3)denote the reduced quadrature knots yi de�ned over [�1; 1].2.3. Standard automatic adaptive quadrature.The automatic adaptive quadrature was systematicallydeveloped in QUADPACK [1], the de facto standard of one-dimensional globally adaptive numerical integration. Aglobally adaptive quadrature algorithm involves the following two fundamental steps (QUADPACK [1], p. 60).(i) Initialization: the number of integration subranges is set to N = 1 and the local quadrature rule (q; e) isused to solve the given integral over the whole integration domain to yield the initial global pair (Q1 = q,E1 = e > 0). Using Q1 and the input accuracy speci�cations, an initial estimate �1 of the acceptabletolerance associated to the initial solution is computed.(ii) Error decrease by subrange subdivision: if EN > �N (i.e., the global error estimate EN > 0 associated to thecomposite quadrature sum approximation QN exceeds the tolerance level �N ), then the local quadratureerrors are decreased by subrange bisection (hence, N is increased to N + 1) and the global quantities�QN ; EN ; �N	 are updated until the error tolerance level is achieved (EN < �N ).2.4. The integrand pro�le. The set of all currently computed values of the integrand over the currentsubrange [�; �] � [a; b] de�nes the integrand pro�le over [�; �].Within the Bayesian automatic adaptive quadrature, the integrand pro�le comes from two kinds of abscissas:inherited from the ancestor subranges and the local quadrature knots (3) inside (�; �).While not currently needed for the computation of the local (q; e) pair, the inherited abscissas and integrandvalues provide valuable enhancement of the quality of the integrand behavior analysis over [�; �].The role of the local quadrature knots (2) or (3) is twofold. First, they serve to the derivation of hintson the integrand conditioning over [�; �]. Second, under ful�llment of all the well-conditioning criteria by theintegrand function, they serve to the derivation of the outputs (q; e) for the local quadrature rules.The union of the inherited and currently computed abscissas over [�; �] de�nes the �ne discretization setof abscissas over [�; �]. This may be de�ned either in terms of �xl < xl+1 < : : : < xr	; the absolute abscissavalues, or in terms of �yl < yl+1 < : : : < yr	; the reduced abscissa values. Both sets of abscissas are uniquelyde�ned for any arbitrary subrange [�; �] � [a; b].In what follows, the distance between two reduced abscissas will be of interest:�jk = yk � yj ; j; k 2 �l; l + 1; : : : ; rg: (4)2.5. Discrete neighborhoods over the integrand pro�le sampling. The analysis of the integrandbehavior around a certain quadrature knot xk 2 [�; �] asks for the use of neighborhoods which are de�ned interms of the already available integrand pro�le sampling. This analysis is local and involves several kinds ofneighborhoods.The left �ne discretization neighborhood of xk is given byFl(xk) = �xk�2; xk�1; xk; xk+1	 \ �xl; : : : ; xr	: (5)The left coarse discretization neighborhood of xk is given byCl(xk) = �xk�2; xk	 \ �xl; : : : ; xr	: (6)Similar de�nitions hold for the right discretization neighborhoods Fr(xk) and Cr(xk), respectively.The left lateral neighborhood of xk is given by Ll(xk) = �xk�3; xk�2; xk�1; xk	 \ �xl; : : : ; xr	. The leftlateral neighborhood is complete provided it contains exactly four points. Similar de�nition holds for the rightlateral neighborhood Lr(xk).



¢»·¨±«¨²¥«¼­»¥ ¬¥²®¤» ¨ ¯°®£° ¬¬¨°®¢ ­¨¥. 2009. �. 10 393The inner extremal point xk of the integrand pro�le is isolated to the left provided Ll(xk) is complete andthe sequence �fk�3; fk�2; fk�1; fk	 is monotonic.An inner extremal point xk is isolated provided it is isolated both to the left and to the right.A monotonic subset of sequential integrand pro�le values �fl; fl+1; : : : ; fl+q	 de�nes a monotonicity sub-range inside [�; �] provided its length q + 1 > 6.3. Integrand features subject to Bayesian inferences. There are integrand features which result inconspicuously unreliable local quadrature rule (q; e) outputs if properly questioned and identi�ed:| severe precision loss due to cancellation by subtraction;| occurrence of a range of variation of a monotonic integrand which exceeds the worst case bound inferredfrom the polynomial set spanning the interpolatory quadrature sum;| occurrence of a �nite jump with �nite lateral derivatives, immersed into a monotonicity subrange of theintegrand;| same as previous, but turning point;| integrand oscillations at a rate of variation beyond the current quadrature knot set resolving power;| isolated irregular integrand extremum.The speci�c decisions following from the identi�cation of one or another of the above-mentioned casesdepends on the diagnostic. One of the following three continuations is possible:(i) stop immediately the computation and return the appropriate error 
ag (when there is no hope to improvethe output for the present problem formulation);(ii) proceed immediately to symmetric subrange bisection (when it is expected that the re�nement of thediscretization into subranges will result into a better resolved integrand pro�le);(iii) proceed immediately to the solution of a number of auxiliary problems.If the occurrence of an inner isolated o�ending point xs was inferred, then resolve its location inside (�; �)to machine accuracy.Proceed then to the splitting [�; �] = �(�; xs) [ (xs; �)�: The abscissa xs will be locked from now on atsubrange boundaries within the subrange subdivision process of [a; b]. If xs = a or xs = b, then solveone lateral boundary layer problem [17, 18] at x+s or x�s , respectively, in order to determine the nature ofthe integrand behavior at xs as well as appropriate integrand lateral limits. If xs 2 (a; b), then solve twolateral boundary layer problems at x�s and x+s , respectively.The solutions of the auxiliary problems de�ne the further continuation of the algorithm. If xs is an essentialsingular point (i.e., it associates a singularity of f(xs) together with in�nitely many oscillations of f(x) inits neighborhood (like, e.g., sin (1=x) at x = 0+)), then further continuation is useless. The computationis stopped immediately and the appropriate error 
ag is returned.If xs corresponds either to a �nite jump or a turning point with �nite lateral derivative, then its contri-bution to the original Riemann integral is nil. The local quadrature outputs (q; e) become insensitive tothe occurrence of the nearby o�ending locked endpoint.If there is a lateral singularity at xs in the integrand and/or its �rst order derivative, then the localquadrature outputs (q; e) remain sensitive to the occurrence of the nearby o�ending isolated singularity.Moreover, slow convergence under further symmetric subrange bisection occurs. However, convergenceacceleration is possible by the use of extrapolation techniques. Therefore, a 
ag explicitly pointing to theallowance of the activation of a convergence acceleration procedure is set.This discussion points to the need of three pointers for the integrand behavior characterization over asubrange, corresponding to the left end, the right end, and the subrange interior respectively.The pointer ipinn characterizing the interior of a subrange carries the output analysis information givenin Table 1.The pointer ipend characterizing a subrange end carries the information given in Table 2.4. Order of integrand computation at quadrature knots over subranges. Within the standardautomatic adaptive quadrature, all the integrand values asked by the local quadrature rule pair (q; e) arecomputed, irrespective of the meaningfulness of the (q; e) output or not.Within the Bayesian automatic adaptive quadrature, the computation of the integrand values and theanalysis of the integrand behavior, prior to the activation of the local quadrature rule, are done in separatedistinct procedures. A noticeable decrease of the number of integrand evaluations may be obtained provided theanalysis is done as soon as possible after the computation of a new integrand value. The computation/analysis



394 ¢»·¨±«¨²¥«¼­»¥ ¬¥²®¤» ¨ ¯°®£° ¬¬¨°®¢ ­¨¥. 2009. �. 10Table 1ipinn0 All consistency criteria passed. Local quadrature rule activation allowed.-2 Insu�ciently resolved integrand pro�le. Do immediate symmetric bisection.-1 Localized integrand di�culty. Solve auxiliary and/or boundary layer problems.2 Heavy cancellation by subtraction. Stop all computations and issue error 
ag.Table 2ipend0 Free, presumably regular, subrange end.1 Locked singularity in function and/or �rst order derivative. Allow extrapolation.2 Locked zero measure subrange end. Extrapolation denied.3 Essential singularity. Stop all computations and issue error 
ag.process may be optimized as a two-step interlacing involving the computation of an appropriate subset ofintegrand values, followed by the check of corresponding consistency criteria.The minimal subset of integral values requested by the analysis comprises the subrange ends and the innerlocal quadrature knots inside (�; �) � (a; b). In order to make the following discussion independent of the open(GK) or closed (CC) character of the local quadrature sum of interest, we consider the union of the quadratureknots (3) with the reduced endpoint abscissas: �y
l < y
l+1 < y2n+
r	 = �y0 < y1 < : : : < y2n	 [ f�1; 1g.The integrand values f� = f(�) and f� = f(�) at the endpoints y
l = �1 and y2n+
r = +1 are either inheritedfrom the parent subrange or computed during the root initialization of the binary subrange tree.A consequence of the use of local quadrature sums of interpolatory type is the characteristic symmetricdistribution of the quadrature knots inside every subrange (�; �) � (a; b): sparser towards the subrange center(such that the norm of distribution (4) is given by max�j�jkj	 = yn+1 = �yn�1) and denser towards thesubrange ends (with the outermost two quadrature knots lying signi�cantly nearer to each other and to thecorresponding subrange end as compared to the remaining ones).The average inter-knot distance �� = (2n+ 
r � 
l)�1 (7)provides a convenient threshold for the separation from each other of the sparse and dense knot regions respec-tively inside the left and right subrange halves.The center yn = 0 itself (or, in absolute units, 
 = (� + �)=2) plays a special role within the symmetricbisection since the pairs (f�; f
) and (f
 ; f�) provide endpoint inheritance for the descendent subranges.This discussion points to a computation/analysis two stage process which is to be done for seven distinctgroups of inner quadrature knots: the center of [�; �]; the left and right pairs of quadrature knots lying nearestto the endpoints � and � respectively inside [�; �]; the left-half and right-half subsets covering the remainingdense quadrature knot distributions; ibid., for sparse quadrature knot distributions.Under the inheritance of previously computed integrand values over the ancestor ranges, the analysisprocess is completed by the operation of merging the inherited and just computed sequences with the purposeof enhancing the reliability of the Bayesian inferences.5. Severe precision loss due to cancellation by subtraction. Following the idea �rst developed inQUADPACK ([1], p. 71), we formulate the following criterion which ends quickly the computation of a vanishingintegral value under non-vanishing integrand.Criterion C1. If the integrand analysis at the initialization step of the automatic adaptive quadraturereturns the result 2n+
rXk=
l f(xk) < 100 "0 2n+
rXk=
l ��f(xk)��, where "0 is the epsilon with respect to addition, then aroundo� error 
ag is set and the computation is stopped.6. Upper bound to the global range of variation of a monotonic integrand. The key to thederivation of such a bound is provided byFact 1. Let XM = max�j�j; j�j	 denote the endpoint maximum absolute value of the current quadrature
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oating point degree of precision, K of an interpolatory quadrature sum showing an algebraic degreeof precision equal to d is an e�ective value de�ned as follows:K = 8>>><>>>:d i� XM 2 [xm; xM ]; xm = "1=d0 ; xM = x�1m ,hln "0= lnXMi i� XM < xm,h� ln "0= lnXMi i� XM > xM ,where [a] denotes the integer part of a > 0.Proof. The result follows from the consideration of the fundamental polynomial pd(x) = dXk=0xK andderivation of those conditions under which all the monomials of the fundamental power series �1; x; : : : ; xK	bring signi�cant bits to the computed values of pd(x) at various arguments x.From pd(x) it follows that 2K is a worst case upper bound for the range of variation of the integrand valuesover the triplet ff�; f
 ; f�g. We may therefore formulateCriterion C2. Let [�; �] � [a; b], f� = f(�), f� = f(�), f
 = f(
), 
 = (� + �)=2; ��
 = jf
 � f�j;�
� = jf� � f
 j. If �f�; f
 ; f�	 de�ne a monotonic sequence, then the infringement of the condition2K min���
 ;�
�	 > max���
 ;�
�	points to the need of exiting the computation/analysis process and to proceed to the immediate symmetricbisection of [�; �].7. Inferences from integrand slope approximation at a subrange endpoint.Criterion C3 (the endpoint slope consistency criterion). Given:(i) [�; �] � [a; b] and a sampling �f0; f1; f2	 around the endpoint x0 (x0 = � or x0 = �) of [�; �] over theabscissas set �x0; x1; x2	, where x1 and x2 denote the two abscissas lying nearest to x0 within the merged setof currently generated and inherited abscissas,(ii) the three estimates ef 0(k)0 (k = 1; 2; 3) of f 00 = f 0(x0) following from the samplings S1 = �f0; f1	 andS2 = �f0; f2	 as a �rst order divided di�erence ef 0(k)0 = dk0 = fk � f0xk � x0 = fk � f0h�k0 , k = 1; 2, or from thesampling S3 = �f0; f1; f2	 as ef 0(3)0 = d10 + (d10 � d20)�10;20, �10;20 = �10�20 , then the set n ef 0(1)0 ; ef 0(2)0 ; ef 0(3)0 o istaken for being consistent provided��� ef 0(1)0 � ef 0(3)0 ��� 6 ��� ef 0(2)0 � ef 0(3)0 ��� 6 � max����f 0(1)0 ���; ���f 0(2)0 ���; ���f 0(3)0 ���; 1�; (8)where � is an empirical value set to � = 1=3.If the consistency criterion (8) is infringed, then:(a) under jhj = j� � �j2 > 1 or a nonmonotonic sequence S3, immediate symmetric bisection of [�; �] isrecommended, since it is expected that an insu�ciently resolved integrand pro�le by the set (3) of the localquadrature knots will result over [�; �];(b) the solution of a boundary layer problem at x0 inside [�; �] is asked otherwise.8. Check of Nyquist threshold for oscillatory integrands. The reconstruction of periodic signals([17], Chap. 12) shows that the structural details recovered by analysis cannot be �ner than the norm of thediscretization sampling. The Nyquist theorem established in this context has two straightforward implicationsin the Bayesian automatic adaptive quadrature with respect to the faithful representation of the integrandfunction structure by the integrand pro�le at the set of the local quadrature knots (3).Criterion C4 (Nyquist local). The faithful representation of a non-monotonic integrand variation by thepro�le derived at the local abscissa set (3) asks for a lower bound of the distance between two successive extremanot smaller than 3=4��, with �� given by (7) and 3=4 being an empirical factor.Criterion C5 (Nyquist global). The integrand pro�le derived at the local abscissa set (3) is faithful if thenumber of counted oscillations inside it does not exceed the Nyquist threshold 2=yn+1.The infringement of any of these two criteria points to an insu�ciently resolved integrand pro�le and thisasks for immediate symmetric subrange bisection.



396 ¢»·¨±«¨²¥«¼­»¥ ¬¥²®¤» ¨ ¯°®£° ¬¬¨°®¢ ­¨¥. 2009. �. 109. Integrand behavior at isolated inner extrema. If x0 is an extremal point of a smooth function f(x),then f 0(x0) = 0 and there is a �nite neighborhood V (x0) of x0 inside which f 00(x0) 6= 0. These fundamentalproperties result into the following Bayesian hint:Criterion C6. The integrand f(x) is smooth at the isolated extremal knot xk provided(I) ��f 0F (xk)�� < ��f 0C(xk)��; where fF ; Cg is a symbolic notation for the pairs �Fl(xk); Cl(xk)	 and respectively�Fr(xk); Cr(xk)	, Eqs. (5) and (6);(II) the curvature of f(x) at �xk�1; xk; xk+1	 keeps constant sign irrespective of the manifold Ll(xk),Fl(xk), Fr(xk), or Lr(xk) over which it is computed from third degree interpolatory polynomials.The infringement of any of conditions (I) and (II) points to an irregular extremum xk. Scale invariance ofthe diagnostic of an irregular extremum is checked under symmetric bisection until it is detected at a half-widthjhj < 1, therefrom the analysis follows the general pattern described at point (iii) of Section 3.10. Checking integrand regularity over monotonicity subranges. The analysis done in this case isbased [15] on the comparison of the �rst order divided di�erences dk+1;k = fk+1 � fkh�k+1;k and is formalized in thefollowing Bayesian hint:Criterion C7. A quadrature knot xk is assumed to belong to a neighborhood (xk�1; xk+1) inside whichthe integrand f(x) is continuous provided the �rst order divided di�erences satisfymin�jdk;k�1j; jdk+1;kj	 > � max�jdk;k�1j; jdk+1;kj	; (9)where � is an empirically de�ned threshold.Under infringement of (9), the analysis follows the general pattern (iii), Section 3.If Criterion C7 is ful�lled, then the analysis is re�ned usingCriterion C8. If the integrand pro�le is monotonic and the curvature keeps constant sign everywhereinside (�; �), then the activation of the local quadrature rules is accepted irrespective of the subrange width.Criterion C9. If the integrand pro�le is monotonic and the pattern of the sign of the curvature over asequence of three consecutive intervals is either +�+ or �+�, then a turning point with �nite lateral derivativeshas to be resolved or disproved.11. Mesoscopic analysis of the boundary layer [17, 18]. Assume that f(x) is a continuous twicedi�erentiable function over [a; b] and let xr 2 [a; b] denote a reference argument value. Then there exists anon-vanishing neighborhood V (xr) � [a; b] of xr inside which a linear Taylor series expansion holds true withina prede�ned threshold 0 < "� 1.Numerical check of the continuity of f(x) is done from a sampling of its computed values,nfi = fl�f(xi)� �� i = 0; 1; : : : ;mo;over a set of machine number arguments Sm(xr) = �xi 2 V (xr) �� i = 0; 1; : : : ;m	, m > 3, chosen such thatfl(xr) 2 Sm(xr), where fl(�) denotes the 
oating point representation of � 2 R . Let �f(xi) j i = 0; 1; : : : ;m	denote the set of actual values of f(xi) over Sm(xr). In general, due to the round-o�, f(xi) � fl�f(xi)� 6= 0,hence the best information on the smoothness properties of f(x) at xr following from the set �xi; fi	 is obtainedfrom the scrutiny of the properties of a second degree polynomial least squares �t to the 
oating point data.It is convenient to perform the scale transformation xi = x0 + �ihr, i = 0; 1; : : : ;m, �i 2 Z, where hrdenotes the distance from xr to its nearest machine number inside [a; b]. This leads to the second degree�tting polynomial y2(xi) = �0+�1hrp1(�i) +�2h2rp2(�i) , spanned by the orthogonal basis polynomials pk(�i),k = 0; 1; 2, of norms Nk, respectively. Under negligible �2, the �rst order derivative of f(x) at xr is given byf 0(xr) � y02(xr) = �1 = N�11 mXi=0 p1(�i)fi.The smallest sampling Sm(xr) suitable for a least squares analysis providing insight on the smoothnessproperties of f(x) at xr = a and xr = b respectively consists of four distinct abscissas (i.e., m = 3). Wechoose them such that the set fx0; x1; x2g de�nes a uniform mesoscopic mesh �0 = 0, �1 = p, �2 = 2p, �3 = q,q 6= f0; p; 2pg.Then the validity of a linear Taylor expansion around the reference abscissa xr is found to hold true withinprescribed accuracy " provided the minimal sampling yields scale invariant approximations of the �rst orderderivative f 0(x). Details and implementation are reported in [17, 18].12. The priority queue associated to the binary subrange tree. Within the standard automaticadaptive quadrature, the magnitude of the local quadrature error e provides the simple key pointing to thesubrange to be bisected next.



¢»·¨±«¨²¥«¼­»¥ ¬¥²®¤» ¨ ¯°®£° ¬¬¨°®¢ ­¨¥. 2009. �. 10 397Within the Bayesian automatic adaptive quadrature, consistent subrange handling is secured by a compositepriority queue key. The magnitude of the local quadrature error is the primary priority queue key which securesthe storage of the subrange showing the largest local error at root. For a subrange in unde�ned state, theconventional value e = oflow, where oflow is a value near to the machine over
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